патент
№ RU 2702530
МПК C22C21/16

Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения

Авторы:
Гершман Иосиф Сергеевич Миронов Александр Евгеньевич Солис Пинарготе Нестор Вашингтон
Все (15)
Номер заявки
2018141938
Дата подачи заявки
28.11.2018
Опубликовано
08.10.2019
Страна
RU
Дата приоритета
03.07.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения. Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения содержит, мас. %: олово 4,5-8,0, свинец 2,0-4,0, медь 3,5-4,5, кремний 0,6-1,0, цинк 2,0-3,0, магний 1,5-2,5, титан 0,03-0,2, молибден 0,8-1,2, алюминий - остальное. Техническим результатом изобретения является расширение технологических возможностей за счет снижения износа сплава и повышения нагрузки задира при сохранении остальных трибологических характеристик и механических свойств на прежнем уровне. 1 пр., 14 табл.

Формула изобретения

Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения, содержащий олово, свинец, медь, кремний, цинк, магний, титан и алюминий, отличающийся тем, что он дополнительно содержит молибден при следующем соотношении компонентов, мас. %: олово 4,5-8,0, медь 3,5-4,5, кремний 0,6-1,0, цинк 2,0-3,0, магний 1,5-2,5, свинец 2,0-4,0, титан 0,03-0,2, молибден 0,8-1,2, алюминий – остальное.

Описание

Изобретение относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения.

Монометаллические подшипники представляют собой подшипники скольжения в виде втулки, выполненной из антифрикционного металла или сплава, в которых опорная поверхность оси или вала скользит по рабочей (внутренней) поверхности втулки. Монометаллические подшипники получают из сплавов, обладающих достаточной прочностью и твердостью, чтобы при установке их в постели из стали или чугуна при рабочих температурах они могли сопротивляться потерям натяга. Для изготовления монометаллических подшипников успешно применяются антифрикционные алюминиевые сплавы, например, в ГОСТе 14113-78 раскрывается сплав марки АО9-2, содержащий компоненты при следующем соотношении, масс. %: олово 8,0-10,0, медь 2,0-2,5, никель 0,8-1,2, кремний 0,3-0,7, алюминий - остальное.

Недостатком данного сплава является его недостаточная прочность и твердость, затрудненная прирабатываемость и относительно низкая задиростойкость при повышенных значениях износа как самих сплавов, так и стального контртела.

Наиболее близким к предложенному сплаву является литейный антифрикционный сплав для монометаллических подшипников скольжения, включающий олово, медь, кремний и алюминий, отличающийся тем, что он дополнительно содержит свинец, цинк, магний и титан при следующем соотношении компонентов, масс. %: олово 5-11, свинец 2-4, медь 1,5-4,5, кремний 0,4-1,5, цинк 1,5-4,5, магний 1,5-4,5, титан 0,03-0,2, алюминий - остальное (Патент РФ №2571665 С1, опубл. 20.12.2015 г).

Недостатком известного сплава, в том числе технической проблемой является низкая нагрузка задира, низкая площадь приработки, высокая средняя удельная нагрузка после приработки и высокий износ стали.

В основу заявленного изобретения был положен технический результат - расширение технологических возможностей за счет снижения износа сплава и повышения нагрузки задира при сохранении остальных трибологических характеристик и механических свойств на прежнем уровне.

Технический результат достигается антифрикционным алюминиевым литейным сплавом для монометаллических подшипников скольжения, включающим олово, свинец 2-4 масс. %, медь, кремний, цинк, магний, титан 0,03-0,2 масс. % и алюминий остальное, дополнительно содержащим молибден 0,8-1,2 масс. % в следующем соотношении вышеупомянутых компонентов, масс. %: олово 4,5-8, медь 3,5-4,5, кремний 0,6-1,0, цинк 2,0-3,0, магний 1,5-2,5.

Изобретение охарактеризовано следующим образом.

Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения включает, масс. %:

олово4,5-8,
свинец2-4,
медь3,5-4,5,
кремний0,6-1,0,
цинк2,0-3,0,
магний1,5-2,5,
титан0,03-0,2,
молибден0,8-1,2,
алюминийостальное

Исходя из материаловедческого опыта в области антифрикционных алюминиевых литейных сплавов для монометаллических подшипников скольжения, введение молибдена в состав сплава-прототипа позволило снизить износ сплава и повысить нагрузку задира и при сохранении на прежнем уровне остальных трибологических характеристик.

Кроме того, экспериментальными опытами было установлено, что введение молибдена в сплав позволило повысить предел прочности и твердость, при сохранении остальных механических свойств на прежнем уровне. Именно этими свойствами определяется работоспособность монометаллических подшипников скольжения.

Молибден, обладая высокой температурой плавления не растворяется в алюминиевой матрице, а присутствует в ней в виде твердых дисперсных частиц. Дисперсные частицы молибдена упрочняют матрицу, повышая ее твердость и практически не влияют на пластичность. Благодаря дисперсному упрочнению повышается износостойкость сплава. Вместе с тем молибден - тяжелый элемент, его плотность превышает 10 г/см3. Согласно теории самоорганизации применительно к схватыванию, наличие тяжелых элементов в зоне трения способствует уменьшению площади схватывания, приводя к повышению нагрузки задира.

Введение молибдена в состав прототипа привело к изменению процентного отношения массового содержания (масс. %) других элементов, таких как олово, медь, кремний, цинк и магний при сохранении массового содержания свинца и титана в известных значениях.

Олово обеспечивает повышение комплекса антифрикционных свойств, при ухудшении механических свойств, но при его содержании в составе заявляемого сплава 4,5-8,0 от общего масс. %, и при использовании остальных компонентов сплава в заявляемых диапазонах, обеспечивается необходимый комплекс механических свойств (прочность, твердость, пластичность, трещиностойкость и ударная вязкость).

Свинец позволяет резко повысить антифрикционные свойства алюминиевых сплавов за счет образования на поверхностях трения при взаимодействии со смазкой так называемых «свинцовых мыл». Кроме того, образуя с оловом эвтектику, свинец упрочняет мягкие структурные составляющие и делает их более легкоплавкими. Благодаря этому, в зонах контакта при значительном повышении температуры до значений 170°С задира и схватывания не происходит. Таким образом, свинец значительно повышает задиростойкость и улучшает прирабатываемость.

Медь в заявляемом количестве упрочняет как алюминиевую матрицу, так и мягкую структурную составляющую, что положительно сказывается на таких антифрикционных свойствах, как задиростойкость и износостойкость.

Кремний в заявляемом количестве улучшает литейные свойства, снижает пористость, повышает твердость, задиростойкость, износостойкость за счет образования мелких твердых и равномерно распределенных включений второй фазы.

Цинк в заявляемом количестве упрочняет алюминиевую матрицу и мягкие структурные составляющие сплава с одновременным повышением прочности, твердости и пластичности. Легкоплавкие фазы с цинком имеют повышенную химическую активность, что способствует образованию защитных вторичных структур на поверхностях трения и повышает прирабатываемость, износостойкость и задиростойкость.

Магний упрочняет алюминиевую матрицу за счет вхождения в твердый раствор алюминия, а также за счет образования мелкодисперсных выделений вторых фаз на основе алюминия, меди и кремния. Магний и цинк входят в состав легкоплавкой эвтектики системы Sn-Pb, увеличивая ее прочность, пластичность и антифрикционные свойства всего сплава.

Титан модифицирует алюминиевые сплавы, уменьшая размеры зерен алюминия, и увеличивает их количество, способствуя равномерному распределению и уменьшению размеров включений мягкой фазы на основе эвтектик Sn-Pb, и улучшает структуру ее составляющих таким образом, что приводит к улучшению эксплуатационных характеристик.

Важно, чтобы заявленные компоненты олово 4,5-8 масс. %, свинец 2-4 масс. %, медь 3,5-4,5 масс. %, кремний 0,6-1,0 масс. %, цинк 2,0-3,0 масс. %, магний 1,5-2,5 масс. %, титан 0,03-0,2 масс. %, молибден 0,8-1,2 масс. % и алюминий (остальное) находились в сплаве в совокупности и в заявленных количествах, потому что только их совместное влияние, улучшающее структуру и свойства сплава, позволяет достичь декларируемого технического результата.

Выход за заявленные интервалы содержания компонентов, отличающиеся от прототипа, не позволяет достичь необходимого уровня свойств.

Так, содержание молибдена в сплаве менее 0,80 масс. %, например, сплав №1, приводит к недостаточному повышению твердости и прочности сплава и практически не приводит к повышению нагрузки задира, а содержание более 1,2 масс. %, например, сплав №4, приводит к снижению пластичности и ухудшению прирабатываемости (Таблицы 1 и 2).

Если содержание олова менее 4,5 масс. %, например, сплав №5, то снижаются антифрикционные свойства сплавов - задиростойкость падает, износ материала увеличивается и давления при приработке тоже увеличивается, а содержание выше 8 масс. %, например, сплав №6, вызывает значительную ликвацию эвтектики в сплаве и приводит к увеличению износа материала и к снижению прочности, твердости и ударной вязкости. (Таблицы 3 и 4).

Содержание меди в сплаве менее 3,5 масс. %, например, сплав №7, оказывает снижение на прочность, твердость, износостойкость материала и его задиростойкость, а содержание меди более 4,5 масс. %, например, сплав №8, приводит к снижению пластичности и ударной вязкости, а также к повышению износа стального контртела и самого материала, и к затруднению прирабатываемости (Таблицы 5 и 6).

Если содержание кремния меньше 0,6 масс. %, например, сплав №9, то ухудшаются литейные свойства, уменьшается прочность и твердость, снижаются износостойкость и задиростойкость, а если содержания кремния более 1,0 масс. %, например, сплав №10, то уменьшаются пластичность и ударная вязкость, снижаются износостойкость стального контртела, прирабатываемость и задиростойкость (Таблицы 7 и 8).

Уменьшение содержания цинка менее 2,0 масс. %, например, сплав №11, приводит к уменьшению прочности и твердости, а так же к снижению износостойкости, прирабатываемости и задиростойкости, а увеличение содержания цинка более 3,0 масс. %, например, сплав №12, делает сплав излишне твердым, что приводит к снижению пластичности и ударной вязкости, что в свою очередь отрицательно влияет на параметры антифрикционности сплава, а именно уменьшается износостойкость стального контртела и ухудшается прирабатываемость (Таблицы 9 и 10).

Введения магния в количестве менее 1,5 масс. %, например, сплав №13, приводит к недостаточному упрочнению и недостаточной антифрикционности сплава, а более 2,5 масс. %, например, сплав №14, - делает сплав излишне твердым, что отрицательно влияет на все параметры антифрикционности. Влияние магния более существенно по сравнению с влиянием цинка (Таблицы 11 и 12).

Введение молибдена и уменьшение диапазона легирования оловом, медью, кремнием, цинком, магнием позволило стабилизировать механические свойства сплава и трибологические характеристики, уменьшив диапазон разброса свойств и характеристик.

Пример осуществления изобретения

Экспериментальным путем были получены 5 сплавов (например, сплавы №2, 3, 15, 16, 17), в соответствии с заявленными соотношениями компонентов (масс. %), обладающие улучшенными трибологическими характеристиками и механическими свойствами. Компонентное содержание этих сплавов приведено в таблице 13, а в таблице 14 приведены значение их характеристик и свойств.

Из полученных экспериментальных результатов можно делать вывод о том, что новый сплав обладает следующими свойствами:

Таким образом, заявленная совокупность существенных признаков, отраженная в формуле изобретения, обеспечивает получение заявленного технического результата - расширение технологических возможностей за счет снижения износа сплава и повышения нагрузки задира при сохранении остальных трибологических характеристик и механических свойств на прежнем уровне.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники, необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения;

- для заявленного объекта в том виде, как он охарактеризован в формуле изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Как компенсировать расходы
на инновационную разработку
Похожие патенты