патент
№ RU 2701819
МПК F02G5/04
Номер заявки
2019113637
Дата подачи заявки
06.05.2019
Опубликовано
01.10.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к области двигателестроения и представляет собой гибридную установку с утилизацией тепла двигателя внутреннего сгорания. Техническим результатом является повышение эффективности за счет использования тепловой энергии системы охлаждения и выпускных газов с преобразованием этой энергии в дополнительную механическую энергию привода. Сущность изобретения заключается в том, сто установка содержит двигатель 1 внутреннего сгорания с выпускным трактом 2, имеющий контур циркуляции охлаждающей жидкости, в который включены рубашка 3 охлаждения с жидкостным насосом 4, и контур циркуляции низкокипящей рабочей жидкости с напорной и сливной магистралями 5 и 6. В состав последнего входят емкость 7 с рабочей жидкостью, теплообменное устройство, где предусмотрен нагрев низкокипящей рабочей жидкости теплом охлаждающей жидкости и выпускных газов, а также преобразователь энергии давления паров низкокипящей рабочей жидкости и система клапанов 9-12. Двигатель снабжен охладителем-радиатором 13 и расширительной емкостью 14, установленными в контуре циркуляции низкокипящей рабочей жидкости, преобразователь энергии выполнен в виде роторно-парового мотора, а теплообменное устройство - в виде двух нагревателей 15 и 16, установленных в напорной магистрали 5. Нагреватель 15 связан с контуром циркуляции охлаждающей жидкости и соединен через обратный клапан 9 с жидкостной полостью 17 емкости 7 и другим нагревателем 16, который связан с выпускным трактом 2 и соединен через подпорный клапан 11 с расширительной емкостью 14 и со входом преобразователя 8 энергии в виде роторно-парового мотора, выход которого соединен последовательно с охладителем-радиатором 13, а через подпорный клапан 12 - с емкостью 7. При этом роторно-паровой мотор своим выходным валом механически связан с выходным валом двигателя 1 внутреннего сгорания. При работе двигателя нагреватели 15 и 16 перегревают низкокипящую рабочую жидкость, которая превращаясь в пар, приводит во вращение преобразователь 8 энергии в виде роторно-парового мотора, который затем через механическую связь передает энергию выходному валу двигателя 1 внутреннего сгорания. Низкокипящая рабочая жидкость после охладителя-радиатора 13 конденсируется и поступает в емкость 7. 1 ил.

Формула изобретения

Гибридный тепловой двигатель, содержащий двигатель внутреннего сгорания с системой подачи топлива и выпускным трактом, имеющий контур циркуляции охлаждающей жидкости, в который включены рубашка охлаждения с жидкостным насосом, и контур циркуляции низкокипящей рабочей жидкости с напорной и сливной магистралями, в состав которого включены емкость с рабочей жидкостью, теплообменное устройство с возможностью нагрева в нем низкокипящей рабочей жидкости теплом охлаждающей жидкости и выпускных газов, а также преобразователь энергии давления паров низкокипящей рабочей жидкости, установленный в напорной магистрали после теплообменного устройства, и система клапанов, отличающийся тем, что двигатель снабжен охладителем и расширительной емкостью, дополнительно установленными в контуре циркуляции низкокипящей рабочей жидкости, преобразователь энергии выполнен в виде роторно-парового мотора, а теплообменное устройство контура циркуляции низкокипящей рабочей жидкости - в виде двух нагревателей, установленных последовательно в напорной магистрали, один из которых связан с контуром циркуляции охлаждающей жидкости и соединен через соответствующие обратные клапаны с жидкостной полостью емкости с низкокипящей рабочей жидкостью и другим нагревателем, причем последний связан с выпускным трактом и соединен через подпорный клапан с расширительной емкостью и со входом роторно-парового мотора, выход которого соединен последовательно с охладителем-радиатором, установленным в сливной магистрали, а через подпорный клапан - с паровой полостью емкости с низкокипящей рабочей жидкостью, при этом роторно-паровой мотор своим выходным валом механически связан с выходным валом двигателя внутреннего сгорания.

Описание

[1]

Изобретение относится к области машиностроения и может быть использовано в двигателестроении при создании приводов автотранспортных средств.

[2]

Известен двигатель внутреннего сгорания, содержащий компрессорный цилиндр с поршнем, сообщенный с воздушной магистралью, а так же рабочий цилиндр с камерой сгорания, оснащенной топливной форсункой и поршнем, надпоршневая полость которого подключена к выпускному тракту. В состав конструкции включена дополнительная камера сгорания, сообщенная своими полостями с помощью клапанов с полостями компрессорного и рабочего цилиндров, имеющая форсунку для впрыска с помощью водяного насоса воды, нагреваемой в теплообменнике. Причем теплообменник включен своими нагреваемыми поверхностями в выпускной тракт. В дополнительной камере происходит нагрев воды за счет тепла выпускных газов, затем происходит ее подача в камеру сгорания рабочего цилиндра в надпоршневую полость в момент ее сообщения с выпускным трактом. В результате образуется смесь продуктов сгорания с водяным паром. При этом дополнительная энергия от присутствия водяного пара в принудительном удалении образовавшихся после сгорания выпускных газов, преобразуя энергию расширяющейся газопаровой смеси в кинетическую энергию коленчатого вала (см. А.С. СССР №1314137, МПК F02M 25/02, опубл. 1987 г.).

[3]

Недостатком известного двигателя внутреннего сгорания является дополнительный расход топлива в дополнительной камере сгорания, а так же не использование тепла системы охлаждения двигателя внутреннего сгорания.

[4]

Известен гибридный тепловой двигатель внутреннего сгорания с контуром циркуляции охлаждающей жидкости. В последний входит рубашка охлаждения с жидкостным насосом, а так же выпускной тракт, сообщенный с атмосферой. В состав конструкции входит контур циркуляции низкокипящей рабочей жидкости с напорной и сливной магистралями, в состав которого включены емкость с рабочей жидкостью, теплообменное устройство для нагрева в нем низкокипящей рабочей жидкости теплом охлаждающей двигатель жидкости, а также теплом выпускных газов выпускного тракта. При этом предусмотрен преобразователь давления паров низкокипящей рабочей жидкости, который установлен в напорной линии. При работе двигателя преобразованная в пар низкокипящая рабочая жидкость направляется в эластичную емкость, установленную в ванне с водой и имеющую всасывающие и напорные клапаны. Эластичная емкость, периодически изменяя свой объем (пульсирующий режим), воздействует через слой воды на размещенную вместе с ней компрессорную камеру, подавая воздух под давлением в ресивер, а затем в двигатель, а также в другие системы транспортного средства, используя при этом тепло контура охлаждающей жидкости и выпускного тракта при работающем контуре низкокипящей жидкости (см. А.С. СССР №1744294, МПК F02G 5/04 опубл. 1982 г.).

[5]

Недостатком устройства является то, что отсутствует преобразование тепла выпускных газов и системы охлаждения в механическую энергию выходного вала двигателя.

[6]

Технической задачей, на решение которой направлено изобретение, является максимальное использование тепловой энергии системы охлаждения и выпускных газов для преобразования этой энергии в дополнительную механическую энергию привода.

[7]

Решение поставленной технической задачи достигается благодаря тому, что гибридный тепловой двигатель, содержащий двигатель внутреннего сгорания с системой подачи топлива и выпускным трактом, имеющий контур циркуляции охлаждающей жидкости, в который включены рубашка охлаждения с жидкостным насосом, и контур циркуляции низкокипящей рабочей жидкости с напорной и сливной магистралями, в состав которого включены емкость с рабочей жидкостью, теплообменное устройство с возможностью нагрева в нем низкокипящей рабочей жидкости теплом охлаждающей жидкости и выпускного тракта, а также преобразователь энергии давления паров низкокипящей рабочей жидкости, установленный в напорной магистрали после теплообменного устройства, и систему клапанов, согласно изобретению двигатель снабжен охладителем-радиатором и расширительной емкостью, дополнительно установленными в контуре циркуляции низкокипящей рабочей жидкости, преобразователь энергии выполнен в виде роторно-парового мотора, а теплообменное устройство контура циркуляции низкокипящей рабочей жидкости - в виде двух нагревателей, установленных последовательно в напорной магистрали, один из которых связан с контуром циркуляции охлаждающей жидкости и соединен через соответствующие обратные клапаны с жидкостной полостью емкости с низкокипящей рабочей жидкостью и другим нагревателем, причем последний связан с выпускным трактом и соединен через подпорный клапан с расширительной емкостью и со входом роторно-парового мотора, выход которого соединен последовательно с охладителем-радиатором, установленным в сливной магистрали, а через подпорный клапан - с паровой полостью емкости с низкокипящей рабочей жидкостью, при этом роторно-паровой мотор своим выходным валом механически связан с выходным валом двигателя внутреннего сгорания.

[8]

Решение поставленной технической задачи становится возможным, благодаря тому, что тепло выпускных газов, а также тепло, диссипируемое контуром охлаждающей жидкости не выбрасывается в окружающую среду, а используется для нагрева низкокипящей рабочей жидкости в нагревателях-теплообменниках до парообразного состояния, а затем с помощью преобразователя энергии в виде роторно-парового мотора преобразуется в механическую энергию его выходного вала. Полученная таким образом дополнительная энергия может быть передана выходному валу двигателя внутреннего сгорания или использоваться в качестве привода каких-либо других устройств. После использования энергии давления рабочая жидкость при охлаждении поступает вновь в жидкой фазе в исходную емкость, тем самым обеспечивается циркуляция низкокипящей рабочей жидкости по замкнутому контуру. В результате использования двигателем внутреннего сгорания дополнительной тепловой энергии можно значительно повысить КПД гибридного теплового двигателя.

[9]

Изобретение поясняется чертежом, на котором представлена схема гибридного теплового двигателя.

[10]

Гибридный тепловой двигатель содержит традиционный двигатель 1 внутреннего сгорания с системой подачи топлива (на чертеже не обозначена) и выпускным трактом 2, имеющий контур циркуляции охлаждающей жидкости, в который входит рубашка 3 охлаждения с жидкостным насосом 4. В состав гибридного теплового двигателя входит контур циркуляции низкокипящей рабочей жидкости с напорной и сливной магистралями 5 и 6, соответственно, емкостью 7 с низкокипящей рабочей жидкостью, теплообменным устройством (на чертеже не обозначено) с возможностью нагрева в нем низкокипящей рабочей жидкости теплом контура охлаждающей жидкости и выпускного тракта. Кроме того, в контуре имеется преобразователь 8 давления паров низкокипящей рабочей жидкости, установленный в напорной магистрали 5 после теплообменного устройства, а также система из обратных и подпорных клапанов 9, 10 и 11, 12, соответственно, обеспечивающих процесс циркуляции низкокипящей рабочей жидкости. При этом гибридный тепловой двигатель снабжен охладителем-радиатором 13 и расширительной емкостью 14, дополнительно установленными в контуре циркуляции низкокипящей рабочей жидкости, преобразователь 8 выполнен в виде роторно-парового мотора, а теплообменное устройство - в виде двух нагревателей 15 и 16, которые установлены последовательно в напорной магистрали 5. Причем один из нагревателей, а именно, нагреватель 15 связан с контуром циркуляции охлаждающей жидкости двигателя 1 внутреннего сгорания и соединен через обратный клапан 9 с жидкостной полостью 17 емкости 7 с низкокипящей рабочей жидкостью, а через обратный клапан 10 - с другим нагревателем 16. Последний связан с выпускным трактом 2 и соединен через подпорный клапан 11 с расширительной емкостью 14 и со входом преобразователя 8 в виде роторно-парового мотора, выходной вал которого механически связан с выходным валом двигателя 1 внутреннего сгорания. При этом выход преобразователя 8, выполненного в виде роторно-парового мотора, связан сливной магистралью 6 с охладителем-радиатором 13, а далее с паровой полостью 18 емкости 7 через подпорный клапан 12.

[11]

Гибридный тепловой двигатель работает следующим образом.

[12]

Первоначально емкость 7, напорная магистраль 5 до подпорного клапана 11 заполняются низкокипящей рабочей жидкостью под давлением насыщенных паров в емкости 7 до уровня 0,6-0,8 Мпа. После начала работы двигателя 1 внутреннего сгорания начинается прогрев нагревателя 15, использующего тепло контура, состоящего из рубашки 3 охлаждения и жидкостного насоса 4. В то же время осуществляется прогрев нагревателя 16 теплом продуктов сгорания, поступающих в выпускной тракт 2, рабочая среда в виде низкокипящей рабочей жидкости в объеме напорной магистрали 5 между обратным и подпорным клапанами 9 и 11, соответственно, прогревается и начинает расширяться до давления срабатывания подпорного клапана 11. Перегретая жидкость попадает в расширительную емкость 14, превращается в пар под давлением насыщенных паров рабочей среды в соответствии с температурой перегрева. Объем рабочей среды в парообразном состоянии существенно увеличивается в ρжидпар раз. Вследствие инерционности системы и гистерезиса характеристики подпорного клапана 11 из нагретой напорной магистрали 5 выйдет некоторое количество жидкой перегретой рабочей среды в расширительную емкость 14, что понизит давление в напорном объеме между обратным клапаном 9 и подпорным клапаном 11. Это позволит емкости 7 подать под давлением насыщенных паров необходимое количество жидкой холодной среды. Данный пульсирующий процесс будет повторяться при дальнейшей работе системы. Промежуточный обратный клапан 10 позволяет интенсифицировать каждый из нагревателей 15 и 16. Под давлением насыщенных паров пар из расширительной емкости 14 поступает к преобразователю 8 в виде роторно-парового мотора, что обеспечивает передачу энергии пара его выходному валу. Отработанный пар из преобразователя 8 - роторно-парового мотора, поступает в охладитель-радиатор 13 и охлаждается до температуры окружающей среды и под действием избыточного давления, создаваемого подпорным клапаном 12, конденсируется и в жидком агрегатном состоянии поступает из сливной магистрали 6 в емкость 7. Затем цикл работы повторяется многократно, обеспечивая работу контура гибридного теплового двигателя с замкнутой циркуляцией рабочей среды. Таким образом, нагреватель 15 в контуре охлаждения и нагреватель 16 в выпускном тракте 2 контура циркуляции низкокипящей рабочей жидкости перегревают жидкую рабочую среду, которая превращается в пар, приводящий во вращение преобразователь 8 в виде роторно-паровой мотора, механически связанного с выходным валом двигателя 1 внутреннего сгорания. Затем пар охлаждается в охладителе-радиаторе 13 и под давлением подпорного клапана 12 превращается в жидкость, а после этого поступает в паровую полость 18, а из нее - в жидкостную полость 17 емкости 7. Охладитель-радиатор 13 представляет собой систему естественного воздушного охлаждения без дополнительных трат энергии.

[13]

В итоге, при использовании низкокипящей, легко конденсируемой жидкости в качестве рабочей среды в условиях закрытого контура ее циркуляции в режиме дополнительного использования тепловой энергии контура циркуляции охлаждающей жидкости, а также выпускного тракта двигателя внутреннего сгорания, появляется возможность преобразовывать тепловую энергию в механическую энергию роторно-парового привода, увеличивая тем самым эффективность гибридного теплового двигателя за счет рекуперации тепловой энергии.

[14]

Таким образом, изобретение позволяет максимально использовать тепловую энергию системы охлаждения и выпускных газов для преобразования этой энергии в дополнительную механическую энергию привода.

Как компенсировать расходы
на инновационную разработку
Похожие патенты