патент
№ RU 2579382
МПК F16C11/06

ШАРОВАЯ ОПОРА

Авторы:
Пармузин Дмитрий Борисович Маслов Александр Иванович Молоканов Артемий Владимирович
Все (4)
Номер заявки
2015103677/11
Дата подачи заявки
05.02.2015
Опубликовано
10.04.2016
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к области машиностроения и может быть использовано в качестве опор скольжения в узлах трения, способных сохранять свою работоспособность в широком диапазоне нагрузок и температур как в воздушной среде, так и в глубоком вакууме. Шаровая опора содержит корпус, выполненный из двух частей, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем со сферической головкой, размещенной во вкладыше из антифрикционного материала. Пространство между вкладышем и корпусом заполнено термопластическим наполнителем. На сферическую головку пальца методом электроискрового напыления нанесен карбид вольфрама с последующим нанесением слоя серебра методом электролитического осаждения, при этом вкладыш выполнен из молибденита. Технический результат: повышение износостойкости и работоспособности шаровой опоры за счет увеличения максимальных значений давления и более равномерного распределения контактных давлений за счет изменения структуры материалов шарового пальца и вкладыша. 1 ил.

Формула изобретения

Шаровая опора, содержащая корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенными в корпус шаровым пальцем, сферической головкой, размещенной во вкладыше, при этом пространство между вкладышем и корпусом заполнено термопластичным наполнителем, отличающийся тем, что на сферическую головку пальца методом электроискрового легирования нанесен карбид вольфрама с последующим нанесением слоя серебра методом электролитического осаждения, при этом вкладыш выполнен из молибденита.

Описание

[1]

Изобретение относится к области машиностроения и может быть использовано в шаровых шарнирах рулевых механизмов различных транспортных средств.

[2]

Условия работы узлов трения изделий авиационной и космической техники включают в себя целую гамму различных факторов, оказывающих существенное влияние на рабочие характеристики изделия в целом.

[3]

Отсутствие универсальной теории трения предопределяет детальное изучение каждого конкретного агрегата (в крайнем случае группы или класса агрегатов) трения.

[4]

К наиболее важным параметрам, определяющим служебные характеристики узла трения и требования, предъявляемые к материалам, относятся:

[5]

1. Скорость.

[6]

2. Рабочие температуры.

[7]

3. Удельные нагрузки.

[8]

4. Рабочая среда.

[9]

5. Характер нагружения.

[10]

Проблема повышения износостойкости пар трения приобретает все большую актуальность в связи с необходимостью повышения качества, надежности и долговечности современных машин. Для обеспечения надежной работы узлов трения, работающих в экстремальных условиях, широко применяют антифрикционные, износостойкие покрытия и самосмазывающиеся композиционные материалы, которые должны быть одинаково эффективны не только при высоких рабочих температурах, но и при относительно низких температурах начала работы и разогрева.

[11]

При выборе материалов и покрытий для пар трения в соответствии с условиями их применения необходимо учитывать соответствующие триботехнические характеристики, механизм изнашивания, а также целый ряд дополнительных факторов технологического и конструктивного характера.

[12]

Специфика применения шарнирных подшипников в экстремальных условиях обуславливает выбор материалов, способных выдерживать воздействие высоких нагрузок в широком диапазоне температур в различных газовых средах и в вакууме. Наряду с общими требованиями, предъявляемыми к подшипниковым материалам, материалы для высокотемпературных подшипников должны обладать целым рядом специальных свойств:

[13]

- высокой жаростойкостью и коррозионной стойкостью;

[14]

- стабильностью механических характеристик при различных температурах (σв, НВ, Е, µ и др.);

[15]

- высокой теплопроводностью, а также близкими значениями коэффициентов линейного расширения с материалом корпусных деталей и осей;

[16]

- минимальное значением твердости при рабочих температурах должно быть не менее 40…45 HRC, а предел текучести должен быть значительно выше величины действующих контактных напряжений;

[17]

- высокой износостойкостью и низким значением коэффициента трения.

[18]

Как правило, совместить все эти качества в одном материале не удается, и поэтому необходимо применение твердосмазочных защитных покрытий и других технологических и конструкционных решений.

[19]

Известны сферические шаровые опоры с подшипниками скольжения (А.с. СССР N2016277, F16C 11/06, 1992; Патент РФ №2049376, F16C 11/06, 1994; Патент РФ №2338936, F16C 11/06, 2007; Патент РФ №2432506, F16C 11/06, 2010).

[20]

Наиболее близким по набору существенных признаков является техническое решение по патенту РФ №2352829, F16C 11/06, 2009 г., которое было принято авторам за аналог.

[21]

Шаровая опора содержит корпус, состоящий из двух крышек 1 и 2 (фиг.1), независимо соединенных между собой, металлический шаровой палец 3, заключенный в корпус, вкладыш полимерный 4, наполнитель 5 с металлическими гранулами 6. Вкладыш 4 выполнен из твердосмазочного материала (фторопласт-4, УПА-6/15 и др.). Наполнитель 5 выполнен из полимера модифицированного металлическими гранулами.

[22]

Недостатком данной сферической опоры является неравномерность распределения контактных давлений, что существенным образом влияет на величину напряженного состояния. Вопрос о распределении контактных давлений и о максимальном значении давления в сферических подшипниках остается одним из важнейших способах повышения надежности и работоспособности сферического шарового подшипника.

[23]

Как показывает практика - величина радиального зазора в сферических шарнирных подшипниках (СШП) сильно влияет на контактные параметры (угол контакта, максимальное давление), и, как следствие, на работоспособность. Малый зазор может привести к заклиниванию подшипника из-за неравномерности температурных расширений или из-за большого количества продуктов износа.

[24]

В процессе эксплуатации СШП величина радиального или диаметрального зазора может меняться. Изнашивание рабочих поверхностей подшипника, а также деформирование твердосмазочного покрытия или материала основы, может привести к увеличению зазора сверх допустимого предела и, как следствие, к увеличению момента трения.

[25]

Техническим результатом настоящего изобретения является повышение износостойкости шаровой опоры со сферическим подшипником скольжения за счет более равномерного распределения контактных давлений путем изменения структуры материалов шарового пальца и вкладыша с применением многослойных композиционных материалов и способов их нанесения.

[26]

Это достигается следующим образом.

[27]

В шаровой опоре, содержащей корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенными в корпус шаровым пальцем, сферической головкой, размещенной во вкладыше, при этом пространство между вкладышем и корпусом заполнено термопластичным наполнителем, путем электроискрового легирования на материал шарового пальца 3 наносят карбид вольфрама. Далее методом электролитического осаждения из цианистых или железосинеродистых электролитов наносится слой серебра на полученный шероховатый слой.

[28]

Далее производят замену материала вкладыша 4. Вместо материала полимера применяют природный молибденит, который обладает более высокими антифрикционными свойствами.

[29]

1. Таким образом формируются защитные пленки на мягких металлах путем внедрения слоистых кристаллов и в то же время однородность пленок и их способность выдерживать нагрузку увеличивается при возрастании твердости металла за счет более высокой температуры плавления, малой потери веса при нагреве и высокой адгезии к стали.

[30]

2. Природный молибденит, в котором шесть атомов серы располагаются вокруг каждого атома молибдена в вершинах тригональной призмы на воздухе устойчив до температуры 300…380°C. Температурная устойчивость его зависит от размеров кристалла (чем меньше кристалл, тем ниже температура окисления), а также от присутствия неметаллов в зоне окисления. При окислении молибденит переходит в трехокись молибдена MoO3, представляющую собой абразивный порошок, за счет которого происходит более равномерное распределение контактных давлений.

[31]

Таким образом в техническом решении существенно повышается износостойкость и работоспособность шаровой опоры. Путем увеличения максимальных значений давления и более равномерного распределения контактных давлений за счет изменения структуры материалов шарового пальца и вкладыша с применением многослойных композиционных материалов и способов их нанесения.

Как компенсировать расходы
на инновационную разработку
Похожие патенты