патент
№ RU 2654006
МПК A61B8/00

УСТРОЙСТВО АКУСТИЧЕСКОЙ ДИАГНОСТИКИ С ЧАСТОТНЫМ СКАНИРОВАНИЕМ КОСТНОЙ ТКАНИ

Авторы:
Фукина Наталья Анатольевна
Номер заявки
2017125683
Дата подачи заявки
17.07.2017
Опубликовано
15.05.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к медицинской технике, а именно к устройствам акустической диагностики ткани. Устройство с частотным сканированием костной ткани содержит передающую и приемную диагностические головки, первый усилитель акустических сигналов, выход которого через аналого-цифровой преобразователь подключен к входу управляющего вычислительного устройства, второй усилитель акустических сигналов. Причем дополнительно включены первый коммутатор акустических сигналов, первый вход которого подключен к тестовому объекту, второй вход подключен к приемной диагностической головке, третий вход подключен к управляющему вычислительному устройству, второй коммутатор акустических сигналов, первый выход которого подключен к тестовому объекту, второй выход подключен к входу передающей диагностической головки, первый вход второго коммутатора подключен к выходу второго усилителя акустических сигналов, второй вход подключен к управляющему вычислительному устройству, при этом управляющее вычислительное устройство подключено к дисплею и каналу связи, а в его память внесены данные со средними нормативными эхограммами распределения акустических сигналов с максимальными амплитудами на резонансных частотах для разных групп пациентов. Использование изобретения обеспечивает повышение оперативности, достоверности и точности получаемых результатов анализа костной ткани. 1 ил.

Формула изобретения

Устройство акустической диагностики с частотным сканированием костной ткани, содержащее передающую и приемную диагностические головки, первый усилитель акустических сигналов, выход которого через аналого-цифровой преобразователь подключен к входу управляющего вычислительного устройства, второй усилитель акустических сигналов, отличающееся тем, что дополнительно включены первый коммутатор акустических сигналов, первый вход которого подключен к тестовому объекту, второй вход подключен к приемной диагностической головке, третий вход подключен к управляющему вычислительному устройству, второй коммутатор акустических сигналов, первый выход которого подключен к тестовому объекту, второй выход подключен к входу передающей диагностической головки, первый вход второго коммутатора подключен к выходу второго усилителя акустических сигналов, второй вход подключен к управляющему вычислительному устройству, при этом управляющее вычислительное устройство подключено к дисплею и каналу связи, а в его память внесены данные со средними нормативными эхограммами распределения акустических сигналов с максимальными амплитудами на резонансных частотах для разных групп пациентов.

Описание

[1]

Изобретение относится к области медицинской техники и может быть использовано в травматологии, ортопедии и других областях медицины, связанных с диагностикой, мониторингом состояния костной ткани, прогнозированием ее прочности, переломами и другими заболеваниями костей.

[2]

Долгое время основным способом диагностики костей был рентгенодиагностический метод. Но поскольку аппарат, с помощью которого проводится рентген, излучает определенную дозу радиации, часто проводить такое исследование нельзя. Рентген противопоказан во время беременности, а также детям до 14 лет.

[3]

Эхографическое исследование служит альтернативой рентгенодиагностическим методам при диагностике костей. К повреждениям, определяемым эхографически, относятся травматические переломы, смещения костей и их фрагментов, можно контролировать консолидацию переломов и формирование костной мозоли. Сложность применения ультразвуковых приборов для исследования костной ткани заключается в том, что она очень плотная и не пропускает ультразвук.

[4]

Известен зарубежный ультразвуковой медицинский прибор Omnisense 7000 для диагностики костей, использующий технологию измерения скорости звука при прохождении ультразвуковой волны вдоль поверхности кости [1, 2]. Главным недостатком данного устройства является высокая стоимость, которая в зависимости от вариантов поставки и функциональных возможностей составляет от 25860 $ до 45180 $.

[5]

Известен способ определения нарушения костной ткани, использующий частотное сканирование костной ткани сигналами в диапазоне от 0,5 до 100 кГц, определение резонансных частот колебаний в костной ткани, регистрацию амплитудных и переменных значений сигнала с последующим их анализом [3]. Главным достоинством данного способа являются безопасность обследований для пациента и врача, а недостатком то, что требуется сравнительная эхография поврежденного и симметричного здорового сегментов.

[6]

Наиболее близким к изобретению является ультрозвуковой частотно-сканирующий эхоостеометр, взятый за прототип [4]. Эхоостеометр содержит приемную диагностическую головку, усилитель, аналого-цифровой преобразователь (АЦП), управляющее вычислительное устройство (в качестве которого используется электронно-вычислительная машина (ЭВМ)), счетчик импульсов установки, постоянное запоминающее устройство, генератор импульсов, формирователь импульсов загрузки, счетчик с параллельной загрузкой кода, делитель частоты следования импульсов на два, второй усилитель, передающую диагностическую головку.

[7]

Критерием оценки состояния костной ткани по эхограммам распределения резонансных частот акустических сигналов является то, что нарушение костной ткани (различная плотность, деминерализация, наличие переломов, деструктивных процессов и т.п.) приводит к появлению неоднородностей в среде распространения и рассеянию волн. Вследствие этого уменьшается колебательная скорость частиц среды, участвующих в передаче энергии волны, а соответственно, частота колебаний и амплитуда смещения частиц среды акустических волн, что приводит к смещению резонансных частот акустических сигналов в низкую область частот тем больше, чем сильнее нарушена костная ткань [3, 4].

[8]

Эхоостеометр, взятый за прототип, работает следующим образом. Управляющее вычислительное устройство (в качестве которого используют ЭВМ) запускает генератор импульсов. Импульсы преобразуются, усиливаются до необходимой величины и поступают на передающую диагностическую головку. Ультразвуковые колебания, пройдя через исследуемый участок костной ткани пациента, в виде эхосигналов поступают на приемную диагностическую головку, усилитель и аналого-цифровой преобразователь. Усиленный эхосигнал преобразуется в аналого-цифровом преобразователе в двоичный цифровой код, который передается в управляющее вычислительное устройство и запоминается. Процесс сканирования осуществляется по программе, заданной в ЭВМ, в низкочастотном (от 0,5 до 10 кГц), среднечастотном (от 10 до 40 кГц) и высокочастотном диапазонах (от 40 до 130 кГц). При сканировании эхосигналов по каждому диапазону частот управляющее вычислительное устройство анализирует величину сигнала, прошедшего через костную ткань, и выбирает максимальное значение в каждом диапазоне частот. Амплитуда ультразвуковых колебаний при резонансе возрастает в сотни и более раз, что обеспечивает высокую чувствительность устройства и хорошие диагностические возможности определения состояния и свойств костной ткани.

[9]

Использование в прототипе в качестве акустических сигналов последовательности импульсных сигналов (меандров), приводит к достаточно большому числу гармонических составляющих и, как следствие, к дополнительным ошибкам в результатах анализа костной ткани пациентов.

[10]

Недостатками прототипа являются недостаточная достоверность и точность результатов анализа костной ткани из-за отсутствия оперативного контроля устройства на соответствие эталонным параметрам непосредственно перед каждым измерением и использования в качестве акустических сигналов последовательности импульсных сигналов (меандров), а также необходимость проведения сравнительной эхографии поврежденного и симметричного здорового сегментов, что снижает оперативность получения диагностических данных, так как требует значительных затрат времени.

[11]

Технический результат предлагаемого изобретения состоит в повышении достоверности и точности результатов анализа костной ткани за счет использования в устройстве акустической диагностики с частотным сканированием костной ткани акустических синусоидальных колебаний и автоматического контроля устройства на соответствие эталонным параметрам, коррекции результатов анализа костной ткани в соответствии с данными контроля, а также в повышении оперативности получения результатов анализа костной ткани за счет автоматического сравнения результатов анализа со средними нормативными эхограммами распределения акустических сигналов с максимальными амплитудами на резонансных частотах для разных групп пациентов.

[12]

Указанный технический результат достигается тем, что в устройство акустической диагностики с частотным сканированием костной ткани, содержащее передающую и приемную диагностические головки, первый усилитель акустических сигналов, выход которого через аналого-цифровой преобразователь подключен к входу управляющего вычислительного устройства, второй усилитель акустических сигналов, дополнительно включены первый коммутатор акустических сигналов, первый вход которого подключен к тестовому объекту, второй вход подключен к приемной диагностической головке, третий вход подключен к управляющему вычислительному устройству, второй коммутатор акустических сигналов, первый выход которого подключен к тестовому объекту, второй выход подключен к входу передающей диагностической головки, первый вход второго коммутатора подключен к выходу второго усилителя акустических сигналов, второй вход подключен к управляющему вычислительному устройству, при этом управляющее вычислительное устройство подключено к дисплею и каналу связи, а в его память внесены данные со средними нормативными эхограммами распределения акустических сигналов с максимальными амплитудами на резонансных частотах для разных групп пациентов.

[13]

На фигуре приведена структурная схема предлагаемого устройства акустической диагностики с частотным сканированием костной ткани, где обозначены:

[14]

1 - управляющее вычислительное устройство (ЭВМ);

[15]

2 - синтезатор сетки акустических синусоидальных колебаний;

[16]

3 - второй усилитель акустических сигналов;

[17]

4 - второй коммутатор акустических сигналов;

[18]

5 - передающая диагностическая головка;

[19]

6 - приемная диагностическая головка;

[20]

7 - первый коммутатор акустических сигналов;

[21]

8 - первый усилитель акустических сигналов;

[22]

9 - аналого-цифровой преобразователь;

[23]

10 - дисплей;

[24]

11 - канал связи;

[25]

12 - тестовый объект.

[26]

Первый выход управляющего вычислительного устройства 1 (в качестве которого используют ЭВМ) подключен к входу синтезатора сетки акустических синусоидальных колебаний 2, второй выход подключен к второму входу второго коммутатора акустических сигналов 4, третий выход - к дисплею 10, четвертый - к третьему входу первого коммутатора акустических сигналов 7, пятый - к каналу связи 11. К входу управляющего вычислительного устройства 1 подключен выход аналого-цифрового преобразователя 9. Выход синтезатора сетки акустических синусоидальных колебаний 2 подключен к входу второго усилителя акустических сигналов 3, выход которого подключен к первому входу второго коммутатора входных сигналов 4. Первый выход второго коммутатора акустических сигналов 4 подключен к тестовому объекту 12, а второй выход подключен к входу передающей диагностической головки 5. Тестовый объект 12 подключен к первому входу первого коммутатора акустических сигналов 7, ко второму входу которого подключен выход приемной диагностической головки 6. Выход первого коммутатора акустических сигналов 7 через первый усилитель акустических сигналов 8 подключен к входу аналого-цифрового преобразователя. При проведении диагностических исследований между приемной диагностической головкой 6 и передающей диагностической головкой 5 размещают исследуемый объект.

[27]

За счет воздействия акустических сигналов с частотным сканированием на исследуемый объект при прохождении звуковой волны через костную ткань пациента возникают колебания частиц среды с определенными частотами, при совпадении которых с частотами входных сигналов возникают резонансные колебания. За счет возникновения резонансных колебаний амплитуды акустических волн увеличиваются в сотни и более раз, что приводит к такому же увеличению чувствительности приемной диагностической головки [3, 4]. Это особенно важно при наличии ограничений на интенсивность акустических волн, применяемых в медицине [5, 6].

[28]

Синтезатор сетки акустических синусоидальных колебаний 2 генерирует акустические сигналы в трех рабочих диапазонах частот. Низкочастотный рабочий диапазон имеет полосу частот от 0,5 до 10 кГц, среднечастотный - от 10 до 40 кГц, высокочастотный - от 40 до 130 кГц, процесс сканирования проводится по программе, заложенной в управляющее вычислительное устройство 1.

[29]

Устройство акустической диагностики с частотным сканированием костной ткани работает следующим образом.

[30]

При включении устройства запускается режим «Тестовый контроль» и управляющее вычислительное устройство 1 подает сигналы управления на первый и второй коммутаторы акустических сигналов 7 и 4, запускает синтезатор сетки акустических синусоидальных колебаний 2, который подает акустические сигналы на второй усилитель акустических сигналов 3, где они усиливаются до необходимой величины и через второй коммутатор акустических сигналов 4 поступают на тестовый объект 12. Акустические сигналы, пройдя через тестовый объект 12, в виде эхосигналов поступают через последовательно соединенные первый коммутатор акустических сигналов 7, первый усилитель акустических сигналов 8 в аналого-цифровой преобразователь 9. Усиленный эхосигнал преобразуется в аналого-цифровом преобразователе 9 в двоичный цифровой код, который передается в управляющее вычислительное устройство 1 и запоминается. Процесс сканирования тестового объекта 12 осуществляется в трех рабочих диапазонах по программе, заданной в управляющем вычислительном устройстве 1. Управляющее вычислительное устройство 1 анализирует величину сигнала, прошедшего через тестовый объект 12, выбирает максимальное значение в каждом диапазоне частот и по результатам полученных данных строит эхограммы распределения акустических сигналов. В памяти управляющего вычислительного устройства 1 записаны эталонные эхограммы распределения акустического сигнала на резонансных частотах, которые сравниваются с эхограммами распределения сигналов на резонансных частотах, полученных для тестового объекта 12. При определении различия в эхограммах формируются данные контроля аппаратуры, которые запоминаются и используются для коррекции эхограмм распределения акустических сигналов с максимальными амплитудами в трех рабочих диапазонах, получаемых при исследовании костной ткани пациентов в режиме «Анализ».

[31]

После завершения работы «Тестовый контроль» управляющее вычислительное устройство 1 выдает сигнал о переходе устройства в режим «Анализ».

[32]

В режиме «Анализ» управляющее вычислительное устройство 1 подает сигналы управления на первый и второй коммутаторы акустических сигналов 7 и 4, запускает синтезатор сетки акустических синусоидальных колебаний 2, который подает акустические сигналы на второй усилитель акустических сигналов 3, где они усиливаются до необходимой величины и через второй коммутатор входных акустических сигналов 4, поступают на передающую диагностическую головку 5. Акустические сигналы, пройдя через исследуемый объект, в виде эхосигналов поступают на приемную диагностическую головку 6, а затем через первый коммутатор акустических сигналов 7 на первый усилитель акустических сигналов 8 и аналого-цифровой преобразователь 9. Усиленный эхосигнал преобразуется в аналого-цифровом преобразователе 9 в двоичный цифровой код, который передается в управляющее вычислительное устройство 1. Процесс сканирования исследуемого образца костной ткани пациента осуществляется в трех рабочих диапазонах по программе, заданной в управляющем вычислительном устройстве 1. В результате обработки акустических сигналов с максимальными амплитудами на резонансных частотах акустических волн, полученных в результате исследования костной ткани, по программам, заложенным в управляющее вычислительное устройство 1, строятся эхограммы распределения акустических сигналов с максимальными амплитудами на резонансных частотах в трех диапазонах частот. При этом данные контроля аппаратуры, полученные в режиме «Тестовый контроль», используются для коррекции эхограмм, что позволяет избежать искажения данных.

[33]

Полученные эхограммы сравниваются со средними нормативными эхограммами распределения акустических сигналов с максимальными амплитудами на резонансных частотах, которые определены путем статистический обработки для разных групп пациентов с учетом возраста, пола и т.д. и внесены в память управляющего вычислительного устройства 1. Затем результаты анализа выводятся на экран дисплея 10 и поступают в канал связи 11. Поддержка базы данных "пациенты - исследования" позволяет хранить результаты и следить за динамикой изменений прочности костной ткани. Протокол исследования выводится на печать.

[34]

Входящее в состав устройства акустической диагностики с частотным сканированием костной ткани управляющее вычислительное устройство 1, в качестве которого используется ЭВМ, обеспечивает управление и синхронизацию режимами работы аппаратуры, хранение данных, коррекцию результатов анализа костной ткани в соответствии с данными контроля, а также сравнение результатов анализа со средними нормативными эхограммами, вывод результатов анализа костной ткани и служебной информации на экран дисплея и передачу данных по каналу связи.

[35]

В качестве тестового объекта 12 выбирается образцовая мера затухания (ОМЗ), обеспечивающая задержки акустических сигналов в рабочих диапазонах устройства.

[36]

В качестве диагностических головок акустических сигналов могут использоваться пьезоэлектрические излучатели, а также пластины из некоторых кристаллов (кварца, сегнетовой соли, турмалина, фосфорнокислого аммония, керамических материалов на основе титаната бария и др.).

[37]

Введение в устройство синтезатора сетки акустических синусоидальных колебаний позволяет отказаться от использования в качестве акустических сигналов последовательности импульсных сигналов и тем самым повысить точность результатов частотного сканирования костной ткани.

[38]

Использование введенных в состав предлагаемого устройства акустической диагностики с частотным сканированием костной ткани тестового образца и коммутаторов акустических сигналов обеспечивает выполнение автоматического контроля устройства на соответствие эталонным параметрам и коррекции результатов анализа костной ткани в соответствии с данными контроля, что повышает достоверность результатов анализа. Введение в память управляющего вычислительного устройства средних нормативных показателей для разных групп пациентов обеспечивает выполнение автоматического сравнения результатов анализа со средними нормативными показателями, что повышает оперативность получения результатов анализа костной ткани пациентов.

[39]

Предлагаемое устройство акустической диагностики с частотным сканированием костной ткани является безопасным, пригодным для исследования взрослых и детей, обеспечивает высокую достоверность определения состояния и свойств костной ткани с учетом средних нормативных показателей, а также обеспечивает повышение оперативности и точности измерений и прогнозирования состояния костной ткани.

[40]

Предложенное устройство акустической диагностики с частотным сканированием костной ткани может быть реализовано на современных аппаратно-программных и вычислительных средствах.

[41]

Литература

[42]

1. Л.А. Щеплягина, Е.О. Самохина, И.В. Круглова, Е.А. Чибрина. Эффективность применения ультразвукового денситометра Omnisense-7000 в педиатрической практике, Медицинский бизнес №12 (186), 2000 г.

[43]

2. http://www.poliklin.ru/imagearticle/201006/83-87.pdf.

[44]

3. Авторское свидетельство №1833817.

[45]

4. Патент РФ №2076635.

[46]

5. И.И. Резников, В.Н. Федоров, Е.В. Фаустов, А.Р. Зубарев, А.К. Демидов. Физические основы использования ультразвука в медицине, учебное пособие для студентов и аспирантов, Москва, 2015 г.

[47]

6. Осипов Л.В. Ультразвуковые диагностические приборы: Практическое руководство для пользователей. - М.: ВИДАР - 1999 г., 256 с.

Как компенсировать расходы
на инновационную разработку
Похожие патенты