патент
№ RU 2564810
МПК G01P15/08

ЛИНЕЙНЫЙ МИКРОАКСЕЛЕРОМЕТР С ОПТИЧЕСКОЙ СИСТЕМОЙ

Авторы:
Кремерова Татьяна Александровна Лисевская Алиса Владимировна Адамов Юрий Федорович
Все (4)
Номер заявки
2014115441/28
Дата подачи заявки
18.04.2014
Опубликовано
10.10.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области измерительной техники и касается линейного микроакселерометра с оптической системой. Микроакселерометр включает в себя корпус, две инерционные массы на упругих подвесах, два датчика положения, два компенсационных преобразователя. Датчики положения выполнены в виде двух пар монохроматических излучателей с различным спектром излучения и двух фотоприемников с цветоделением, имеющих не менее двух выходов спектральных диапазонов. Излучатели расположены над инерционной массой, а фотоприемники размещены в корпусе соосно с фотоприемниками. Монохроматические излучатели снабжены ограничителями светового потока. Технический результат заключается в повышении точности измерений и упрощении конструкции. 1 ил.

Формула изобретения

Линейный микроакселерометр с оптической системой, содержащий две инерционные массы на упругих подвесах, два датчика положения, два компенсационных преобразователя и корпус, отличающийся тем, что датчики положения выполнены в виде двух пар монохроматических излучателей с различным спектром излучения и двух фотоприемников с цветоделением, имеющих не менее двух выходов спектральных диапазонов, излучатели расположены над инерционной массой, а фотоприемники соосно с ними размещены в корпусе, причем каждый из монохроматических излучателей имеет ограничитель светового потока.

Описание

[1]

Изобретение относится к измерительной технике и может использоваться для измерения линейного ускорения, например, в инерциальных системах навигации.

[2]

Известно устройство ″ADXL50″, содержащее инерционную массу на упругих подвесах, состоящую из дифференциальной конденсаторной структуры с воздушным диэлектриком, подвижные обкладки которой вытравлены из плоского куска поликремниевой пленки, а неподвижные жестко закреплены в корпусе и лежат в одной плоскости параллельно друг другу и подвижным обкладкам, датчик положения, компенсационный преобразователь, корпус, крышку и источник тока. [1]

[3]

Недостаткам данного устройства является низкая точность измерения линейного ускорения.

[4]

Известен акселерометр, содержащий инерционную массу на упругом подвесе, выполненную в виде кварцевой пластины, датчика положения, образованного поверхностями с металлическим напылением с двух сторон, расположенными на инерционной массе и обращенными к ней поверхностями, размещенными в корпусе, источник тока и компенсационный преобразователь, состоящий и двух катушек, закрепленных на инерционной массе, и двух постоянных магнитов, расположенных в корпусе. [2]

[5]

Недостатками известного устройства являются малый частотный диапазон измеряемого входного воздействия, массогабаритные характеристики.

[6]

Наиболее близким по технической сущности и достигаемому эффекту является линейный микроакселерометр, содержащий корпус, крышку, две инерционные массы на упругих подвесах, выполненных в виде прямоугольных пластин их монокристаллического кремния и, расположенных в одной плоскости последовательно друг за другом вдоль оси чувствительности с возможностью линейного перемещения. [3]

[7]

Недостатками данного устройства являются малый частотный диапазон измеряемого входного воздействия, массогабаритные характеристики, сложность реализации.

[8]

Задачей является создание линейного микроакселерометра, измеряющего линейные ускорения с большей точностью за счет определения интенсивности различных излучений по цветопередаче в условиях ионизирующих излучений.

[9]

Линейный микроакселерометр, содержащий инерционную массу на упругих подвесах, датчик положения, компенсационный преобразователь, корпус, инерционную массу, выполненную в виде прямоугольных пластин из монокристаллического кремния и расположенных в одной плоскости последовательно друг за другом вдоль оси чувствительности с возможностью линейного перемещения, компенсационные преобразователи для каждой инерционной массы выполнены в виде двух постоянных магнитов, размещенных на крышке и корпусе, и напыленных на поверхности прямоугольных пластин и находящиеся в одной плоскости с осью чувствительности токопроводящих дорожек, замкнутых по периметру, датчики положения для каждой инерционной массы выполнены в виде двух пар монохроматических излучателей и фотоприемников с цветоделением, имеющих не менее двух выходов спектральных диапазонов, излучатели расположены над инерционными массами, а фотоприемники соосно с ними размещены в корпусе.

[10]

Светодиоды расположены над инерционными массами и соосно с фотоприемниками, так как данное конструктивное решение является оптимальным и легко реализуемым.

[11]

Инерционная масса совершает колебания вдоль оси чувствительности под действием знакопеременного сигнала постоянного тока, формируемого в цепи обратной связи. При этом наличие входного воздействия приводит к смещению центра колебаний и возникновению временной модуляции сигнала.

[12]

Линейный микроакселерометр является радиационно-стойким, так как его электронная база обладает высокой устойчивостью к ионизирующему воздействию.

[13]

Оптическая система, которая входит в состав микроакселерометра, является помехоустойчивой в условиях воздействия шумов и электромагнитных помех.

[14]

Усиление сигнала будет достигаться за счет увеличения контраста в фотоприемниках для различных спектральных диапазонов, что способствует снижению помех.

[15]

Повышение точности измерений достигается за счет режима автоколебаний, а также введения фотоприемников с цветоделением и уменьшения вследствие этого вредных моментов, действующих на инерционные массы.

[16]

Проведенный заявителем анализ уровня техники установил, что аналоги, характеризующиеся совокупностями признаков, тождественных всем признакам заявленного линейного микроакселерометра, отсутствуют, следовательно, заявленное изобретение соответствует условию ″новизна″.

[17]

Результаты поиска известных технических решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипов признаками заявленного изобретения, показали, что они не следуют явным образом из уровня техники.

[18]

Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата, следовательно, заявленное изобретение соответствует ″изобретательскому уровню″.

[19]

Сущность изобретения поясняется Фиг. 1, где представлена конструктивная схема датчика и введены следующие обозначения:

[20]

1 - Первая инерционная масса

[21]

2 - Вторая инерционная масса

[22]

3 - Упругие подвесы

[23]

4 - Постоянные магниты

[24]

5 - Токопроводящие дорожки

[25]

6 - Корпус

[26]

7 - Излучатели первого датчика положения

[27]

8 - Излучатели второго датчика положения

[28]

9 - Фотоприемник первого датчика положения

[29]

10 - Фотоприемник второго датчика положения

[30]

В предлагаемом линейном микроакселерометре две инерционные массы 1, 2 размещены на упругих подвесах 3 в зазоре между полюсами постоянных магнитов 4 с возможностью линейного перемещения и выполнены в виде прямоугольных пластин из монокристаллического кремния, на поверхности которых напылены, перпендикулярно оси чувствительности, токопроводящие дорожки 5, замкнутые по периметру. Постоянные магниты 4 закреплены на корпусе 6. Датчики положения для каждой инерционной массы 1, 2 выполнены в виде двух пар излучателей 7, 8 и фотоприемников 9, 10, где первые из них 7, 8 расположены над инерционными массами, а вторые 9, 10 соосно с ними размещены в корпусе 6, причем каждая пара расположена таким образом, что торцы прямоугольной пластины являются модуляторами светового потока от излучателей 7, 8 к фотоприемникам 9, 10.

[31]

Линейный микроакселерометр работает следующим образом.

[32]

В исходном состоянии инерционная масса 1 на упругих подвесах 3 перекрывает поток излучения одного из излучателей 7. При этом второй излучатель 8 открыт, в результате на выходе второго фотоприемника 10 появляется сигнал. Магнитное поле постоянных магнитов 4, взаимодействуя с полем тока, протекающего в токопроводящих дорожках 5, перемещает их вдоль оси чувствительности так, что инерционная масса 1 перекрывает поток излучения второго излучателя 8 и открывает поток первого излучателя 7. На выходе первого фотоприемника 9 появляется сигнал. Аналогичный процесс происходит с инерционной массой 2, которая в исходном состоянии перекрывает поток излучения одного из излучателей 7 так, что поток второго излучателя 8 при этом открыт. В результате на выходе второго фотоприемника 10 появляется сигнал. Магнитное поле постоянных магнитов 4, взаимодействуя с полем тока, протекающего в токопроводящих дорожках 5, перемещает их вдоль оси чувствительности так, что инерционная масса 2 перекрывает поток излучения второго излучателя 8 и открывает поток первого излучателя 7. Таким образом, инерционные массы 1, 2 совершают автоколебания с некоторой частотой и амплитудой в противофазе.

[33]

Инерционная масса совершает колебания вдоль оси чувствительности под действием знакопеременного сигнала постоянного тока, формируемого в цепи обратной связи. При этом наличие входного воздействия приводит к смещению центра колебаний и возникновению временной модуляции сигнала. Уровень шумов в схеме регистрации положения инерционной массы определяется величиной тока на выходе чувствительного элемента. При емкостном методе регистрации положения инерционной массы повышение выходного тока требует увеличения частоты и напряжения возбуждающего сигнала. Увеличение мощности возбуждающего оптического сигнала не требует изменений в системе ограничений и конструкции аппаратуры. При оптической регистрации положения легко увеличить динамический диапазон выходного тока до десятков и даже сотен микроампер при мощности излучателей на уровне десятков милливатт. При емкостном считывании максимальный выходной ток не превышает 1 мкА. Уровень дробового шума уменьшается обратно пропорционально корню квадратному из уровня тока считываемого сигнала. Прогнозируемое снижение шума в 3-5 раз.

[34]

Источники информации

[35]

1. Doscher J. Accelerometer Design and Applications. Analog Devices. 1998.

[36]

2. Патент РФ №2313100, МПК G01P 15/13, 20.03.2006.

[37]

3. Патент РФ №2410703, МПК G01P 15/08, 27.01.2011 - прототип.

Как компенсировать расходы
на инновационную разработку
Похожие патенты