патент
№ RU 2670307
МПК E21B33/138

Способ предупреждения проявлений при строительстве нефтяных и газовых скважин

Авторы:
Сергеев Виталий Вячеславович
Номер заявки
2017139273
Дата подачи заявки
13.11.2017
Опубликовано
22.10.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям предупреждения проявлений пластового флюида при строительстве нефтяных и газовых скважин, в частности к ликвидации перетоков в проявляющих пластах. Способ включает последовательную закачку в пласт блокирующей пачки и продавочной жидкости. При этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую 5-20 мас.% дизельного топлива или подготовленной нефти с пункта подготовки и перекачки нефти, 2-3 мас.% эмульгатора, 0,5-1 мас.% коллоидного раствора наночастиц двуокиси кремния с размером частиц от 5 до 100 нм, 3-5 мас.% сухой аморфной двуокиси кремния (92-99%) с размером частиц от 5 до 500 нм, 10-15 мас.% микрочастиц ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм, водный раствор хлористого кальция или хлористого калия – остальное. При этом в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия. Техническим результатом является повышение технологической эффективности мероприятий по предупреждению проявлений и ликвидации перетоков в системе пласт-скважина в проявляющих пластах с высоким газовым фактором или аномально высоким пластовым давлением, а также упрощение способа. 4 з.п. ф-лы, 6 пр., 4 ил.

Формула изобретения

1. Способ предупреждения проявлений при строительстве нефтяных и газовых скважин, включающий последовательную закачку в пласт блокирующей пачки и продавочной жидкости,

при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (мас.%):

дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-20,

эмульгатор - 2-3,

коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1,

сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5,

микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 10-15,

водный раствор хлористого кальция или хлористого калия - остальное,

а в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия.

2. Способ по п. 1, отличающийся тем, что в качестве коллоидного раствора наночастиц двуокиси кремния используют композицию, содержащую (мас.%) двуокись кремния - 31-32,5 в монометиловом эфире пропиленгликоля - 67, воду - остальное.

3. Способ по п. 1, отличающийся тем, что в качестве коллоидного раствора наночастиц двуокиси кремния используют композицию, содержащую (мас.%) двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное.

4. Способ по п. 1, отличающийся тем, что в качестве коллоидного раствора наночастиц двуокиси кремния используют композицию, содержащую (мас.%) двуокись кремния - 29-31 в этиленгликоле - остальное.

5. Способ по п. 1, отличающийся тем, что в качестве эмульгатора используют композицию, содержащую (мас.%):

эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42,

окись амина - 0,7-1,

высокомолекулярный органический термостабилизатор - 0,5-1,

дизельное топливо - остальное.

Описание

[1]

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям предупреждения проявлений пластовых флюидов при строительстве нефтяных и газовых скважин, в частности, к ликвидации перетоков в проявляющих пластах.

[2]

Одной из наиболее актуальных проблем в отрасли строительства нефтяных и газовых скважин является проявление пластовых флюидов из пластов с аномально-высоким пластовым давлением (АВПД). В данном случае условия предупреждения или ликвидации перетоков из проявляющих пластов будут выполнены при создании противодавления на пласт жидкостью с большей плотностью, чем в случае с нормальным или аномально-низким пластовым давлением.

[3]

Основными недостатками всех классических буровых растворов на водной основе является гидрофилизация поверхности горных пород, низкая вязкость, слабая адгезия и отсутствие тампонирующей способности, которые приводят к перетокам пластовых флюидов и технологических жидкостей в системе пласт-скважина при проявлениях.

[4]

В связи с этим, при вскрытии пластов с аномальными условиями применение классических буровых растворов неэффективно. В процессах строительства скважин при бурении интервалов с аномальными условиями необходимо применять особые технологические жидкости - блокирующие составы (блокирующие пачки). Физико-химические свойства блокирующих составов значительно отличаются от свойств классических буровых растворов.

[5]

Степень проявления факторов, осложняющих процессы строительства скважин, находится в зависимости от горно-геологических условий месторождения и геолого-физических параметров пластов.

[6]

Наиболее часто осложняющие факторы проявляются при бурении скважин в зонах залегания пластов с высоким газовым фактором (при вскрытии пласта ввиду перепада давления пластовые нефть и газ с меньшей плотностью проникают из пласта в скважину, что приводит к снижению противодавления на пласт и является причиной нефтегазопроявлений).

[7]

Для повышения эффективности процессов строительства нефтяных и газовых скважин и решения задачи предупреждения проявлений пластовых флюидов (ликвидации осложнений) при вскрытии пластов с аномальными условиями необходимо применение технологических жидкостей с особыми реологическими, поверхностно-активными и тампонирующими свойствами.

[8]

Из уровня техники известен состав для изоляции пластовых вод, ликвидации межпластовых и заколонных перетоков на скважинах (патент РФ №2032068, МПК Е21В 33/138, дата публикации 27.03.1995), содержащий кремнийорганическую жидкость и спиртсодержащий раствор, при этом в качестве кремнийорганической жидкости он содержит водно-спиртовые растворы этилсиликоната натрия (ГКЖ-10) или метилсиликоната натрия (ГКЖ-11), а в качестве спиртсодержащего раствора - водный раствор поливинилового спирта. Недостатками способа является необходимость выдержки состава при закрытой скважине под давлением в течение 12-24 ч, а также отсутствие твердых частиц для ликвидации поглощений в высокопроницаемых интервалах пластов.

[9]

Известен способ проведения ремонтно-изоляционных работ в условиях больших поглощений (патент РФ №2405926, МПК Е21В 43/22, дата публикации 10.12.2010), который может быть использован, в частности, для ликвидации заколонных перетоков. Способ включает предварительную закачку в интервал поглощения оторочки из 1-3 м3 нефтекислотной эмульсии, а затем 1-4 цикла последовательной закачки равных количеств стекла натриевого жидкого и 50%-ной водной суспензии фосфогипса с суммарным объемом одного цикла от 4 до 8 м3 с промежуточной закачкой между ними буфера из пресной воды. Недостатками способа являются многоэтапность технологии закачки жидкостей в скважину, а также невозможность применения способа при вскрытии продуктивных интервалов нефтегазоносных пластов ввиду необратимой кольматации каналов фильтрации композицией стекла натриевого жидкого и 50%-ной водной суспензии фосфогипса.

[10]

Для решения указанных проблем в области строительства нефтяных и газовых скважин предлагается способ предупреждения проявлений пластовых флюидов в пластах с АВПД (ликвидации перетоков в проявляющих пластах) или высоким газовым фактором, основанный на закачке в пласт блокирующей пачки в виде эмульсионно-суспензионной системы и продавке водным раствором хлористого кальция или хлористого калия.

[11]

Сущность изобретения заключается в том, что способ включает следующие последовательные этапы: закачку в пласт блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор наночастиц двуокиси кремния, сухую аморфную двуокись кремния, микрочастицы ильменита или тетраоксида тримарганца, водный раствор хлористого кальция или хлористого калия, а в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия. При этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% масс): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-20, эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5, микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 10-15 и водный раствор хлористого кальция или хлористого калия - остальное. В качестве коллоидного раствора наночастиц двуокиси кремния можно использовать композицию, содержащую (% масс): двуокись кремния - 31-32,5 в монометиловом эфире пропиленгликоля - 67, воду -остальное; либо двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте -остальное; либо двуокись кремния - 29-31 в этиленгликоле - остальное. В качестве эмульгатора можно использовать композицию, содержащую (% масс.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0,7-1, высокомолекулярный органический термостабилизатор - 0,5-1, дизельное топливо-остальное.

[12]

Положенное в основу способа радиальное размещение блокирующей пачки в проявляющем пласте обеспечивает создание блокирующего экрана, который благодаря комплексу высоких адгезионных и реологических характеристик способен противостоять высокому перепаду давлений (до 300 атм.) без прорыва пластового флюида и поглощений бурового раствора.

[13]

При движении эмульсионно-суспензионной системы (ЭСС) в пористой среде ее эффективная вязкость зависит от объемного водосодержания в ЭСС и скорости фильтрации ЭСС в пористой среде, увеличиваясь с ростом объемного водосодержания и снижением скорости фильтрации. Это приводит к тому, что при движении ЭСС в пористой среде происходит саморегулирование вязкостных свойств, скорости и направления фильтрации в глубь пласта. Эти реологические свойства ЭСС позволяют сформировать радиальный экран, который преимущественно блокирует наиболее проницаемые интервалы пласта.

[14]

Увеличение вязкости ЭСС при взаимодействии с водой и разложение ЭСС при взаимодействии с углеводородами обеспечивает селективность действия блокирующей пачки и позволяет предотвратить необратимую кольматацию продуктивного пласта при первичном вскрытии. Гидрофобность и поверхностная активность ЭСС обеспечивает изменение фазовой проницаемости преимущественно гидрофильных горных пород продуктивных пластов.

[15]

Техническим результатом изобретения является повышение технологической эффективности мероприятий по предупреждению проявлений и ликвидации перетоков в системе пласт-скважина в проявляющих пластах с высоким газовым фактором или АВПД, а также упрощение способа.

[16]

Изобретение иллюстрируется следующими графическими материалами.

[17]

На фиг. 1 приведена таблица, раскрывающая технику и оборудование для приготовления и закачки технологических жидкостей.

[18]

На фиг. 2 приведена таблица, иллюстрирующая результаты измерений плотности эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).

[19]

На фиг. 3 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).

[20]

На фиг. 4 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).

[21]

Подготовительные работы на скважине

[22]

При первых признаках возникновения поглощений в процессе строительства скважины необходимо осуществить следующие мероприятия:

[23]

- оценить приемистость скважины на разных режимах расхода бурового насоса (данные фиксировать по максимальному значению);

[24]

- при падении статического уровня необходимо оценить скорость снижения уровня раствора в скважине и уровень стабилизации, определить интенсивность поглощения как во время бурения на различных режимах, так и в статике;

[25]

- по фактическим данным мониторинга приемистости (или интенсивности поглощения) принимать решение по составу блокирующей пачки.

[26]

Объем блокирующей пачки определяется в зависимости от приемистости интервала и находится в интервале 5-25 м3 на метр вскрытой толщины пласта (м3/м), но не менее 150% от объема, достаточного для перекрытия поглощающего интервала.

[27]

Оценку приемистости интервала можно проводить по следующей формуле:

[28]

[29]

где:

[30]

I - приемистость при определенном расходе насоса,

[31]

TVD - глубина скважины по вертикали, м;

[32]

ECD - эквивалентная циркуляционная плотность,

[33]

S - удельный вес раствора,

[34]

Приготовление блокирующей пачки

[35]

Приготовление блокирующей пачки производится на установках приготовления растворов: блок приготовления растворов «БПР» (емкость с лопастной мешалкой и внешним центробежным насосом). Необходимое оборудование для приготовления эмульсионных систем представлено на фиг. 1.

[36]

В емкость для приготовления блокирующей пачки набирается (% масс) дизельное топливо или подготовленная нефть с пункта подготовки и перекачки нефти - 5-20. Далее запускается центробежный насос на циркуляцию и лопастной перемешиватель. После этого последовательно в дизельном топливе диспергируются эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, сухая аморфная двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5 и микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 10-15, водный раствор хлористого кальция или хлористого калия - остальное.

[37]

В качестве коллоидного раствора наночастиц двуокиси кремния можно использовать композицию, содержащую (% масс.):

[38]

- двуокись кремния - 31-32,5 в монометиловом эфире пропиленгликоля - 67, воду - остальное, или

[39]

- двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное, или

[40]

- двуокись кремния - 29-31 в этиленгликоле - остальное.

[41]

В качестве эмульгатора можно использовать композицию, содержащую (% масс.): эфиры высших ненасыщенных кислот жирного ряда (в частности, линолевую, олеиновую, линоленовую) и смоляных кислот - 40-42, окись амина - 0,7-1, высокомолекулярный органический термостабилизатор - 0,5-1, дизельное топливо (летнее или зимнее) - остальное.

[42]

Ввод составляющих в углеводородную основу производится через эжектор с помощью вакуумного шланга или через открытый верх емкости «БПР».

[43]

Технологические емкости должны быть оборудованы лопастными мешалками, обеспечивающими постоянное и равномерное распределение реагентов по всему объему. Для обеспечения получения и поддержания свойств стабильности систем рекомендуется применять лопастные мешалки с реверсивным направлением вращения.

[44]

Качество приготовления и стабильность свойств систем зависит от полноты охвата перемешиванием всего объема емкости приготовления, чистоты емкостей, скорости ввода составляющих и времени диспергирования. Рекомендуется использовать емкость со «скошенными» углами (форма близкая к цилиндрической).

[45]

Контроль качества приготовления ЭСС Контроль проводится путем проверки седиментационной устойчивости систем. Тест считается положительным, если при выдержке ЭСС при комнатной температуре в течение 2 ч произошло отделение водной или углеводородной фазы не более 3% от объема ЭСС.

[46]

Перечень оборудования и специальной техники для проведения работ на скважине Количество и вид специальной техники представлены на фиг. 1. Расчет произведен при условии приготовления систем на растворном узле «БПР». Представленный перечень оборудования и специальной техники является базовым и может включать в себя дополнительные наименования в зависимости от условий проведения работ, месторасположения растворного узла. Закачка блокирующей пачки в скважину может быть произведена с применением буровых насосов.

[47]

Технология осуществления способа

[48]

Порядок технологических операций:

[49]

1. Перевод нагнетательной линии на «БПР».

[50]

2. Закачка в скважину блокирующей пачки в объеме 5-25 м3/м, но не менее 150% от объема, достаточного для перекрытия поглощающего интервала.

[51]

3. Про давка блокирующей пачки водным раствором хлористого кальция или хлористого калия в объеме достаточном для выхода блокирующей пачки из колонны бурильных труб.

[52]

4. Поднятие компоновки низа бурильной колонны (КНБК) на 50 м выше интервала установки блокирующей пачки.

[53]

5. Закрытие превентора.

[54]

6. Продавка водным раствором хлористого кальция или хлористого калия в объеме не менее 150% от объема блокирующей пачки. Продавку производить с низким расходом, периодической остановкой агрегата и мониторингом изменения давления в скважине:

[55]

- при регистрации роста давления в скважине после остановки агрегата необходимо продолжить продавку закаченного объема блокирующей пачки;

[56]

- если в ходе продавки полного объема блокирующей пачки с низким расходом не происходит стабилизации давления, необходимо повторно произвести вышеперечисленные технологические операции по закачке и про давке блокирующей пачки;

[57]

- если достигнута стабилизация давления в скважине открыть превентор и возобновить циркуляцию с низким расходом;

[58]

- если циркуляция полная, медленно увеличить расход рабочего раствора.

[59]

7. Спуск инструмента на забой для удаления остатков блокирующей пачки.

[60]

8. Продолжить бурение.

[61]

Конкретные объемы закачиваемых в пласт блокирующей пачки и продавочной жидкости рассчитываются в зависимости от приемистости пласта и мощности вскрытого интервала поглощения.

[62]

Скорость закачки технологических жидкостей

[63]

Закачка технологических жидкостей на этапе установки блокирующей паки должна производиться непрерывно с производительностью, предотвращающей снижение плотности технологических жидкостей всплывающими газом и нефтью, а также при давлении на агрегате, исключающем полное поглощение жидкости.

[64]

Скорость закачки технологических жидкостей определяется величиной пластового давления, а в случае высокого газового фактора и аномально высокого пластового давления скорость закачки должна быть максимальной, превышающей производительность пласта.

[65]

Расчет требуемой плотности технологических жидкостей

[66]

Требуемая плотность технологических жидкостей определяется на основе расчета исходя из условия создания столбом технологических жидкостей давления, превышающего текущее пластовое давление на коэффициент безопасности.

[67]

Количество сухого хлористого калия или хлористого кальция, требуемого для приготовления необходимого объема водного раствора определенной плотности, рассчитывается по следующей формуле:

[68]

[69]

где:

[70]

Мр - количество реагента - сухого хлористого калия или хлористого кальция, кг;

[71]

Yp - удельный вес реагента, г/см3;

[72]

Yжг - удельный вес технологических жидкостей, г/см3;

[73]

Yв - удельный вес технической воды, применяемой для приготовления технологических жидкостей, г/см3;

[74]

Vp - требуемый объем водного раствора солей, м3.

[75]

Расчет необходимой плотности технологических жидкостей при полной замене скважинной жидкости определяется по следующей формуле:

[76]

[77]

где:

[78]

ρ - расчетная плотность технологических жидкостей, кг/м3;

[79]

Рпл - пластовое давление, МПа;

[80]

П - коэффициент безопасности удельного веса технологических жидкостей, определяемый Федеральными нормами и правилами в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности», утвержденные приказом Ростехнадзора от 12.03.2013 №101;

[81]

Н - расстояние от устья до кровли пласта по вертикали, м.

[82]

Для скважины, в которой вскрыто несколько пластов с разными пластовыми давлениями и расстояние между ними составляет более 50 м, в расчетах принимается величина Н от устья скважины до кровли пласта с более высоким пластовым давлением.

[83]

Лабораторные исследования физических свойств ЭСС Для исследования физических свойств систем были подготовлены образцы блокирующей пачки с различным объемным содержанием компонентов.

[84]

В результате проведения экспериментов определялись следующие параметры систем:

[85]

- плотность;

[86]

- агрегативная устойчивость;

[87]

- термостабильность;

[88]

- кинематическая вязкость.

[89]

С целью оценки качества приготовления образцов ЭСС производилась их выдержка не менее 2 часов при комнатной температуре до начала проведения экспериментов.

[90]

Измерение плотности ЭСС

[91]

Результаты измерения плотности (пикнометрический метод) эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3), применяемых для ликвидации проявлений пластовых флюидов, представлены на фиг. 2.

[92]

Измерение агрегативной устойчивости ЭСС

[93]

Агрегативная устойчивость - это способность систем сохранять степень дисперсности внутренней фазы.

[94]

Оценку проводили по показателю электростабильности - измерений значений электрического напряжения, соответствующего моменту разрушения систем, заключенной между электродами измерительной ячейки прибора. Эксперименты проводились на приборе марки FANN.

[95]

Результаты измерения агрегативной устойчивости ЭСС с плотностью водной составляющей - 1280 кг/м3 представлены на фиг. 3.

[96]

Измерение термостабильности ЭСС

[97]

Измерение термостабильности ЭСС проводили путем выдержки образцов в мерных герметично закрытых цилиндрах в термошкафу в течение 24 часов при заданном температурном режиме 80°С. Тест считался положительным (образец стабилен), если после 6 ч термостатирования из эмульсионной системы отделилось не более 3 об. % водной или углеводородной фаз от общего объема ЭСС. В результате экспериментов на термостабильность определено, что все образцы стабильны в течение 24 часов.

[98]

Измерение кинематической вязкости ЭСС

[99]

Результаты измерения кинематической вязкости (мм2/с) ЭСС с плотностью водной составляющей 1280 кг/м3 представлены на фиг. 4. Измерения проводились при температуре 23°С (погрешность измерения температуры ±0,1°С) на вискозиметре ВПЖ-2 с константой вискозиметра - 0,09764. Перед экспериментами ЭСС перемешивали в механической мешалке при заданной скорости 1600 об/мин в течение 20 минут.

[100]

Результаты комплекса проведенных базовых лабораторных исследований физических свойств ЭСС подтвердили высокие технологические свойства разработанных составов. Особенно важными параметрами являются высокая термостабильность и агрегативная устойчивость систем, а также возможность регулировать вязкость ЭСС изменением объемного содержания водной фазы в системе.

[101]

Далее приведены примеры осуществления способа.

[102]

Пример 1

[103]

Осуществление способа при ликвидации перетоков пластовых флюидов из проявляющего пласта с высоким газовым фактором - 710 м3/т.

[104]

Провели подготовительные работы на скважине: произвели расстановку техники для проведения закачки согласно утвержденной схемы, произвели обвязку оборудования и опрессовку нагнетательной линии на давление, превышающее ожидаемое рабочее в 1,5 раза, соблюдая меры безопасности.

[105]

По завершению подготовительных работ начали проведение технологических операций по закачке блокирующей пачки.

[106]

На первом этапе произвели закачку в призабойную зону пласта (ПЗП) блокирующей пачки ЭС следующего состава, % масс: подготовленная нефть с пункта подготовки и перекачки нефти - 5, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 0.8, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4.5, микрочастицы ильменита с размером частиц от 0,2 до 5 мкм -15, водный раствор хлористого калия плотностью 1285 кг/м3 - 72,2, в объеме 5 м3/м. На втором этапе произвели продавку блокирующей пачки водным раствором хлористого калия с плотностью 1270 кг/м3 в объеме 2 м3/м. При этом эмульгатор содержит (% масс): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот -41, окись амина - 0.8, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (летнее) - 57,7. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс): двуокись кремния - 30, изопропанол - 68.5, метиловый спирт - 1,5.

[107]

Проявление было ликвидировано в один цикл без осложнений. При дальнейшем углублении скважины прорыва газа не произошло.

[108]

Пример 2

[109]

Здесь и далее подготовительные работы производились в соответствие с порядком, указанным в примере 1.

[110]

Осуществление способа при ликвидации проявления пластовых флюидов из пласта с высоким газовым фактором - 620 м3/т.

[111]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: подготовленная нефть с пункта подготовки и перекачки нефти - 12, эмульгатор - 2, коллоидный раствор наночастиц двуокиси кремния - 0.6, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 5, микрочастицы тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 11.5, водный раствор хлористого кальция плотностью 1275 кг/м3 - 68,9, в объеме 13 м3/м. На втором этапе произвели продавку блокирующей пачки водным раствором хлористого калия с плотностью 1260 кг/м3 в объеме 3.5 м3/м. При этом эмульгатор содержит (% масс): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 40, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (летнее) - 58,8. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс): двуокись кремния - 31, монометиловый эфир пропиленгликоля - 67, вода - 2.

[112]

Проявление было ликвидировано в один цикл без осложнений. При дальнейшем углублении скважины прорыва газа не произошло.

[113]

Пример 3

[114]

Осуществление способа при ликвидации перетоков пластовых флюидов из проявляющего пласта с аномально-высоким пластовым давлением.

[115]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: подготовленная нефть с пункта подготовки и перекачки нефти - 20, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 0.9, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 3, микрочастицы ильменита с размером частиц от 0,2 до 5 мкм - 10, водный раствор хлористого кальция плотностью 1270 кг/м3 - 63,1, в объеме 16 м3/м. На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1255 кг/м3 в объеме 4 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (олеиновая) и смоляных кислот - 42, окись амина - 1, высокомолекулярный органический термостабилизатор - 1, дизельное топливо (зимнее) - 56. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс): двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0,5.

[116]

Проявление было ликвидировано в один цикл без осложнений. При дальнейшем углублении скважины прорыва пластовых флюидов не произошло.

[117]

Пример 4

[118]

Осуществление способа при ликвидации перетоков пластовых флюидов из проявляющего пласта с аномально-высоким пластовым давлением.

[119]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: подготовленная нефть с пункта подготовки и перекачки нефти - 5, эмульгатор - 2, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 5, микрочастицы ильменита с размером частиц от 0,2 до 5 мкм - 15, водный раствор хлористого кальция плотностью 1280 кг/м3 - 72, в объеме 18 м3/м. На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1265 кг/м3 в объеме 7 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линолевая) и смоляных кислот - 40, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 1, дизельное топливо (зимнее) - 58,3. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс.): двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0,5.

[120]

Проявление было ликвидировано в один цикл без осложнений. При дальнейшем углублении скважины прорыва пластовых флюидов не произошло.

[121]

Пример 5

[122]

Осуществление способа при ликвидации перетоков пластовых флюидов из проявляющего пласта с аномально-высоким пластовым давлением.

[123]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: дизельное топливо - 15, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 3.5, микрочастицы тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 12, водный раствор хлористого кальция плотностью 1290 кг/м3 -66, в объеме 20 м3/м. На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1275 кг/м3 в объеме 4 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 0.8, высокомолекулярный органический термостабилизатор - 0.7, дизельное топливо (летнее) - 56,5. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс): двуокись кремния - 31, этиленгликоль - 69.

[124]

Проявление было ликвидировано в один цикл без осложнений. При дальнейшем углублении скважины прорыва пластовых флюидов не произошло. Пример 6

[125]

Осуществление способа при ликвидации перетоков пластовых флюидов из проявляющего пласта с аномально-высоким пластовым давлением.

[126]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: подготовленная нефть с пункта подготовки и перекачки нефти - 10, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4, микрочастицы ильменита с размером частиц от 0,2 до 5 мкм - 12, водный раствор хлористого кальция плотностью 1260 кг/м3 - 70,5, в объеме 16 м3/м. На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1245 кг/м3 в объеме 4 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линолевая) и смоляных кислот - 40, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 1, дизельное топливо (зимнее) - 58,3. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс.): двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0,5.

[127]

Проявление было ликвидировано в один цикл без осложнений. При дальнейшем углублении скважины прорыва пластовых флюидов не произошло.

[128]

Таким образом, изобретение обеспечивает повышение технологической эффективности мероприятий по предупреждению проявлений и ликвидации перетоков в системе пласт-скважина в проявляющих пластах с высоким газовым фактором или аномально-высоким пластовым давлением - в частности, за счет использования твердых частиц, а также упрощение способа - в частности, благодаря использованию лишь двухэтапной технологии, а также за счет отсутствия необходимости выдержки составов в скважине.

Как компенсировать расходы
на инновационную разработку
Похожие патенты