патент
№ RU 2532414
МПК G01N22/02

СПОСОБ ДЕФЕКТОСКОПИИ ТЕПЛОЗАЩИТНЫХ И ТЕПЛОИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ИЗДЕЛИЙ

Авторы:
Васильев Игорь Александрович Тарасов Максим Олегович Мильяченко Александр Александрович
Все (6)
Номер заявки
2013158493/07
Дата подачи заявки
30.12.2013
Опубликовано
10.11.2014
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
3
Реферат

[31]

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот, а именно к способам определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники. Повышение точности определения глубины залегания дефекта является техническим результатом заявленного изобретения. Способ включает в себя регистрирацию характеристики электромагнитного СВЧ-поля в контролируемом объекте на нескольких частотах, отличающийся тем, что СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл. 4 ил.

Формула изобретения

Способ дефектоскопии теплозащитных и теплоизоляционных покрытий изделий, заключающийся в том, что регистрируют реальную и мнимую составляющую электромагнитного СВЧ-поля в контролируемом объекте на пяти частотах, отличающийся тем, что СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл, при этом восстановление радиоголограммы описывается следующими выражениями:
F(kx,ky,ω)=1(2π)2E(x,y,ω)ei(kxx+kyy)dxdy;
S(kx,ky,kz)=F(kx,ky,ω)eikzz0;
ER(x,y,z)=S(kx,ky,kz)ei(kxx+kyy+kzz)dkxdkydkz,
где
E(x,y,ω) - значение сигнала в точке плоскости сканирования с координатами (x, y), зарегистрированного на частоте f;
ER(x,y,z) - восстановленное трехмерное изображение контролируемого объекта;
ω=2πf - угловая частота;
kx и ky - пространственные частоты, соответствующие координатам x и y;
kz=4(ωε/c)2kx2ky2 - пространственная частота, соответствующая координате z;
ε - диэлектрическая проницаемость среды;
z0 - расстояние от плоскости сканирования до поверхности контролируемого объекта.

Описание

[1]

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот и может быть использовано для определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники.

[2]

Известен способ обнаружения неоднородностей и дефектов в диэлектрических материалах (авторское свидетельство SU 1739265 от 27.12.1989 г.), заключающийся в облучении электромагнитной волной диэлектрического материала, измерении мощности падающей волны, приеме и измерении отраженной от диэлектрического материала волны, при этом по отношению мощностей падающей и отраженной волн судят о наличии неоднородностей в диэлектрическом материале.

[3]

Известен также способ электромагнитной дефектоскопии (патент RU 2146047 от 03.03.1999 г.), заключающийся в том, что контролируемое изделие облучают электромагнитными сигналами под углом к его поверхности, принимают отраженные электромагнитные сигналы, измеряют параметры отраженных электромагнитных сигналов и по результатам измерений определяют наличие дефектов, при этом облучение осуществляют через диэлектрическую пластину, которую устанавливают на поверхности контролируемого изделия.

[4]

Недостатком приведенных выше аналогов является невозможность обнаружения дефектов теплозащитных и теплоизоляционных покрытий, наклеенных на металлическую несущую конструкцию.

[5]

Наиболее близким аналогом является способ дефектоскопии (авторское свидетельство SU 1748029 от 11.10.90 г.), заключающийся в том, что регистрируют характеристики электромагнитного СВЧ-поля в контролируемом объекте на нескольких частотах и по этим характеристикам определяют параметр дефекта в объекте, при этом для повышения точности определения глубины залегания дефекта воздействуют на контролируемый объект поверхностной электромагнитной волной и измеряют изменение мощности этой волны на двух фиксированных частотах.

[6]

Недостатком данного способа является невозможность обнаружения дефектов теплозащитных и теплоизоляционных покрытий, наклеенных на металлическую несущую конструкцию.

[7]

Техническим результатом настоящего изобретения является устранение указанного выше недостатка за счет использования многочастотного непрерывного излучения и регистрации отраженного неоднородностями сигнала, который перемножается с опорным сигналом, имеющим постоянную фазу, в результате регистрируется радиоголограмма, которая при последующем восстановлении позволяет выявить неоднородности обследуемого объекта, при этом сигнал, отраженный от плоской подстилающей металлической поверхности, имеющий постоянную фазу, на регистрируемой радиоголограмме отсутствует.

[8]

Технический результат достигается тем, что в отличие от известного способа СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл, при этом восстановление радиоголограммы описывается следующими выражениями:

[9]

F(kx,ky,ω)=1(2π)2E(x,y,ω)ei(kxx+kyy)dxdy;

[10]

S(kx,ky,kz)=F(kx,ky,ω)eikzz0;

[11]

ER(x,y,z)=S(kx,ky,kz)ei(kxx+kyy+kzz)dkxdkydkz,

[12]

где

[13]

E(x,y,ω) - значение сигнала с точке плоскости сканирования с координатами (x,y), зарегистрированного на частоте f;

[14]

ER(x,y,z) - восстановленное трехмерное изображение контролируемого объекта;

[15]

ω=2πf - угловая частота;

[16]

kx и ky - пространственные частоты, соответствующие координатам x и y;

[17]

kz=4(ωε/c)2kx2ky2 - пространственная частота, соответствующая координате z;

[18]

ε - диэлектрическая проницаемость среды;

[19]

z0 - расстояние от плоскости сканирования до поверхности контролируемого объекта.

[20]

Сущность заявленного изобретения поясняется графическими материалами, на которых:

[21]

- на фиг.1 представлен образец теплоизоляции с тремя искусственно заложенными дефектами (поз.1 обозначен искусственный дефект);

[22]

- на фиг.2 приведен результат восстановления радиоголограммы образца теплоизоляции с тремя искусственно заложенными дефектами (поз.1 показано изображение искусственного дефекта);

[23]

- на фиг.3 представлен образец теплоизоляции с металлическими спицами, воткнутыми в пенополиуретановое покрытие образца (поз.1 и 2 обозначены спицы, поз.3 - лист алюминиевого сплава АМгб толщиной 5 мм, поз.4 - слой полиуретана толщиной 42 мм);

[24]

- на фиг.4 приведен результат восстановления радиоголограмм в эксперименте со спицами.

[25]

Заявленный способ осуществляют следующим образом.

[26]

Для технической реализации способа был изготовлен образец теплоизоляции с искусственно заложенными дефектами 1 (фиг.1), представляющий собой пакет теплоизоляции, полученный методом напыления пенополиуретана ППУ-17Н толщиной 42 мм на лист алюминиево-магниевого сплава АМгб толщиной 5 мм с нанесенным подслоем, с последующей механической обработкой поверхности ППУ-17Н до заданной толщины.

[27]

Для проведения экспериментов использовался голографический подповерхностный радиолокатор «РАСКАН-5/15000» с рабочим диапазоном частот 13.8-14.6 ГГц, обладающий высокой разрешающей способностью и чувствительностью к неоднородностям исследуемых объектов. Данный прибор обеспечивал регистрацию реальной и мнимой части сигнала одновременно на пяти частотах (f=13.8, f=14, f=14.2, f=14.4, f=14.6 ГГц). Для регистрации составляющих сигнала Е в качестве опорного сигнала используется сигнал генератора СВЧ-колебаний, проходящий напрямую к приемнику. Относительно этого сигнала определяется реальная и мнимая части. Выбор этого прибора обуславливался тем, что пенополиуретан ППУ-17Н обладает низким коэффициентом поглощения электромагнитных волн и диэлектрической проницаемостью, мало отличающейся от единицы. При проведении экспериментов по обследованию образцов теплозащитных покрытий использовался метод ручного построчного сканирования поверхности. Поверхность образцов являлась плоскостью сканирования (x,y). Перпендикуляр к поверхности образца принят за ось координат z. В ходе сканирования происходит дискретная регистрация составляющих поля. Минимальный шаг дискретизации определялся энкодером. Шаг дискретизации задавался исходя из требований к минимально обнаруживаемому дефекту. Применительно к изделиям РКТ использовался шаг, равный 0.5 см. Результаты обследования образца теплоизоляции с искусственно заложенными дефектами представлены на фиг.2. На восстановленной радиоголограмме хорошо видны все три искусственно заложенных дефекта.

[28]

Для лучшего понимания процессов, происходящих в относительно прозрачных диэлектрических средах, расположенных на металлической поверхности, были проведены эксперименты со спицами, которые втыкались в боковую поверхность образца теплоизоляции (фиг.3). В образец теплоизоляции были воткнуты две металлические спицы 1 и 2. Спица 1 была погружена параллельно поверхности металла на глубину 13 см на расстоянии от поверхности покрытия 20 мм. Вторая спица была погружена в ППУ-17Н на глубину 13.5 см под небольшим углом к поверхности. При этом на наклонной спице при регистрации голограмм должен наблюдаться так называемый эффект «зебры», когда контраст объекта меняется по мере изменения расстояния между антенной и объектом. На фиг.4 показан результат восстановления радиоголограмм в эксперименте со спицами.

[29]

Проведенные эксперименты показали, что предлагаемый способ обследования теплозащитных и теплоизоляционных покрытий, расположенных на металлической основе, с помощью топографических подповерхностных радиолокаторов позволяет обнаруживать неоднородности и дефекты в их толще.

[30]

Анализ, проведенный заявителем по известному ему уровню техники, показал, что предлагаемое изобретение, обладающее новизной и промышленной применимостью, отвечает в отношении совокупности его существенных признаков требованию критерия «изобретательский уровень», из уровня техники не известен также механизм достижения технического результата, раскрытого в материалах заявки.

Как компенсировать расходы
на инновационную разработку
Похожие патенты