патент
№ RU 2416389
МПК A61K8/00

ТВЕРДОФАЗНЫЙ СПОСОБ ПОЛУЧЕНИЯ БИОАКТИВНОГО НАНОКОМПОЗИТА

Авторы:
Селянин Михаил Анатольевич Хабаров Владимир Николаевич Оболонкова Елена Сергеевна
Все (5)
Правообладатель:
Все (2)
Номер заявки
2009139194/15
Дата подачи заявки
26.10.2009
Опубликовано
20.04.2011
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к синтетической полимерной химии. Нанокомпозит включает модифицированную серусодержащими соединениями сшитую соль гиалуроновой кислоты в качестве матрицы и наночастицы благородного металла как наполнитель. Пленку модифицированной серусодержащими соединениями сшитой соли гиалуроновой кислоты получают химическим взаимодействием соли гиалуроновой кислоты со смесью двух серусодержащих соединений и со сшивающим агентом, в условиях одновременного воздействия давления в пределах от 50 до 300 МПа и деформации сдвига в механохимическом реакторе при температуре от 20° до 30°С. В качестве реактора для получения пленки используют наковальни Бриджмена. Изобретение позволяет получать целый ряд новых биоактивных нанокомпозитов с количественным выходом и в отсутствие жидкой среды. Способ не требует больших энерго-, трудо- и водозатрат. Достигнуто значительное увеличение эффективности действия композита. В частности, стойкость к деструкции в присутствии гидроксильных радикалов увеличена в 2-3 раза по сравнению с контрольным результатом. 15 з.п. ф-лы.

Формула изобретения

1. Способ получения биоактивного нанокомпозита, включающего модифицированную серосодержащими соединениями сшитую соль гиалуроновой кислоты в качестве матрицы и наночастицы благородного металла как наполнитель, заключающийся в том, что пленку модифицированной серосодержащими соединениями сшитой соли гиалуроновой кислоты, полученной химическим взаимодействием соли гиалуроновой кислоты со смесью двух серосодержащих соединений и со сшивающим агентом, в условиях одновременного воздействия давления в пределах от 50 до 300 МПа и деформации сдвига в механохимическом реакторе при температуре от 20 до 30°С обрабатывают парами благородного металла методом катодного распыления, при этом степень наполнения композита металлом составляет от 31·10-2 до 10-1 мас.%.

2. Способ по п.1, отличающийся тем, что толщина пленки модифицированной сшитой соли гиалуроновой кислоты находится в пределах от 40 до 80 мкм.

3. Способ по п.1, отличающийся тем, что благородным металлом является металл из ряда: золото, серебро, платина, палладий.

4. Способ по п.1, отличающийся тем, что наночастицы наполнителя имеют размер от 1 до 10 нм.

5. Способ по п.1, отличающийся тем, что смесь серосодержащих соединений выбрана из ряда: биотин, тиамин, L-цистеин, цистин, метионин, глутатион, метилметионинсульфония хлорид, 1-тиоглицерин, 2-меркаптоэтанол, 2-меркаптобензтиазол, тиомочевина, 1,4-димеркаптобутан-2,3-диол, кислота из ряда: тиогликолевая, 2,3-димеркаптоянтарная, липоевая.

6. Способ по п.5, отличающийся тем, что смесью серосодержащих соединений является смесь глутатиона и 1,4-димеркаптобутан-2,3-диола.

7. Способ по п.1, отличающийся тем, что солью гиалуроновой кислоты является соль из ряда: тетраалкиламмониевая, литиевая, натриевая, калиевая, кальциевая, магниевая, бариевая, цинковая, алюминиевая, медная, золотая, или смешанная соль гиалуроновой кислоты из вышеуказанного ряда, или гидросоль гиалуроновой кислоты.

8. Способ по п.7, отличающийся тем, что солью гиалуроновой кислоты является натриевая или смешанная золото-натриевая соль.

9. Способ по п.1, отличающийся тем, что сшивающим агентом является эфир из ряда: диглицидиловый эфир этиленгликоля, диглицидиловый эфир диэтиленгликоля, диглицидиловый эфир триэтиленгликоля, диглицидиловый эфир полиэтиленгликоля, диглицидиловый эфир пропиленгликоля, диглицидиловый эфир 1,4-бутандиола, диглицидиловый эфир 1,6-гександиола.

10. Способ по п.9, отличающийся тем, что сшивающим агентом является диглицидиловый эфир диэтиленгликоля.

11. Способ по п.1, отличающийся тем, что мольное соотношение: соль гиалуроновой кислоты к сумме серосодержащих соединений находится в пределах от 1000: 1 до 100:1.

12. Способ по п.1, отличающийся тем, что мольное соотношение: соль гиалуроновой кислоты к сшивающему агенту находится в пределах от 500:1 до 50:1.

13. Способ по п.1, отличающийся тем, что мольное соотношение: сумма серосодержащих соединений к сшивающему агенту находится в пределах от 1:10 до 1:2.

14. Способ по п.1, отличающийся тем, что продолжительность воздействия давления и деформации сдвига составляет от 6 до 40 с.

15. Способ по п.1, отличающийся тем, что механохимическим реактором являются наковальни Бриджмена.

16. Способ по п.15, отличающийся тем, что деформацию сдвига осуществляют путем изменения угла поворота нижней наковальни Бриджмена в пределах от 50 до 350°.

Описание

[1]

Изобретение относится к природным полимерам из класса полисахаридов, а именно к твердофазному способу получения биоактивного нанокомпозита на основе химически модифицированной серусодержащими соединениями сшитой соли гиалуроновой кислоты (ГК) и наночастиц благородных металлов, и может найти применение в различных областях медицины, в косметике, например, в эстетической дерматологии и пластической хирургии.

[2]

Неизвестны твердофазные способы получения биоактивного нанокомпозита на основе химически модифицированной серусодержащими соединениями сшитой соли и наночастиц благородных металлов. Однако известен твердофазный способ получения сшитой соли гиалуроновой кислоты (патент РФ 2366665), а также способ получения сшитой соли гиалуроновой кислоты в растворе (патент РФ 2366666).

[3]

Известен жидкофазный многоступенчатый способ получения биоактивного нанокомпозита на основе химически модифицированной серусодержащими соединениями и полипептидами олигомерной гиалуроновой кислоты (молекулярная масса 3000-8000) и наночастиц (16 нм) золота [H.Lee, K.R.Lee, I.Kim, T.Park. "Synthesis, Characterization and in vivo Diagnostic Application H.A. immobilized Gold Nanoparticles". Biomaterials, 2008, 29, №35, 4709-4718]. Биоактивный нанокомпозит получают следующим образом: в водной среде модифицируют олигомерную гиалуроновую кислоту цистамином, натрийборциангидридом и дитиотреитолом, затем активируют 1-этил-3-(3-диметиламинопропил) карбодиимидом, после чего добавляют полипептид с красителем Hilyte Fluor 647. Образовавшийся сложный продукт прибавляют к водному коллоидному раствору наночастиц золота. Таким образом образуется нанокомпозит, содержащий одну частицу золота на 31 молекулу олигомерной гиалуроновой кислоты. Сведения о потребительских свойствах этого нанокомпозита не приведены.

[4]

Недостатками этого способа являются многостадийность, большая длительность химических процессов, высокая стоимость органических реагентов, трудоемкая очистка конечных продуктов.

[5]

Задачей данного изобретения является создание экологически безопасного принципиально нового твердофазного способа, позволяющего получать не известные ранее биоактивные нанокомпозиты в отсутствие жидкой среды, без больших энерго- трудо- и водозатрат, при этом получать целевые продукты с высоким выходом, увеличить эффективность действия композитов, в частности повысить устойчивость к деструкции в присутствии гидроксильных радикалов, а также использовать разнообразные исходные реагенты для получения матрицы, в том числе водонерастворимые соли ГК, а также различные наполнители и тем самым расширить ассортимент получаемых композитов.

[6]

Поставленная задача решается тем, что создан принципиально новый экологически безопасный твердофазный способ получения биоактивного нанокомпозита, включающего модифицированную серусодержащими соединениями сшитую соль гиалуроновой кислоты в качестве матрицы и наночастицы благородного металла как наполнитель, заключающийся в том, что пленку модифицированной серусодержащими соединениями сшитой соли гиалуроновой кислоты, полученной химическим взаимодействием соли гиалуроновой кислоты со смесью двух серусодержащих соединений и со сшивающим агентом в условиях одновременного воздействия давления в пределах от 50 до 300 МПа и деформации сдвига в механохимическом реакторе при температуре от 20° до 30°С, обрабатывают парами благородного металла методом катодного распыления, при этом степень наполнения композита металлом составляет от 3·10-2 до 10-1 мас.%.

[7]

Толщина пленки модифицированной сшитой соли гиалуроновой кислоты находится в пределах от 40 до 80 мкм. Благородным металлом является металл из ряда: золото, серебро, платина, палладий. Наночастицы наполнителя имеют размер от 1 до 10 нм.

[8]

В качестве серусодержащих соединений можно использовать соединения из ряда: биотин, тиамин, L-цистеин, цистин, метионин, глутатион, метилметионинсульфония хлорид, 1-тиоглицерин, 2-меркаптоэтанол, 2-меркаптобензтиазол, тиомочевина, 1,4-димеркаптобутан-2,3-диол, кислота из ряда: тиогликолевая, 2,3-димеркаптоянтарная, липоевая. В частности, серусодержащим соединением является: смесь глутатиона и 1,4-димеркаптобутан-2,3-диола.

[9]

В качестве соли гиалуроновой кислоты можно использовать соль из ряда: тетраалкиламмониевая, литиевая, натриевая, калиевая, кальциевая, магниевая, бариевая, цинковая, алюминиевая, медная, золотая, или смешанная соль гиалуроновой кислоты из вышеуказанного ряда или гидросоль гиалуроновой кислоты. В частности, солью гиалуроновой кислоты является натриевая или смешанная золото-натриевая соль.

[10]

В качестве сшивающего агента можно использовать эфир из ряда: диглицидиловый эфир этиленгликоля, диглицидиловый эфир диэтиленгликоля, диглицидиловый эфир триэтиленгликоля, диглицидиловый эфир полиэтиленгликоля, диглицидиловый эфир пропиленгликоля, диглицидиловый эфир 1,4-бутандиола, диглицидиловый эфир 1,6-гександиола. В частности, сшивающим агентом является диглицидиловый эфир диэтиленгликоля.

[11]

Мольное соотношение: соль гиалуроновой кислоты к сумме серусодержащих соединений находится в пределах от 1000:1 до 100:1.

[12]

Мольное соотношение: соль гиалуроновой кислоты к сшивающему агенту находится в пределах от 500:1 до 50:1. Мольное соотношение: сумма серусодержащих соединений к сшивающему агенту находится в пределах от 1:10 до 1:2.

[13]

Продолжительность воздействия давления и деформации сдвига составляет от 6 до 40 секунд.

[14]

Механохимическим реактором, в частности, являются наковальни Бриджмена. Деформацию сдвига осущесвляют путем изменения угла поворота нижней наковальни Бриджмена в пределах от 50 до 350 градусов.

[15]

Катодое напыление проводилось на напылительной установке JFC-II00 Е фирмы «JEOL» (Япония) в вакууме 10-1 Па, напряжении 100 в, силе тока 5 А и частоте 50 Гц.

[16]

В отличие от известного способа, заявленный способ получения нанокомпозита включает этап получения матрицы модифицированной серусодержащими соединениями сшитой соли гиалуроновой кислоты в виде пленки путем химического взаимодействия соли гиалуроновой кислоты со смесью двух серусодержащих соединений и со сшивающим агентом, без растворителя, в условиях одновременного воздействия давления в пределах от 50 до 300 МПа и деформации сдвига в механохимическом реакторе при температуре от 20° до 30°С, в то время как в известном способе матрицу получают на основе химически модифицированной серусодержащими соединениями и полипептидами олигомерной гиалуроновой кислоты (молекулярная масса 3000-8000) в нескольких этапах в водной среде.

[17]

Другим существенным отличием является то, что введение в матрицу наполнителя осуществляют путем обработки полученной пленки парами благородного металла методом катодного распыления, а в известном способе к образовавшемуся водному коллоидному раствору сложного продукта модифицированной олигомерной гиалуроновой кислоты цистамином, натрийборциангидридом и дитиотреитолом, а затем активированной 1-этил-3-(3-диметиламинопропил) карбодиимидом прибавляют гидрозоль наночастиц золота. При этом степень наполнения композита золотом неизвестна, однако по отношению к олигомерной ПС количество золота составляет 1-2%, в то время как в заявленном способе степень наполнения композита металлом составляет от 3·10-2 до 10-1 мас.%. Кроме золота наполнителем являются и другие благородные металлы.

[18]

Таким образом достигнут новый технический результат, заключающийся в том, что способ упрощен (малоступенчат), позволяет расширить ассортимент получаемых композитов за счет возможности использовать самые разнообразные, в том числе водонерастворимые соли ГК. Стойкость к деструкции в присутствии гидроксильных радикалов получаемых композитов увеличена в 2-3 раза по сравнению с контрольным результатом. Кроме того, следует отметить, что решение поставленной задачи стало возможным благодаря тому, что процесс осуществляют путем взаимодействия исходных реагентов в твердом порошкообразном состоянии при одновременном воздействии давления и деформации сдвига. Способ по существу не имеет аналогов, экологически безопасен, не требует больших энерго-, трудо- и водозатрат, целевые продукты получают с высоким выходом

[19]

Количественный характер выхода продуктов зависит от степени взаимодействия глицидиловых групп сшивающего агента с гидроксильными группами солей ГК и гидроксильными или карбоксильными группами серусодержащих соединений. Поэтому о количественном выходе целевых продуктов судили по данным ИК-Фурье спектрального анализа исходных реагентов и продуктов реакции. Установлено, что в спектрах этих продуктов полностью отсутствуют характеристические полосы глицидиловых групп сшивающих агентов (850-860 и 900-920 см-1) и присутствуют появившиеся в результате взаимодействия глицидиловых групп сшивающих агентов с гидроксильными группами солей ГК и серусодержащими соединениями. Выход модифицированных сшитых солей ГК определяли по результатам экстракции водным или спиртовым раствором конечных продуктов реакции при 50°С. Выделенные из экстрактов продукты взаимодействия ДЭГ-1 с серусоджержащими соединениями, не вступившие в реакцию с солями ГК, составляли 1-3 мас.% от количества исходных компонентов, что соответствует практически количественному (97-99%-ному) выходу модифицированных сшитых солей ГК. Размер наночастиц благородных металлов оценивался по положению максимума поглощения разбавленных коллоидных растворов (гидрогелей) в УФ-спектрах [Л.А.Дыкман, В.А.Богатырев, С.Ю.Щеголев, Н.Г.Хлебцов. ЗОЛОТЫЕ НАНОЧАСТИЦЫ. Синтез, свойства, биомедицинское применение. М., Наука. 2008, стр.46]. Стойкость к деструкции в присутствии гидроксильных радикалов оценивалась по величине полупериода снижения вязкости гидрогелей, полученных из конечных продуктов, как описано Wong et al. в Inorganic Biochemistry, В. 14, Р.127 (1981) и в патенте РФ №2174985. Контрольная величина полупериода снижения вязкости гидрогеля, из нанокомпозита, полученного из тех же исходных компонентов, но жидкофазным методом составляет 55 часов (см. сравнительный пример - 7).

[20]

Изобретение может быть проиллюстрировано следующими примерами:

[21]

Получение биоактивного нанокомпозита

[22]

Пример 1. Порошкообразную смесь из 160,0 мг (4·10-4 моля) натриевой соли ГК (мол. масса 2300000), 0,65 мг (2·10-6 моля) глутатиона, 0,4 мг (8·10-6 моля) 1,4-димеркаптобутан-2,3-диола, 2,7 мг (8·10-6 моля) диглицидилового эфира диэтиленгликоля (ДЭГ-1) помещают на нижнюю наковальню Бриджмена (диаметр рабочей поверхности =3 см), накрывают верхней наковальней, наковальни ставят под пресс и подвергают давлению 300 МПа при 20°С, при угле поворота нижней наковальни 350° в течение 40 сек. Далее снимают давление, вынимают наковальни из-под пресса. Образовавшуюся пленку толщиной 80 мкм модифицированной серусодержащими соединениями сшитой натриевой соли ГК помещают в распылительное устройство с золотым катодом и напыляют золотом в течение 40 сек. Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 5·10-2%. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта, составляет 160 часов.

[23]

Пример 2. Выполнен аналогично примеру 1, однако в отличие от него пленку модифицированной серусодержащими соединениями сшитой натриевой соли ГК напыляют золотом в течение 80 сек. Максимум поглощения составляет 516 нм, что соответствует величине 10 нм для размера частиц золота. Степень наполнения композита золотом составляет 10-1 %. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта, составляет 170 часов.

[24]

Пример 3. Выполнен аналогично примеру 1, однако в отличие от него пленку модифицированной серусодержащими соединениями сшитой натриевой соли ГК напыляют золотом в течение 8 сек. Максимум поглощения составляет 510 нм, что соответствует величине 1 нм для размера частиц золота. Степень наполнения композита золотом составляет 3·10-2 %. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта, составляет 150 часов.

[25]

Пример 4. Порошкообразную смесь из 174,0 мг (4·10-4 моля) смешанной натриевой-золотой соли при мольном соотношении натрий: золото =12:1, 0,065 мг (2·10-7 моля) глутатиона, 0,04 мг (8·10-7 моля) 1,4-димеркаптобутан-2,3-диола, 0,27 мг (8·10-7 моля) диглицидилового эфира диэтиленгликоля (ДЭГ-1) помещают на нижнюю наковальню Бриджмена (диаметр рабочей поверхности =3 см), накрывают верхней наковальней, наковальни ставят под пресс и подвергают давлению 50 МПа при 20°С, при угле поворота нижней наковальни 50° в течение 6 сек. Далее снимают давление, вынимают наковальни из-под пресса. Образовавшуюся пленку толщиной 80 мкм модифицированной серусодержащими соединениями сшитой смешанной натриевой-золотой соли ГК помещают в напылительное устройство с серебряным катодом и напыляют серебром в течение 30 сек. Максимум поглощения составляет 410 нм, что соответствует величине 7 нм для размера частиц серебра. Степень наполнения композита серебром составляет 7·10-2%. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта, составляет 110 часов.

[26]

Пример 5. Выполнен аналогично примеру 1, однако в отличие от него образовавшуюся пленку толщиной 80 мкм модифицированной серусодержащими соединениями сшитой натриевой соли ГК помещают в напылительное устройство с платиновым катодом и напыляют платиной в течение 30 сек. Максимум поглощения составляет 245 нм, что соответствует величине 8 нм для размера частиц платины. Степень наполнения композита платиной составляет 8·10-2%. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта, составляет 250 часов.

[27]

Пример 6. Выполнен аналогично примеру 1, однако в отличие от него вес исходных компонентов уменьшен в два раза, а температура наковален составляет 30°С. Кроме того, образовавшуюся пленку толщиной 40 мкм модифицированной серусодержащими соединениями сшитой натриевой соли ГК помещают в напылительное устройство с палладиевым катодом и напыляют палладием в течение 25 сек. Максимум поглощения составляет 230 нм, что соответствует величине 5 нм для размера частиц палладия. Степень наполнения композита палладием составляет 4·10-2%. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта составляет 240 часов.

[28]

Пример 7. Сравнительный пример. 160,0 мг (4·10-4 моля) порошкообразной натриевой соли ГК (мол. масса 2300000), 0,65 мг (2·10-6 моля) глутатиона, 0,4 мг (8·10-6 моля) 1,4-димеркаптобутан-2,3-диола, 2,7 мг (8·10-6 моля) диглицидилового эфира диэтиленгликоля (ДЭГ-1) растворяют в 20 мл бидистиллированной воды и оставляют стоять в чашке Петри при комнатной температуре до полного испарения воды. Образовавшуюся пленку модифицированной серусодержащими соединениями сшитой натриевой соли ГК переводят в гидрогель прибавлением 5 мл бидистиллированной воды. Далее к данному гидрогелю добавляют 1 мл гидрозоля золота, содержащего 0,16 мг золота в виде наночастиц размером 10 нм, приготовленного по методу Френса [Л.А.Дыкман, В.А.Богатырев, С.Ю.Щеголев, Н.Г.Хлебцов. ЗОЛОТЫЕ НАНОЧАСТИЦЫ. Синтез, свойства, биомедицинское применение. М., Наука. 2008, стр.39]. Перемешивают смесь до однродного состояния. Максимум поглощения составляет 516 нм, что соответствует величине 10 нм для размера частиц золота. Степень наполнения композита золотом составляет 10-1 %. Величина полупериода снижения вязкости гидрогеля, полученного из конечного продукта составляет 55 часов.

[29]

Приведенные примеры убедительно показывают, что создан принципиально новый, экологически безопасный способ, позволяющий получать целый ряд новых биоактивных нанокомпозитов в отсутствие жидкой среды, с получением целевых продуктов с высоким выходом. Способ не требует больших энерго-, трудо- и водозатрат, позволяет использовать в качестве исходных реагентов самые разнообразные, в том числе водонерастворимые, соли ГК. Достигнуто значительное увеличение эффективности действия композитов, в частности стойкость к деструкции в присутствии гидроксильных радикалов увеличена в 2-3 раза по сравнению с контрольной величиной полупериода снижения вязкости гидрогеля, из нанокомпозита, полученного жидкофазным методом.

Как компенсировать расходы
на инновационную разработку
Похожие патенты