патент
№ RU 2681072
МПК B23K26/18

Способ лазерной сварки алюминиевых сплавов

Авторы:
Егоров Тимофей Владимирович Леонов Сергей Тимофеевич Горностаев Игорь Николаевич
Все (5)
Номер заявки
2017141601
Дата подачи заявки
29.11.2017
Опубликовано
01.03.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области металлургии и, в частности, к лазерной сварке алюминиевых сплавов. Способ включает нанесение никелевого покрытия на свариваемые поверхности и сварку, при этом толщину покрытия подбирают с учетом соотношения объема нанесенного покрытия в количестве 0,4÷0,6% от объема сварочной ванны. Кроме того, кромки сварных соединений выполняют под углом 5÷15°. Технический результат заключается в возможности получения конструкций с повышенными механическими характеристиками и, как следствие, в увеличении срока эксплуатации изделий. 1 з.п. ф-лы, 1 пр.

Формула изобретения

1. Способ лазерной сварки алюминиевых сплавов, включающий нанесение никелевого покрытия на поверхности свариваемых кромок и сварку, отличающийся тем, что никелевое покрытие наносят гальваническим методом, при этом толщину никелевого покрытия устанавливают с учетом обеспечения объема нанесенного покрытия, равного 0,4÷0,6% от объема сварочной ванны.

2. Способ по п. 1, отличающийся тем, что кромки сварных соединений выполняют под углом 5÷15°.

Описание

[1]

Изобретение относится к области металлургии и, в частности, к лазерной сварке алюминиевых сплавов.

[2]

Известен способ увеличения глубины проплавления сварного соединения при лазерной сварке алюминиевых сплавов, включающий нанесение слоя порошка магния или цинка толщиною 1÷20 мкм и последующее нанесение слоя порошка алюминия толщиною 10÷100 мкм методом термического напыления. Вследствие шероховатости поверхностного слоя алюминия, характерной для термических способов нанесения покрытий, обеспечивается более высокая поглощающая способность лазерного излучения. Промежуточный слой магния и цинка при воздействии нагрева испаряется и за счет отсутствия плотности напыленного слоя создает «замочную скважину», что также увеличивает поглощение лазерного излучения и глубину проплавления основного металла (патент КНР №102861990).

[3]

Известен способ лазерной сварки алюминиевых сплавов, включающий предварительное нанесение на поверхность свариваемых деталей нанослоя оксида различных металлов, в частности иттрия, для увеличения поглощающей способности лазерного излучения и последующую сварку (патент КНР №102079013).

[4]

Недостатком данных способов является сложность нанесения многослойного покрытия и нанометрового слоя оксида металлов, что приводит к увеличению стоимости изготовления изделий и трудоемкости.

[5]

Известен способ лазерной сварки алюминиевых сплавов с нанесенным слоем никелевого покрытия, который обеспечивает меньшее отражение лазерного излучения и большую глубину проплавления (А.А. Малащенко, А.В. Мезенов «Лазерная сварка металлов». М.: Машиностроение, 1984. - 44 с), прототип.

[6]

Недостатком данного способа является отсутствие упрочняющего эффекта в металле шва и получение соединений с более низкими, по сравнению с основным материалом, механическими свойствами.

[7]

Задачей изобретения является повышение прочностных характеристик сварных швов и соединений из алюминиевых сплавов, выполненных лазерной сваркой, причем прочность сварных швов принимается равной или выше прочности основного материала: σв шва ≥ σв ом.

[8]

Технический результат заключается в возможности получения конструкций с улучшенными механическими свойствами, и как следствие, в повышении эксплуатационной стойкости изделий.

[9]

Для достижения названного технического результата предлагается способ лазерной сварки алюминиевых сплавов, включающий нанесение никелевого покрытия на поверхности свариваемых кромок и сварку, при этом никелевое покрытие наносят гальваническим методом, а толщину никелевого покрытия устанавливают с учетом обеспечения объема нанесенного покрытия равного 0,4÷0,6% от объема сварочной ванны.

[10]

Кроме этого, кромки сварных соединений могут быть выполнены под углом 5÷15°.

[11]

Применение никелевого покрытия при лазерной сварке алюминиевых сплавов позволяет существенно снизить потери мощности лазерного излучения за счет отражения от чистой алюминиевой поверхности.

[12]

Известно, что для увеличения прочности неразъемных соединений из алюминиевых сплавов сварной шов можно дополнительно легировать никелем. Никель имеет ограниченную растворимость в фазах, содержащих алюминий, кремний, марганец и медь, повышая их прочностные свойства.

[13]

Вместе с этим, наличие никеля в сплаве позволяет связывать примеси железа, которые всегда присутствуют в алюминиевых сплавах и снижают обрабатываемость резанием и давлением в более пластичные фазы Al9FeNi.

[14]

Однако при этом соотношение никеля к железу в сплаве должно составлять примерно 1:1. При большем содержании железа происходит увеличение

[15]

твердости сплава и существенное снижение его пластических свойств. При большем содержании никеля возможно выделение никеля в виде отдельных фаз и образование интерметаллидов при взаимодействии с легирующими компонентами сплава, что также может охрупчивать сварное соединение.

[16]

Для обеспечения заданного содержания железа и никеля в сварном соединении необходимо выбирать такую толщину никелевого покрытия, чтобы массовая доля никеля, переходящая в сварочную ванну, примерно соответствовала массовой доли железа. Поскольку в большинстве промышленно выпускаемых алюминиевых сплавах процентное содержание железа составляет 0,4÷0,6 масс. %, то аналогичное процентное содержание должно обеспечивать и никелевое покрытие.

[17]

Для уменьшения потерь мощности лазерного излучения возможно также использовать разделку кромок под небольшими углами. Разделка кромок под углом 5÷15° позволит обеспечить минимальную потерю мощности и увеличить глубину проплавления основного металла.

[18]

Пример.

[19]

Изготавливался корпус из листов сплава АМц толщиною 2 мм. Предварительно на свариваемые кромки гальваническим методом наносилось никелевое покрытие толщиною 6÷9 мкм. Толщина покрытия выбиралась (при условии, что объем покрытия равен 0,4÷0,6% от объема сварочной ванны) по формуле:

[20]

,

[21]

где Vпокр. - объем покрытия,

[22]

Sпокр. - суммарная площадь покрытия.

[23]

Объем сварочной ванны оценивался на основании расчетной площади сечения сварного соединения (для стыкового соединения) по формуле:

[24]

,

[25]

где Sшва - площадь сечения шва,

[26]

lшва - длина шва,

[27]

δм - толщина свариваемого металла,

[28]

е и e1 - ширина шва и проплавления соответственно,

[29]

g и g1 - высота валика шва и корня шва соответственно.

[30]

В результате расчетов определено, что объем покрытия равен 0,48% от объема сварочной ванны.

[31]

Сварка осуществлялась на лазерном комплексе LRS-300AU на автоматизированном столе в импульсном режиме. Режимы сварки: энергия импульса 40 Дж, диаметр сфокусированного луча 0,3÷0,4 мм, длительность импульса 0,2÷0,3 мс, прямоугольная форма импульса, фокусное расстояние 12 мм.

[32]

После сварки из образцов вырезались макетные образцы для испытаний на механическую прочность. Испытания проводились на стандартизованной разрывной машине. В результате исследований было установлено, что разрушение всех образцов происходит по основному материалу, и предел прочности образцов составлял 136÷143 МПа.

[33]

Таким образом, предлагаемое изобретение позволяет обеспечить получение сварных соединений с гарантированной прочностью сварных швов выше прочности основного материала, что позволит обеспечить более высокие механические свойства сварных конструкций.

Как компенсировать расходы
на инновационную разработку
Похожие патенты