патент
№ RU 2588262
МПК H01F1/34

ФЕРРИТОВЫЙ МАТЕРИАЛ

Авторы:
Федоров Владимир Владимирович Шанникова Алла Дмитриевна Егоров Сергей Владимирович
Все (6)
Номер заявки
2014147389/07
Дата подачи заявки
26.11.2014
Опубликовано
27.06.2016
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[36]

Изобретение относится к радиоэлектронной технике и касается создания ферритовых материалов с большими величинами ширины линии спиновых волн, предназначенных для использования в СВЧ-диапазоне, в том числе при изготовлении ферритов для приборов высокого уровня мощности сантиметрового диапазона длин волн. Получение ферритового материала с большой величиной ширины линии спиновых волн с намагниченностью насыщения 1800 Гс, шириной кривой ферромагнитного резонанса 40 Э, действительной составляющей диэлектрической проницаемости 15,0, тангенсом угла диэлектрических потерь не более 2-10-4, температурой Кюри не менее 200°C и шириной линии спиновых волн на частоте 9,5 ГГц не менее 10 эрстед, является техническим результатом изобретения. Ферритовый материал содержит, вес. %: оксид иттрия (Y2О3) - 45,0-45,5, оксид самария (Sm2O3) - 1,2-1,3, оксид железа (Fe2О3) - остальное. Предлагаемый состав позволяет создать ферритовый материал с вышеуказанными параметрами для производства и разработки СВЧ-приборов высокого уровня мощности. 2 табл., 6 пр.

Формула изобретения

Ферритовый материал с большой величиной линии спиновых волн, содержащий в качестве базового состава оксиды иттрия, железа, отличающийся тем, что он дополнительно содержит оксид самария при следующем соотношении компонентов, вес. %:

оксид иттрия (Y2O3) 45,0÷45,5
оксид самария (Sm2O3)1,2÷1,3
оксид железа (Fe2O3) остальное

Описание

[1]

Изобретение относится к электронной технике и касается создания ферритовых материалов с высокими значениями ширины спиновых волн, предназначенных для использования в СВЧ-диапазоне, в том числе в приборах высокого уровня мощности.

[2]

Данный материал должен обладать следующими характеристиками:

[3]

- заданной величиной намагниченности насыщения - 4πµs;

[4]

- заданной величиной диэлектрической проницаемости - έr;

[5]

- низким значением тангенса угла диэлектрических потерь - tgδε;

[6]

- высокой температурой Кюри - θ;

[7]

- малой шириной кривой ферромагнитного резонанса - ΔН.

[8]

При создании такого ферритового материала должна быть решена задача обеспечения указанных характеристик при одновременном получении величины ширины линии спиновых волн (ΔНк) не менее 10 Э.

[9]

Известен ферритовый материал (каталог ОАО «НИИ «Феррит-Домен» "Приборы, изделия, материалы" 2010 г.), содержащий в составе оксиды железа и иттрия следующего состава, вес.%:

[10]

оксид иттрия (Y2O3)45,4÷45,9
оксид железа (Fe2О3)остальное

[11]

Данный материал имеет следующие основные характеристики:

[12]

- намагниченность насыщения (4πµs), Гс - 1780±05%;

[13]

- ширина кривой ферромагнитного резонанса (ΔН9), Э - ≤35;

[14]

- диэлектрическая проницаемость - 15,1±5%.

[15]

Однако ширина линии спиновых волн (ΔHк) этого материала не превышает 1,5 Э, что является недостаточным для увеличения пороговых значений СВЧ-полей (hкр) в приборах, где используется данный материал. Данный материал взят нами за прототип.

[16]

В качестве способа, повышающего ширину линии спиновых волн данного ферритового материала, применяется горячее прессование (каталог ОАО «НИИ «Феррит-Домен». "Приборы, изделия, материалы", 2010 г.). Ширина линии спиновых волн материала, полученного этим способом, не превышает 6 Э. Однако технология горячего прессования является низкопроизводительной и дорогостоящей, требует специального оборудования и оснастки. Это приводит к удорожанию ферритового материала и невозможности производить его в достаточных объемах.

[17]

Известны ферритовые материалы зарубежных фирм, близкие по свойствам к заявленному, их параметры приведены в таблице 1.

[18]

[19]

Материал GG-1600GH иттрий-гадолиниевый (Y-Gd-Ho) системы имеет недостаточно высокую намагниченность насыщения и, при хороших диэлектрических свойствах, большую ширину кривой ферромагнитного резонанса. Ширина линии спиновых волн мала.

[20]

Материал G-113+Ho or Со (Y-Co-Ho) - наиболее близок по намагниченности насыщения к заявленному, но значение величин ширины кривой ферромагнитного резонанса и ширины линии спиновых волн не указаны, так как они зависят от степени допирования гольмием или кобальтом и сильно взаимосвязаны. При допировании феррогранатов гольмием или кобальтом с увеличением ширины линии спиновых волн резко возрастает ширина кривой ферромагнитного резонанса, что и видно на примере материала Y918 (Y-Gd-Co-Dy). Сведения о составах в соотношении компонентов отсутствуют.

[21]

Целью изобретения является получение ферритового материала с шириной линии спиновых волн не менее 10 Э на частоте 9,5 ГГц, с намагниченностью насыщения 1800 Гс ±5%, шириной кривой ферромагнитного резонанса не более 40 Э, действительной составляющей диэлектрической проницаемости - 15,0±5%, тангенсом угла диэлектрических потерь не более 2·10-4 и температурой Кюри не менее 200°C.

[22]

Для этого предлагается ферритовый материал, который содержит в качестве исходных компонентов оксиды железа и иттрия, отличающийся тем, что он дополнительно содержит оксид самария при следующем соотношении компонентов, вес. %:

[23]

оксид иттрия (Y2O3)45,0÷45,5
оксид самария (Sm2O3)1,2±1,3
оксид железа (Fe2O3)остальное

[24]

Предлагаемый ферритовый материал получают по следующей технологии.

[25]

Исходные компоненты, взятые в необходимых соотношениях, перемешивают в шаровой мельнице в дистиллированной воде в течение 20-24 часов. Высушенную смесь протирают через сито и ферритизуют при температуре 1100-1200°C в течение 7-8 часов. Измельчение ферритизованной смеси проводят в мельнице типа аттритор в дистиллированной воде. Время измельчения 2-3 часа. Затем добавляют в измельченную смесь (шихту) в качестве пластификатора, водный раствор поливинилового спирта и получают пресс-порошок, который прессуют в стальных пресс-формах заданного размера на гидравлических прессах при удельном давлении 1,5-2 т/см2. Отпрессованные заготовки после 24 часов сушки на воздухе или в сушильных шкафах обжигают в камерных электропечах в атмосфере кислорода при температуре 1450-1500°C и выдержке 10-12 часов. В результате процесса обжига осуществляется синтез ферритового материала.

[26]

Примеры получения ферритового материала, состав и свойства приведены в таблице 2.

[27]

В примерах 1, 2 даны химические составы в пределах заявленных процентных соотношений и соответствующие им параметры ферритового материала, полученные в результате испытаний по стандартным методикам.

[28]

Пример №3 - увеличение содержания Y2O3 по сравнению с заявленным приводит к образованию второй фазы - перовскита и, как следствие, к увеличению ширины кривой ферромагнитного резонанса и тангенса угла диэлектрических потерь.

[29]

Пример №4 - уменьшение содержания Y2O3 по сравнению с заявленным приводит к образованию второй фазы - α-Fe2О3 и, как следствие, к увеличению ширины кривой ферромагнитного резонанса и тангенса угла диэлектрических потерь.

[30]

Пример №5 - увеличение содержания Sm2O3 по сравнению с заявленным приводит к резкому росту ширины кривой ферромагнитного резонанса.

[31]

Пример №6 - уменьшение содержания Sm2O3 по сравнению с заявленным приводит к уменьшению ширины линии спиновых волн.

[32]

Предлагаемое изобретение было создано в процессе выполнения технического задания на СЧ НИОКР «Разработка технологии создания ферритовых материалов на основе редкоземельных металлов для мощных СВЧ-приборов», шифр «Электровакуум-Феррит».

[33]

Создание такого материала позволит изготавливать СВЧ-ферриты для приборов высокого уровня мощности трехсантиметрового диапазона длин волн без применения низкопроизводительной и дорогостоящей технологии горячего прессования.

[34]

Получены опытные образцы и готовится комплект технической и технологической документации.

[35]

Как компенсировать расходы
на инновационную разработку
Похожие патенты