патент
№ RU 2644834
МПК B22F9/04

Способ получения металлокерамической порошковой композиции

Авторы:
Каблов Евгений Николаевич Буякина Анна Алексеевна Ефимочкин Иван Юрьевич
Все (15)
Номер заявки
2017113414
Дата подачи заявки
18.04.2017
Опубликовано
14.02.2018
Страна
RU
Дата приоритета
06.07.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к получению металлокерамической порошковой композиции, использующейся для изготовления деталей методом аддитивных технологий. Способ включает приготовление порошковой смеси и механический синтез смеси в планетарной мельнице. Порошковую смесь готовят путем смешивания порошка высокожаропрочного сплава на основе никеля в качестве матричного порошка и порошка армирующих наночастиц MeCN и/или МеС, где Me является Ni, Ti, Та, Mo, Hf, V, Si. Механический синтез смеси проводят в планетарной мельнице при частоте вращения 200-250 об/мин в течение 15-30 мин в среде аргона в размольных кюветах с применением размольных шаров из стали ШХ15 диаметром 5 мм. Соотношение массы обрабатываемой смеси и шаров составляет 1:8, а соотношение объема шаров к объему размольной кюветы составляет 1:5. Обеспечивается получение порошковой композиции типа ядро-оболочка с равномерным точечным распределением армирующих наночастиц по поверхности сферических гранул порошка высокожаропрочного сплава на основе никеля. 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения металлокерамической порошковой композиции, включающий приготовление порошковой смеси и механический синтез смеси в планетарной мельнице, отличающийся тем, что в качестве исходных компонентов порошковой смеси используют порошок высокожаропрочного сплава на основе никеля и порошок армирующих наночастиц MeCN и/или МеС, где Me - элементы Ni, Ti, Та, Mo, Hf, V, Si, при этом механический синтез порошковой смеси проводят в планетарной мельнице при частоте вращения 200-250 об/мин в течение 15-30 мин в среде аргона в размольных кюветах с применением размольных шаров из стали ШХ15 диаметром 5 мм, причем соотношение массы обрабатываемой смеси и шаров составляет 1:8, а соотношение объема шаров к объему размольной кюветы составляет 1:5.
2. Способ по п. 1, отличающийся тем, что фракция порошка высокожаропрочного сплава на основе никеля составляет 10-63 мкм, а фракция порошка указанных армирующих наночастиц MeCN и/или МеС составляет 50-400 нм.
3. Способ по п. 1, отличающийся тем, что соотношение порошка высокожаропрочного сплава на основе никеля к порошку армирующих наночастиц составляет 1:0,1-1:0,5 мас. % соответственно.

Описание

Изобретение относится к порошковой металлургии, а именно к получению сферической мелкодисперсной металлокерамической порошковой композиции типа «ядро-оболочка» с равномерным точечным распределением армирующих наночастиц типа MeCN и/или МеС (где Me - элементы Ni, Ti, Та, Mo, Hf, V, Si) по поверхности сферических гранул высокожаропрочного никелевого сплава. Материал может применяться в ракетной, авиационной и автомобильной промышленности для изготовления деталей силовых крепежных элементов горячей зоны ГТД методом аддитивных технологий, в том числе послойного синтеза (3D печать).

Традиционные методы получения металлокерамических порошковых композиций (МКПК) не пригодны для получения деталей методом аддитивных технологий, так как МКПК получают либо из расплава, что приводит к образованию конгломератов армирующих частиц, либо получение МКПК механическим синтезом приводит к формированию осколочной формы матричных гранул и неравномерному распределению армирующих частиц по объему (невозможно получить гранулы типа «ядро-оболочка»)

Из уровня техники известен литейный метод производства МКПК дисперсно-упрочненного сплава, включающий сушку нанопорошка оксида, плавление матричного металла, перемешивание порошка с матричным металлом, разливку полученного расплава в формы и их быстрое охлаждение (JP 2008189995 А, С22С 1/10, 21.08.2008).

Недостатком данного способа является трудность обеспечения равномерного распределенной упрочняющей фазы. Она распределяется по объему, а не по поверхности порошка матрицы, что не позволяет достигнуть композиции типа «ядро-оболочка».

Известен способ получения тугоплавких композиционных материалов с металлической или интерметаллидной матрицей, армированной керамическими частицами, включающий приготовление исходной смеси порошков механическим легированием, сплавление порошков в емкости путем погружения ее донной части в расплав металла и последующую кристаллизацию (RU 2263089 С1, С04B 35/65, 27.10.2005).

Недостатком этого способа является использование трудоемких процессов плавления и кристаллизации сплава, а также невозможность изготовления изделий сложной формы.

Известен способ получения композиционного материала на основе интерметаллида ниобия, включающий перемешивание исходной порошковой смеси, далее проводят ее механическое легирование в аттриторе в защитной атмосфере в течение 40-50 ч, и после горячее изостатическое прессование проводят при температуре 1450-1550°C и давлении 25-35 МПа не более 5 мин (RU 2393060 С1, B22F 3/15, 27.06.2010).

Недостатком данного способа является высокая длительность процесса изготовления металлокерамического порошка, также в процессе механического легирования в аттриторе происходят процессы «наклепа-скалывания», в результате чего обрабатываемый материал приобретает осколочную форму частиц.

Наиболее близким техническим решением к заявленному способу является способ получения композиционного материала на основе карбосилицида титана, включающий приготовление порошковой смеси, состоящей из титана, кремния, углерода или соединений, их содержащих; механический синтез порошковой смеси в планетарной мельнице в прерывистом режиме при частоте вращения барабана 260-330 об/мин при массовом соотношении порошковой смеси и мелющих тел 1:30; горячее прессование механосинтезированной порошковой смеси при давлении прессования 10-15 МПа и выдержке в течение 0,5-3,0 ч при температуре 1350-1450°C в вакууме или атмосфере инертного газа (RU 2372167, B22F 3/14, 20.05.2009).

Недостатком указанного способа является намол нежелательных примесей в процессе механосинтеза порошковой смеси, снижающих сферичность в целевом продукте, а также невозможность получения порошка с поверхностным точечным распределением армирующих наночастиц.

Технической задачей изобретения является разработка способа получения металлокерамической порошковой композиции типа «ядро-оболочка» с равномерным точечным распределением армирующих наночастиц на поверхности гранул матрицы из сплава на основе никеля с минимальным изменением морфологии исходных гранул (сохранение сферической формы, удаление сателлитов).

Технический результат заявленного изобретения заключается в разработке способа получения композиционного порошкового материала с точечным равномерным распределением армирующих тугоплавких наночастиц по поверхности матричных гранул из высокожаропрочного сплава на основе никеля.

Композиция, полученная заявленным способом, имеет текучесть менее 29 сек, высокую степень сферичности гранул и высокий выход годного (более 80%) по фракции 10-63 мкм для применения МКПК в качестве материала для послойного синтеза.

Для достижения заявленного технического результата предложен способ получения металлокерамической порошковой композиции, включающий приготовление порошковой смеси и механический синтез смеси в планетарной мельнице. В качестве исходных компонентов порошковой смеси используют порошок высокожаропрочного сплава на основе никеля и порошок армирующих наночастиц типа MeCN и/или МеС, где Me - элементы Ni, Ti, Та, Mo, Hf, V, Si. Механический синтез порошковой смеси проводят в планетарной мельнице при частоте вращения 200-250 об/мин в течение 15-30 минут в среде аргона в размольных кюветах с применением размольных шаров из стали ШХ15 диаметром 5 мм. Соотношение массы обрабатываемой смеси и шаров составляет 1:8. Соотношение объема шаров к объему размольной кюветы составляет - 1:5.

Предпочтительно фракция порошка высокожаропрочного сплава на основе никеля составляет 10-63 мкм, а фракция порошка армирующих наночастиц типа MeCN и/или МеС, где Me - элементы Ni, Ti, Та, Mo, Hf, V, Si, составляет 50-400 нм.

Предпочтительное соотношение порошка высокожаропрочного сплава на основе никеля к порошку армирующих наночастиц составляет 1:0,1-1:0,5 масс % соответственно, что повышает механические характеристики сплава-матрицы при высоких температурах, увеличивает рабочую температуру и исключает образование плотной оболочки армирующих наночастиц на поверхности матричных гранул, препятствующей рекристаллизации при последующей обработке готового материала (горячее изостатическое, 3D-синтез и т.д.).

Механический синтез проводят в планетарной мельнице в размольных кюветах, наполненных размольными шарами диаметром 5 мм из стали типа ШХ15, соотношение массы обрабатываемого материала и шаров - 1:8, соотношение объема шаров к объему размольной кюветы - 1:5. Данные соотношения позволяют снизить разброс температур при соударении размольных шаров и порошка и сохранить исходную сферическую форму матричных гранул.

Обработка при частоте вращения 200-250об/мин обеспечивает равномерное нанесение армирующих наночастиц на поверхность матричных гранул без образования агломератов армирующего наполнителя. Также во время обработки по данному режиму сохраняется сферическая форма гранул обрабатываемого материала и снижается количество дефектов на поверхности исходных гранул (стираются сателлиты, налипания).

Обработку проводят в течение 15-30 минут, дальнейшее увеличение продолжительности процесса приводит к изменению формы гранул и размолу обрабатываемого материала.

Указанные параметры процесса обеспечивают температуру внутри размольных кювет при соударении порошковой смеси и мелющих тел (шаров), не превышающую температуру начала пластической деформации матричного никелевого сплава, что позволяет сохранить сферическую форму исходных матричных гранул.

Примеры осуществления изобретения

Пример 1

Исходный матричный порошок из сплава ВЖ175 (Со 14,8-16,0, Cr 9,4-11,0, W 2,9-3,4, Мо 4,0-4,8, Al 3,5-4,0, Ti 2,3-2,8, Nb 4,1-4,6, V 0,4-0,8, С 0,04-0,08, Ni - остальное) фракции 10-63 мкм и порошок армирующих наночастиц TiCN фракции 50-400 нм засыпают в мольную кювету объемом 220 мл при массовом соотношении 1:0,1-1:0,5, масс. % соответственно. Далее в размольную кювету засыпают шары из стали ШХ15 диаметром 5 мм, при соотношении массы обрабатываемой смеси и шаров 1:8 и соотношении объема шаров к объему размольной кюветы 1:5. Механический синтез приготовленной порошковой смеси производят на планетарной шаровой мельнице Retsch РМ400. Загруженные кюветы устанавливают в гнезда планетарной мельницы и закрепляют их. Включают установку. Задают рабочую скорость вращения 200 об/мин, время обработки - 15 минут, вращение соосное. Далее кюветы заполняют аргоном и проводят обработку.

Пример 2 аналогичен примеру 1, но в качестве армирующих наночастиц использовали ТаС в количестве 0,2 масс. %, скорость вращения размольных кювет 250об/мин, время обработки 30 минут.

Пример 3 аналогичен примеру 1, но в качестве армирующих наночастиц использовали HfC в количестве 0,15 масс. %, скорость вращения размольных кювет 220об/мин, время обработки 20 минут.

Примет 4 аналогичен примеру 1, но в качестве армирующих наночастиц использовали TiC и TiCN суммарно 0,5 масс. %, скорость вращения размольных кювет 230об/мин, время обработки 25 минут.

Примет 5 аналогичен примеру 1, но в качестве армирующих наночастиц использовали МоС 0,1 масс. %, скорость вращения размольных кювет 210об/мин, время обработки 15 минут.

Примет 6 аналогичен примеру 1, но в качестве армирующих наночастиц использовали SiC и VC суммарно 0,4 масс. %, скорость вращения размольных кювет 250об/мин, время обработки 30 минут.

Пример 7 в соответствии со способом по прототипу, но в качестве компонентов смеси использовали порошки никелевого сплава ВЖ175 и армирующих наночастиц Ni-TiCN в соотношении 1:0,25 масс % соответственно.

Предлагаемый способ позволяет получать МКПК типа «ядро-оболочка» с матрицей из высокожаропрочного сплава на основе никеля и равномерным точечным распределением армирующих тугоплавких наночастиц типа MeCN и/или МеС по поверхности гранул. Способ имеет высокий выход годного по фракции 10-63 мкм и времени процесса. МКПК имеет сферическую форму и текучесть менее 29 сек (таблица 1), что подходит для использования в качестве материалов для послойного синтеза.

Предлагаемый способ позволяет изготавливать композиционные порошковые материалы типа «ядро-оболочка» для создания высоконагруженных сложнопрофильных деталей для ГТД с повышенными температурами эксплуатации за счет ввода тугоплавких армирующих и пригодных для использования в аддитивном производстве, в том числе для послойного синтеза (3D печать).

Как компенсировать расходы
на инновационную разработку
Похожие патенты