патент
№ RU 2670308
МПК E21B33/138

Способ ликвидации поглощений бурового раствора при строительстве нефтяных и газовых скважин

Авторы:
Сергеев Виталий Вячеславович
Номер заявки
2017139274
Дата подачи заявки
13.11.2017
Опубликовано
22.10.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям ликвидации поглощений бурового раствора при строительстве (бурении) нефтяных и газовых скважин. Способ включает последовательную закачку в пласт блокирующей пачки и продавочной жидкости. При этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор наночастиц двуокиси кремния, сухую аморфную двуокись кремния, микрочастицы ильменита или тетраоксида тримарганца, водный раствор хлористого кальция или хлористого калия. При этом в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия. Техническим результатом является повышение технологической эффективности мероприятий по ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с аномально-низким пластовым давлением, упрощение приготовления блокирующего состава в промысловых условиях, возможность регулирования реологических параметров составов как в поверхностных условиях, так и при их движении в колонне бурильных труб. 6 з.п. ф-лы, 7 пр., 4 ил.

Формула изобретения

1. Способ ликвидации поглощений бурового раствора при строительстве нефтяных и газовых скважин, включающий последовательную закачку в пласт блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор наночастиц двуокиси кремния, сухую аморфную двуокись кремния, микрочастицы ильменита или тетраоксида тримарганца, водный раствор хлористого кальция или хлористого калия, а в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия.

2. Способ по п. 1, отличающийся тем, что для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений до 20 м3/ч включительно в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (мас.%):

дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 15-30,

эмульгатор - 2-3,

коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0.5-1,

сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм. - 1-3,

микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 5-10,

водный раствор хлористого кальция или хлористого калия - остальное.

3. Способ по п. 1, отличающийся тем, что для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений более 20 м3/ч в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (мас.%):

дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-15,

эмульгатор - 2-3,

коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0.5-1,

сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5,

микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5-10,

водный раствор хлористого кальция или хлористого калия - остальное.

4. Способ по п. 1, отличающийся тем, что в качестве коллоидного раствора наночастиц двуокиси кремния используют композицию, содержащую (мас.%) двуокись кремния - 31-32,5 в монометиловом эфире пропиленгликоля - 67, воду - остальное.

5. Способ по п. 1, отличающийся тем, что в качестве коллоидного раствора наночастиц двуокиси кремния используют композицию, содержащую (мас.%) двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное.

6. Способ по п. 1, отличающийся тем, что в качестве коллоидного раствора наночастиц двуокиси кремния используют композицию, содержащую (мас.%) двуокись кремния - 29-31 в этиленгликоле - остальное.

7. Способ по п. 1, отличающийся тем, что в качестве эмульгатора используют композицию, содержащую (мас.%):

- эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42,

- окись амина - 0.7-1,

- высокомолекулярный органический термостабилизатор - 0.5-1,

- дизельное топливо - остальное.

Описание

[1]

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям ликвидации поглощений бурового раствора при строительстве нефтяных и газовых скважин.

[2]

Одной из наиболее актуальных проблем в отрасли строительства нефтяных и газовых скважин является поглощение бурового раствора высокопроницаемыми пластами и пластами с аномально-низким пластовым давлением (АНПД). Указанные геолого-физические особенности подземных пластов приводят к осложнениям технологических процессов вплоть до остановки процесса строительства скважины.

[3]

Особенно остро проблема поглощений классических буровых растворов проявляется при вскрытии пластов с АНПД. Под классическими буровыми растворами понимаются наиболее широко применяемые в процессах строительства скважин солевые растворы различной плотности. Ликвидация поглощений в пластах с АНПД не может быть осуществлена классическими буровыми растворами на водной основе в связи с их низкой вязкостью, слабой адгезией, отсутствием тампонирующей способности и гидрофилизацией поверхности горных пород при первичном вскрытии продуктивных пластов.

[4]

Для борьбы с такого рода осложнением необходимо применять специальные технологические жидкости с относительно невысокой плотностью, повышенными вязкостными и адгезионными свойствами.

[5]

Основными недостатками всех классических буровых растворов на водной основе является гидрофилизация поверхности горных пород, низкая вязкость, слабая адгезия и отсутствие тампонирующей способности, которые приводят к неконтролируемой фильтрации бурового раствора вглубь вскрытого пласта при поглощениях.

[6]

В связи с этим, при вскрытии пластов с аномальными условиями применение классических буровых растворов неэффективно. В процессах строительства скважин при бурении интервалов с аномальными условиями необходимо применять особые технологические жидкости - блокирующие составы (блокирующие пачки). Физико-химические свойства блокирующих составов значительно отличаются от свойств классических буровых растворов.

[7]

Степень проявления факторов, осложняющих процессы строительства скважин, находится в зависимости от горно-геологических условий месторождения и геолого-физических параметров пластов.

[8]

Наиболее часто осложняющие факторы проявляются в следующих условиях:

[9]

- при бурении скважин в зонах залегания пластов с пластовым давлением ниже гидростатического (в этих условиях происходит неконтролируемое поглощение бурового раствора в больших объемах, что приводит к гидрофилизации поверхности горных пород, увеличению срока строительства скважины, дополнительным затратам и остановке процесса бурения);

[10]

- при бурении скважин в зонах залегания пластов с повышенным пластовым давлением относительно гидростатического (применение тяжелых буровых растворов на водной основе не обеспечивает стабилизацию давления в системе пласт-скважина и при репрессии происходит гидрофилизация поверхности горных пород).

[11]

Для повышения эффективности процессов строительства нефтяных и газовых скважин и решения задачи ликвидации осложнений при вскрытии пластов с аномальными условиями необходимо применение технологических жидкостей с особыми реологическими, поверхностно-активными и тампонирующими свойствами.

[12]

Из уровня техники известен способ предупреждения и ликвидации зон поглощений в скважине (а.с. СССР №1714081, МПК Е21В 33/13, Е21В 33/138, дата публикации 23.02.1992), включающий последовательную закачку в интервал поглощающего пласта водного раствора соли поливалентного металла и полимерного тампонажного материала с последующим продавливанием их в поглощающий пласт. Недостатком способа является необходимость насыщения поглощающего интервала водными растворами солей поливалентных металлов для последующей реакции водного раствора с полимерным материалом (смесь карбамидной смолы), который закачивается следом. В условиях поглощений водный раствор солей ввиду низкой вязкости будет полностью поглощен принимающим интервалом и профильтрован вглубь пласта. В этих условиях закачиваемый следом полимерный материал с вязкостью выше, чем водный раствор солей, не смешается с водным раствором солей и соответственно смесь не наберет необходимые реологические свойства для создания блокирующего экрана.

[13]

Известен способ ликвидации поглощений при бурении и эксплуатации скважин (а.с. СССР №1810490, МПК Е21В 33/138, дата публикации 23.04.1993), включающий последовательную закачку дизельных и масляных щелочных отходов нефтепереработки, разделительной жидкости или промывочной жидкости и водного раствора хлористого кальция или магния, с продавкой их водой или промывочной жидкостью. В качестве разделительной и продавочной жидкости используют воду или глинистый промывочный раствор. В зависимости от уровня поглощений изменяют количественный объем закачиваемых порций. Недостатками способа является невозможность регулирования реологических параметров основного блокирующего агента - дизельных и масляных щелочных отходов нефтепереработки, а также отсутствие в составе твердых частиц. В связи с этим способ будет неэффективен при ликвидации поглощений в высокопроницаемых интервалах пластов.

[14]

Известен способ изоляции зон поглощений в скважинах, направленный на повышение эффективности блокировки зон поглощений (патент РФ №2139410, МПК Е21В 33/138, дата публикации 10.10.1999). Способ включает закачку блокирующего состава и продавочной жидкости, при этом одновременно закачивают не менее двух составов, образующих в процессе смешения и продвижения в стволе скважины неньютоновскую высоковязкую дисперсную систему. Недостатками способа является отсутствие возможности регулирования реологических параметров двух последовательно закачиваемых составов, а также невозможность контроля и регулирования процесса смешения составов в процессе их движения в колонне насосно-компрессорных труб.

[15]

Известен способ добычи нефти в порово-трещиноватых коллекторах (патент РФ №2465446, МПК Е21В 43/22, Е21В 43/32, дата публикации 27.10.2012) снижающий обводненность продукции скважин, который может быть использован, в частности, при ликвидации поглощений в процессе строительства и ремонта скважин. Недостатками способа является многокомпонентность и сложность приготовления блокирующего состава в промысловых условиях, а также необратимая кольматация фильтрационных каналов при первичном вскрытии продуктивных интервалов нефтегазоносных пластов.

[16]

Для решения указанных проблем в области строительства нефтяных и газовых скважин предлагается способ ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с АНПД, основанный на закачке в пласт блокирующей пачки в виде эмульсионно-суспензионной системы и продавке водным раствором хлористого кальция или хлористого калия.

[17]

Сущность изобретения заключается в том, что способ включает следующие последовательные этапы: закачку в пласт блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор наночастиц двуокиси кремния, сухую аморфную двуокись кремния, микрочастицы ильменита или тетраоксида тримарганца, водный раствор хлористого кальция или хлористого калия, а в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия. При этом для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений до 20 м3/ч включительно (частичное поглощение) в качестве блокирующей пачки можно использовать эмульсионно-суспензионную систему, содержащую (% масс): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 15-30, эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм. - 1-3, микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 5-10 и водный раствор хлористого кальция или хлористого калия - остальное. Для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений более 20 м3/ч (полное или катастрофическое поглощение) в качестве блокирующей пачки можно использовать эмульсионно-суспензионную систему, содержащую (% масс.): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-15, эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5, микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 5-10 и водный раствор хлористого кальция или хлористого калия - остальное. В качестве коллоидного раствора наночастиц двуокиси кремния можно использовать композицию, содержащую (% масс.): двуокись кремния - 31-32,5 в монометиловом эфире пропиленгликоля - 67, воду - остальное; либо двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное; либо двуокись кремния - 29-31 в этиленгликоле - остальное. В качестве эмульгатора можно использовать композицию, содержащую (% масс.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0,7-1, высокомолекулярный органический термостабилизатор - 0,5-1, дизельное топливо - остальное.

[18]

Положенное в основу способа радиальное размещение блокирующей пачки в поглощающем пласте обеспечивает создание блокирующего экрана, который благодаря комплексу высоких адгезионных и реологических характеристик способен противостоять высокому перепаду давлений (до 300 атм.) без прорыва пластового флюида и поглощений бурового раствора.

[19]

При движении эмульсионно-суспензионной системы (ЭСС) в пористой среде ее эффективная вязкость зависит от объемного водосодержания в ЭСС и скорости фильтрации ЭСС в пористой среде, увеличиваясь с ростом объемного водосодержания и снижением скорости фильтрации. Это приводит к тому, что при движении ЭСС в пористой среде происходит саморегулирование вязкостных свойств, скорости и направления фильтрации в глубь пласта. Эти реологические свойства ЭСС позволяют сформировать радиальный экран, который преимущественно блокирует наиболее проницаемые интервалы пласта.

[20]

Увеличение вязкости ЭСС при взаимодействии с водой и разложение ЭСС при взаимодействии с углеводородами обеспечивает селективность действия блокирующей пачки и позволяет предотвратить необратимую кольматацию продуктивного пласта при первичном вскрытии. Гидрофобность и поверхностная активность ЭСС обеспечивает изменение фазовой проницаемости преимущественно гидрофильных горных пород продуктивных пластов.

[21]

Техническим результатом изобретения является повышение технологической эффективности мероприятий по ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с АНПД, упрощение приготовления блокирующего состава в промысловых условиях, возможность регулирования реологических параметров составов как в поверхностных условиях, так и при их движении в колонне бурильных труб.

[22]

Изобретение иллюстрируется следующими графическими материалами.

[23]

На фиг. 1 приведена таблица, раскрывающая технику и оборудование для приготовления и закачки технологических жидкостей.

[24]

На фиг. 2 приведена таблица, иллюстрирующая результаты измерений плотности эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).

[25]

На фиг. 3 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).

[26]

На фиг. 4 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).

[27]

Подготовительные работы на скважине

[28]

При первых признаках возникновения поглощений в процессе строительства скважины необходимо осуществить следующие мероприятия:

[29]

- оценить приемистость скважины на разных режимах расхода бурового насоса (данные фиксировать по максимальному значению);

[30]

- при падении статического уровня необходимо оценить скорость снижения уровня раствора в скважине и уровень стабилизации, определить интенсивность поглощений как во время бурения на различных режимах, так и в статике;

[31]

- по фактическим данным мониторинга приемистости (или интенсивности поглощений) принимать решение по составу блокирующей пачки. Объем блокирующей пачки определяется в зависимости от интенсивности поглощений или приемистости интервала и находится в интервале 5-25 м3 на метр вскрытой толщины пласта (м3/м), но не менее 150% от объема, достаточного для перекрытия поглощающего интервала.

[32]

Оценку приемистости поглощающего интервала можно проводить по следующей формуле:

[33]

[34]

где:

[35]

I - интенсивность поглощений при определенном расходе насоса,

[36]

TVD - глубина скважины по вертикали, м;

[37]

ECD - эквивалентная циркуляционная плотность,

[38]

S - удельный вес раствора,

[39]

Приготовление блокирующей пачки

[40]

Приготовление блокирующей пачки производится на установках приготовления растворов: блок приготовления растворов «БПР» (емкость с лопастной мешалкой и внешним центробежным насосом). Необходимое оборудование для приготовления эмульсионных систем представлено на фиг. 1.

[41]

Для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений до 20 м3/ч включительно (частичное поглощение) в емкость для приготовления блокирующей пачки набирают (% масс) дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 15-30. Далее запускают центробежный насос на циркуляцию и лопастной перемешиватель. После этого последовательно в дизельном топливе диспергируют эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм. - 1-3 и микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5-10, водный раствор хлористого кальция или хлористого калия - остальное.

[42]

Для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений более 20 м3/ч (полное или катастрофическое поглощение) в емкость для приготовления блокирующей пачки набирают (% масс.) дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-15. Далее запускают центробежный насос на циркуляцию и лопастной перемешиватель. После этого последовательно в дизельном топливе диспергируют эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5 и микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5-10, водный раствор хлористого кальция или хлористого калия - остальное.

[43]

Независимо от интенсивности поглощений пластов (более или менее 20 м3/ч) в качестве коллоидного раствора наночастиц двуокиси кремния можно использовать композицию, содержащую (% масс):

[44]

- двуокись кремния - 31-32.5 в монометиловом эфире пропиленгликоля - 67, воду - остальное, или

[45]

- двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное, или

[46]

- двуокись кремния - 29-31 в этиленгликоле - остальное.

[47]

В качестве эмульгатора можно использовать композицию, содержащую (% масс.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо- остальное.

[48]

Ввод составляющих в углеводородную основу производится через эжектор с помощью вакуумного шланга или через открытый верх емкости «БПР».

[49]

Технологические емкости должны быть оборудованы лопастными мешалками, обеспечивающими постоянное и равномерное распределение реагентов по всему объему. Для обеспечения получения и поддержания свойств стабильности систем рекомендуется применять лопастные мешалки с реверсивным направлением вращения.

[50]

Качество приготовления и стабильность свойств систем зависит от полноты охвата перемешиванием всего объема емкости приготовления, чистоты емкостей, скорости ввода составляющих и времени диспергирования. Рекомендуется использовать емкость со «скошенными» углами (форма близкая к цилиндрической).

[51]

Контроль качества приготовления ЭСС Контроль проводится путем проверки седиментационной устойчивости систем. Тест считается положительным, если при выдержке ЭСС при комнатной температуре в течение 2 ч произошло отделение водной или углеводородной фазы не более 3% от объема ЭСС.

[52]

Перечень оборудования и специальной техники для проведения работ на скважине Количество и вид специальной техники представлены на фиг. 1. Расчет произведен при условии приготовления систем на растворном узле «БПР». Представленный перечень оборудования и специальной техники является базовым и может включать в себя дополнительные наименования в зависимости от условий проведения работ, месторасположения растворного узла. Закачка блокирующей пачки в скважину может быть произведена с применением буровых насосов.

[53]

Технология осуществления способа

[54]

Порядок технологических операций:

[55]

1. Перевод нагнетательной линии на «БПР».

[56]

2. Закачка в скважину блокирующей пачки в объеме 5-25 м3/м, но не менее 150% от объема, достаточного для перекрытия поглощающего интервала.

[57]

3. Продавка блокирующей пачки водным раствором хлористого кальция или хлористого калия в объеме достаточном для выхода блокирующей пачки из колонны бурильных труб.

[58]

4. Поднятие компоновки низа бурильной колонны (КНБК) на 50 м выше интервала установки блокирующей пачки.

[59]

5. Закрытие превентора.

[60]

6. Продавка водным раствором хлористого кальция или хлористого калия в объеме не менее 150% от объема блокирующей пачки. Продавку производить с низким расходом, периодической остановкой агрегата и мониторингом изменения давления в скважине:

[61]

- при регистрации потери давления в скважине после остановки агрегата необходимо продолжить продавку закаченного объема блокирующей пачки;

[62]

- если в ходе продавки полного объема блокирующей пачки с низким расходом не происходит рост давления или рост давления незначительный, необходимо повторно произвести вышеперечисленные технологические операции по закачке и продавке блокирующей пачки;

[63]

- если достигнута стабилизация давления в скважине - открыть превентор и возобновить циркуляцию с низким расходом;

[64]

- если циркуляция полная, медленно увеличить расход промывочной жидкости до рабочего;

[65]

- если выход раствора частичный, либо отсутствует, необходимо повторно произвести закачку и продавку блокирующей пачки.

[66]

7. Спуск инструмента на забой для удаления остатков блокирующей пачки.

[67]

8. Продолжить бурение.

[68]

Конкретные объемы закачиваемых в пласт блокирующей пачки и продавочной жидкости рассчитываются в зависимости от интенсивности поглощений или приемистости пласта и мощности вскрытого интервала поглощений.

[69]

Скорость закачки технологических жидкостей

[70]

Закачка технологических жидкостей на этапе установки блокирующей паки должна производиться непрерывно с производительностью, предотвращающей снижение плотности технологических жидкостей всплывающими газом и нефтью, а также при давлении на агрегате, исключающем полное поглощение жидкости.

[71]

Скорость закачки технологических жидкостей определяется величиной пластового давления:

[72]

- в случае высокого газового фактора и аномально высокого пластового давления скорость закачки должна быть максимальной, превышающей производительность пласта;

[73]

- в случае аномально низкого пластового давления в целях минимизации репрессии на продуктивный пласт и снижения объемов поглощений закачиваемой жидкости пластом необходимо придерживаться минимальной скорости закачки (5-10 л/с).

[74]

Расчет требуемой плотности технологических жидкостей

[75]

Требуемая плотность технологических жидкостей определяется на основе расчета исходя из условия создания столбом технологических жидкостей давления, превышающего текущее пластовое давление на коэффициент безопасности.

[76]

Количество сухого хлористого калия или хлористого кальция, требуемого для приготовления необходимого объема водного раствора определенной плотности, рассчитывается по следующей формуле:

[77]

[78]

где:

[79]

Мр - количество реагента - сухого хлористого калия или хлористого кальция, кг;

[80]

Yp - удельный вес реагента, г/см3;

[81]

Yжг - удельный вес технологических жидкостей, г/см3;

[82]

Yв - удельный вес технической воды, применяемой для приготовления технологических жидкостей, г/см3;

[83]

Vp - требуемый объем водного раствора солей, м3.

[84]

Расчет необходимой плотности технологических жидкостей при полной замене скважинной жидкости определяется по следующей формуле:

[85]

[86]

где:

[87]

ρ - расчетная плотность технологических жидкостей, кг/м3;

[88]

Рпл - пластовое давление, МПа;

[89]

П - коэффициент безопасности удельного веса технологических жидкостей, определяемый Федеральными нормами и правилами в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности», утвержденные приказом Ростехнадзора от 12.03.2013 №101;

[90]

Н - расстояние от устья до кровли пласта по вертикали, м.

[91]

Для скважины, в которой вскрыто несколько пластов с разными пластовыми давлениями и расстояние между ними составляет более 50 м, в расчетах принимается величина Н от устья скважины до кровли пласта с более высоким пластовым давлением.

[92]

Лабораторные исследования физических свойств ЭСС

[93]

Для исследования физических свойств систем были подготовлены образцы блокирующей пачки с различным объемным содержанием компонентов.

[94]

В результате проведения экспериментов определялись следующие параметры систем:

[95]

- плотность;

[96]

- агрегативная устойчивость;

[97]

- термостабильность;

[98]

- кинематическая вязкость.

[99]

С целью оценки качества приготовления образцов ЭСС производилась их выдержка не менее 2 часов при комнатной температуре до начала проведения экспериментов.

[100]

Измерение плотности ЭСС

[101]

Результаты измерения плотности (пикнометрический метод) эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3), применяемых для ликвидации поглощений бурового раствора представлены на фиг. 2.

[102]

Измерение агрегативной устойчивости ЭСС

[103]

Агрегативная устойчивость - это способность систем сохранять степень дисперсности внутренней фазы.

[104]

Оценку проводили по показателю электростабильности - измерений значений электрического напряжения, соответствующего моменту разрушения систем, заключенной между электродами измерительной ячейки прибора. Эксперименты проводились на приборе марки FANN.

[105]

Результаты измерения агрегативной устойчивости ЭСС с плотностью водной составляющей - 1280 кг/м3 представлены на фиг. 3.

[106]

Измерение термостабильности ЭСС

[107]

Измерение термостабильности ЭСС проводили путем выдержки образцов в мерных герметично закрытых цилиндрах в термошкафу в течение 24 часов при заданном температурном режиме 80°С. Тест считался положительным (образец стабилен), если после 6 ч термостатирования из эмульсионной системы отделилось не более 3 об. % водной или углеводородной фаз от общего объема ЭСС. В результате экспериментов на термостабильность определено, что все образцы стабильны в течение 24 часов.

[108]

Измерение кинематической вязкости ЭСС

[109]

Результаты измерения кинематической вязкости (мм2/с) ЭСС с плотностью водной составляющей 1280 кг/м3 представлены на фиг. 4. Измерения проводились при температуре 23°С (погрешность измерения температуры ±0,1°С) на вискозиметре ВПЖ-2 с константой вискозиметра - 0,09764. Перед экспериментами ЭСС перемешивали в механической мешалке при заданной скорости 1600 об/мин в течение 20 минут.

[110]

Результаты комплекса проведенных базовых лабораторных исследований физических свойств ЭСС подтвердили высокие технологические свойства разработанных составов. Особенно важными параметрами являются высокая термостабильность и агрегативная устойчивость систем, а также возможность регулировать вязкость ЭСС изменением объемного содержания водной фазы в системе.

[111]

Далее приведены примеры осуществления способа.

[112]

Пример 1

[113]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 38 м3/ч. Поглощение было ликвидировано в один цикл.

[114]

Провели подготовительные работы на скважине: произвели расстановку техники для проведения закачки согласно утвержденной схемы, произвели обвязку оборудования и опрессовку нагнетательной линии на давление, превышающее ожидаемое рабочее в 1,5 раза, соблюдая меры безопасности.

[115]

По завершению подготовительных работ начали проведение технологических операций по закачке блокирующей пачки.

[116]

На первом этапе произвели закачку в призабойную зону пласта (ПЗП) блокирующей пачки следующего состава, % масс.: дизельное топливо - 7, эмульгатор - 2, коллоидный раствор наночастиц двуокиси кремния - 0.7, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4.5, микрочастицы тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 8, водный раствор хлористого калия плотностью 1050 кг/м3 - 77.8, в объеме 25 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 41, окись амина - 0.8, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (зимнее) - 57.7. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс.): двуокись кремния - 30, этиленгликоль - 70.

[117]

На втором этапе произвели продавку блокирующей и закрепляющей пачек водным раствором хлористого калия с плотностью 1020 кг/м3 в объеме 3 м3/м.

[118]

Пример 2

[119]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 18 м3/ч. Поглощение было ликвидировано в один цикл.

[120]

Здесь и далее подготовительные работы производились в соответствие с порядком, указанным в примере 1.

[121]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: дизельное топливо - 23, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 0.9, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 2, микрочастицы ильменита с размером частиц от 0.2 до 5 мкм - 7, водный раствор хлористого кальция плотностью 1035 кг/м3 - 64.6, в объеме 6 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 0.9, высокомолекулярный органический термостабилизатор - 0.8, дизельное топливо (зимнее) - 56.3. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс.): двуокись кремния - 30, монометиловый эфир пропиленгликоля - 67, вода - 3.

[122]

На втором этапе продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1025 кг/м3 в объеме 3 м3/м.

[123]

Пример 3

[124]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 16 м3/ч. Поглощение было ликвидировано в один цикл.

[125]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: дизельное топливо - 30, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 0.5, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 1, микрочастицы ильменита с размером частиц от 0.2 до 5 мкм - 5, водный раствор хлористого кальция плотностью 1035 кг/м3 - 60.5, в объеме 5 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 0.9, высокомолекулярный органический термостабилизатор - 0.8, дизельное топливо (зимнее) - 56.3. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0.5.

[126]

На втором этапе продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1020 кг/м3 в объеме 2 м3/м.

[127]

Пример 4

[128]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 42 м3/ч. Поглощение было ликвидировано в один цикл.

[129]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 5, эмульгатор - 2, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 5, микрочастицы ильменита с размером частиц от 0.2 до 5 мкм - 10, водный раствор хлористого кальция плотностью 1095 кг/м3 - 77, в объеме 25 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 1, высокомолекулярный органический термостабилизатор - 1, дизельное топливо (летнее) - 56. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 31, изопропанол - 68, метиловый спирт - 1.

[130]

На втором этапе продавку блокирующей пачки водным раствором хлористого калия с плотностью 1080 кг/м3 в объеме 3 м3/м.

[131]

Пример 5

[132]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 27 м3/ч. Поглощение было ликвидировано в один цикл.

[133]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 10, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4, микрочастицы тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 8, водный раствор хлористого кальция плотностью 1040 кг/м3 - 74, в объеме 20 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (олеиновая) и смоляных кислот - 42, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (летнее) - 56.8. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 30.5, изопропанол - 69, метиловый спирт - 0.5.

[134]

На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1015 кг/м3 в объеме 6 м3/м.

[135]

Пример 6

[136]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 19.5 м3/ч. Поглощение было ликвидировано в один цикл.

[137]

На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 27.5, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 0.5, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 1, микрочастицы тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5, водный раствор хлористого кальция плотностью 1040 кг/м3 - 63, в объеме 6.5 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина 0.9, высокомолекулярный органический термостабилизатор - 0.8, дизельное топливо (зимнее) - 56.3. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0.5.

[138]

На втором этапе продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1030 кг/м3 в объеме 2 м3/м.

[139]

Пример 7

[140]

Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 25.5 м3/ч. Поглощение было ликвидировано в один цикл. На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 10, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4, микрочастицы ильменита с размером частиц от 0,2 до 5 мкм - 9, водный раствор хлористого кальция плотностью 1040 кг/м3 - 73.5, в объеме 17 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (олеиновая) и смоляных кислот - 42, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (летнее) - 56.8. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 30.5, изопропанол - 69, метиловый спирт - 0.5.

[141]

На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1015 кг/м3 в объеме 4.5 м3/м.

[142]

Таким образом, изобретение обеспечивает повышение технологической эффективности мероприятий по ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с АНПД, упрощение приготовления блокирующего состава в промысловых условиях, возможность регулирования реологических параметров составов как в поверхностных условиях, так и при их движении в колонне бурильных труб.

Как компенсировать расходы
на инновационную разработку
Похожие патенты