патент
№ RU 2676626
МПК C23F1/30

Способ выявления дислокаций различного типа в структурах теллурида кадмия-ртути с кристаллографической ориентацией (310)

Авторы:
Пермикина Елена Вячеславовна
Номер заявки
2018106207
Дата подачи заявки
19.02.2018
Опубликовано
09.01.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к материаловедению полупроводников и предназначено для контроля качества выращиваемых гетероэпитаксиальных слоев теллурида кадмия-ртути CdHgTe кристаллографической ориентации (310) при отработке процесса молекулярно-пучковой эпитаксии (МПЭ) для выявления различных типов дислокаций в слоях структур CdHgTe. Способ выявления дислокаций различного типа в структурах теллурида кадмия-ртути с кристаллографической ориентацией (310) включает травление в селективном травителе №1, травление в полирующем травителе №2 и дополнительное травление в селективном травителе №1. Селективный травитель №1 содержит 24 объемные доли 25% водного раствора оксида хрома (VI) (CrO), 1 объемную долю соляной кислоты (HCl) и 8 объемных долей 5% раствора лимонной кислоты. Полирующий травитель №2 содержит 13 объемных долей этиленгликоля (СН(ОН)), 5 объемных долей метанола (СНОН (95%)), 2 объемные доли бромистоводородной кислоты (НВr(47%)) и 1 объемную долю перекиси водорода (НО(30%)). Обеспечивается образование четко различимых по форме фигур травления, которые хорошо идентифицируются с дислокациями определенных типов. 2 ил.

Формула изобретения

Способ выявления дислокаций различного типа в структурах теллурида кадмия-ртути с кристаллографической ориентацией (310), включающий травление структуры КРТ в селективном травителе №1, травление в полирующем травителе №2, отличающийся тем, что дополнительно после травления в травителе №2 проводят травление в селективном травителе №1, селективный травитель №1 содержит 24 объемные доли 25% водного раствора оксида хрома(VI) (CrO3), 1 объемная доля соляной кислоты (HCl), 8 объемных долей 5% раствора лимонной кислоты; полирующий травитель №2 содержит 13 объемных долей этиленгликоля (С2Н4(OH)2), 5 объемных долей метанола (CH3OH (95%)), 2 объемные доли бромистоводородной кислоты (HBr (47%)), 1 объемная доля перекиси водорода (Н2О2 (30%)).

Описание

[1]

Изобретение относится к материаловедению полупроводников и предназначено для контроля качества выращиваемых гетероэпитаксиальных слоев теллурида кадмия-ртути (CdHgTe) кристаллографической ориентации (310) при отработке процесса молекулярно-пучковой эпитаксии (МПЭ), в частности, для выявления различных типов дислокаций в слоях структур CdHgTe путем поочередного травления поверхности селективным и полирующим травителями.

[2]

От плотности и вида дислокаций в полупроводниковом материале зависит качество р-n перехода фотоприемных устройств. Для минимизации токов утечек, которые зависят от количества ловушек носителей заряда, необходимо чтобы плотность дислокаций в области р-n перехода не превышала порядка 106 шт/см2. Одним из основных способов контроля плотности дислокаций является селективное травление, в результате которого на поверхности структур КРТ образуются фигуры травления (треугольники - для структур ориентации (310)).

[3]

При отработке процессов МПЭ определяют типы протяженных дефектов (дислокаций, дислокационных петель) и особенности их перемещения в процессе роста слоев теллурида кадмия-ртути.

[4]

Целью данного изобретения является выявление различных типов дислокаций и дислокационных петель при отработке процесса МПЭ, которое позволяет получить на поверхности полупроводника хорошо идентифицируемые фигуры травления (ямки травления): равносторонние треугольники, треугольники неправильной формы, крупные образования из дислокаций (дислокационные петли) (фиг. 1).

[5]

Вдоль дислокационных линий происходит сегрегация примесей, находящихся в растущих слоях полупроводникового материала. Процесс селективного травления позволяет выявлять выходы дислокаций на поверхность материала за счет различных скоростей травления атомов примесей и собственных атомов полупроводникового материала. При этом процесс окисления и переноса атомов примесей протекает в кинетическом режиме химического травления, в то время как травление полупроводникового материала осуществляется в диффузионном режиме. Это позволяет избежать «подтравов» фигур травления и получить четко идентифицируемые фигуры травления.

[6]

Процесс полирующего травления представляет собой растворение полупроводникового материала и протекает в диффузионном режиме, поэтому процесс полирования поверхности проходит с минимальной скоростью. Искривление растворяющейся поверхности при дуффузионном режиме не будет оказывать существенного влияния на скорость переноса вещества (не более vmax≈0,7 мкм/мин.), и шероховатость поверхности будет минимальна (не более 5 нм). Таким образом, полирующее травление помогает сгладить рельеф поверхности, полученный после селективного травления.

[7]

Наиболее близким к изобретению является способ [J.R. Yang, X.L. Сао, Y.F. Wei, and L. Не «Traces of HgCdTe Defects as Revealed by Etch Pits» Journal of ELECTRONIC MATERIALS, Vol. 37, No. 9, 2008], где авторы применяли для структур Cd1-XHgXTe (при х=0,30÷0,33), выращенных жидкофазной эпитаксией (111В) и МПЭ (211), травители Schaake и Chen.

[8]

В нашем случае применяются травители следующих составов: для селективного травления теллурида кадмия-ртути (травитель №1) на основе системы: 25% водный раствор оксида хрома (VI) (CrO3) - 24; концентрированная соляная кислота (HCl) - 1; 5% раствор лимонной кислоты - 8 [RU 2619423] и полирующего травления (травитель №2) в объемных соотношениях С2Н4(ОН)2 - 13, СН3ОН (95%) - 5, HBr (47%) - 2, H2O2 (30%) [RU 2542894].

[9]

Достоинством применения этих травителей является отсутствие в работе паров брома, которые затрудняют контроль процессов приготовления раствора и работу с ним в процессе травления.

[10]

Задача изобретения - разработка способа выявления дислокаций различного типа в структурах теллурида кадмия-ртути с кристаллографической ориентацией (310) при использовании селективного и последующего полирующего травления структур теллурида кадмия-ртути (КРТ) с образованием четко различимых по форме фигур травления, которые хорошо идентифицируются с дислокациями определенных типов.

[11]

Задача решается за счет того, что первоначально структуру КРТ протравливают в селективном травителе, который представляет систему: 25% водный раствор оксида хрома (VI) (CrO3) - 24 об. доли; концентрированная соляная кислота (HCl) - 1 об. доля; 5% раствор лимонной кислоты - 8 об. долей (травитель №1) в течение 30±5 сек. В этом травителе раствор лимонной кислоты выполняет функцию комплексообразователя, который способствует растворению продуктов реакции окисления путем образования хорошо растворимых комплексных соединений.

[12]

После селективного травления структуру КРТ промывают деионизованной водой три минуты методом вытеснения, затем обрабатывают раствором для полирующего травления в течение 40±2 секунд.

[13]

Полирующий травитель (травитель №2) представляет систему из этиленгликоля С2Н4(OH)2 - 13 об. долей, метанола СН3ОН (95%) - 5 об. долей, бромистоводородной кислоты HBr (47%) - 2 об. доли и перекиси водорода Н2О2 (30%) - 1 об. доля. В этом травителе метанол, выполняя функции комплексообразователя, способствует растворению продуктов реакции окисления путем образования хорошо растворимых комплексных соединений и является ингибитором реакций бромирования этиленгликоля. Затем реакцию останавливают путем добавления «стоп-раствора» (насыщенный водный раствор нитрита натрия (NaNO2)), и структуру КРТ промывают в деионизованной воде методом вытеснения в течение 10-12 минут (время увеличено из-за сложности вымывания продуктов реакции с бромом).

[14]

Затем структуру КРТ обрабатывают в селективном травителе №1 в течение 30±5 секунд и промывают в деионизованной воде методом вытеснения 3-5 минут. Осушают методом центрифугирования.

[15]

После каждого травления поверхность структуры КРТ контролируют оптическими методами.

[16]

После поочередного травления в травителях №1, №2, №1 поверхность структуры КРТ наблюдают методом электронно-ионной микроскопии (АСМ) (фиг. 1).

[17]

Затем структура КРТ обрабатывается в селективном травителе №1 в течение 30±5 секунд и промывается в деионнизованной воде методом вытеснения 3-5 минут. Осушается методом центрифугирования.

[18]

После поочередного травления в травителях №1, №2 поверхность структуры КРТ наблюдалась методом атомно-силовой микроскопии (АСМ) (фиг. 1).

[19]

На фиг. 1, а различаются фигуры травления двух типов, которые соответствуют краевым и винтовым дислокациям. В качестве примера краевая дислокация очерчена квадратом, а винтовая - окружностью. В центральной области фиг. 1, а, б наблюдается дислокационная петля, представляющая собой объединение дислокаций. Изображение фиг. 1, б увеличено относительно фиг. 1, а для наглядного представления объединения винтовых дислокаций. Наблюдения показали, что такие фигуры травления, как равносторонние треугольники в процессе поочередного травления не изменяют своего места расположения по поверхности структуры - это краевые дислокации, в то же время как треугольники неправильной формы перемещаются относительно своего первоначального положения - это винтовые дислокации.

[20]

Для осуществления решения задачи необходима поочередная обработка: в селективном, полирующем, селективном травителях. Состав селективного травления отвечает следующим требованиям:

[21]

- процесс растворения атомов примесей, сегрегирующих в местах выходов дислокаций на поверхность полупроводникового материала, протекает в кинетическом режиме, поэтому процесс селективного травления поверхности в местах выхода дислокаций проходит с максимальной скоростью;

[22]

- процесс растворения полупроводникового материала осуществляется в диффузионном режиме, что позволяет избежать «подтравов» фигур травления и получить четко идентифицируемые треугольные ямки травления.

[23]

Недостатком однократного селективного травления является то, что при обработке в нем теллурида кадмия-ртути с ориентацией поверхности (310) не удается наблюдать перемещение винтовых дислокаций, и таким образом отличить их от краевых. Поэтому селективное травление необходимо повторять еще один раз после полирующего травления.

[24]

Состав для осуществления полирующего травления отвечает следующим требованиям:

[25]

- процесс растворения полупроводника протекает в диффузионном режиме, поэтому процесс полирования поверхности проходит с минимальной скоростью;

[26]

- за счет того, что радиус кривизны неровностей при дуффузионном режиме намного меньше толщины диффузионного слоя, искривление растворяющейся поверхности не будет оказывать существенного влияния на скорость переноса вещества внутри диффузионного слоя, и шероховатость поверхности будет минимальна.

[27]

Каждый из перечисленных признаков необходим, а вместе они достаточны для решения задачи изобретения.

[28]

Для выявления различных типов дислокаций на пластине КРТ, для травления структуры, используют два раствора. Раствор №1 - селективный, который имеет содержание следующих компонентов:

[29]

25% водный раствор оксида хрома (VI) (CrO3) - 24 об. доли,

[30]

концентрированная соляная кислота (HCl) - 1 об. доля,

[31]

5% раствор лимонной кислоты - 8 об. долей.

[32]

Раствор №2 - полирующий, который имеет содержание следующих компонентов:

[33]

этиленгликоль (С2Н4(ОН)2) - 13 об. долей,

[34]

метанол (СН3ОН (95%)) - 5 об. долей,

[35]

бромистоводородная кислота (HBr (47%)) - 2 об. доли,

[36]

перекись водорода (Н2О2 (30%)) - 1 об. доля.

[37]

В качестве примера осуществления изобретения приведем испытанный способ выявления различных типов дислокаций на структуре КРТ используя для селективного травления в составе следующих компонентов: 25%-го водного раствора оксида хрома (VI) (CrO3) - 24 об. доли; концентрированной соляной кислоты (HCl) 1 об. доля; 5%-го раствора органической кислоты - 8 об. долей и полирующего травления: этиленгликоль (С2Н4(OH)2) - 13 об. долей, метанол (СН3ОН (95%)) - 5 об. долей, бромистоводородная кислота (HBr (47%))) - 2 об. доли, перекись водорода (H2O2 (30%)) - 1 об. доля.

[38]

В качестве образцов использовались гетероэпитаксиальные структуры теллурида кадмия-ртути кристаллографической ориентации (310). Наличие эффекта травления устанавливалось наблюдением поверхности образцов на атомно-силовом микроскопе «Integra Maximus» (фиг. 2).

[39]

Фиг. 2 показывает, что после травления эпитаксиальной структуры теллурида кадмия-ртути ориентации (310) в системе 25% раствор CrO3 (VI) -концентрированная HCl - 5% раствор лимонной кислоты на поверхности появляются более четко идентифицируемые треугольные ямки травления, чем после травления в травителе [H.F. Schaake, A.J. Lewis Mater. Res. Soc. Symp. Proc (USA) vol. 14 (1983) p. 301].

[40]

Таким образом, предлагаемый способ позволяет осуществить качественный контроль гетероэпитаксиальных структур при отработке процесса молекулярно-пучковой эпитаксии при выращивании гетероэпитаксиальных слоев теллурида кадмия-ртути (CdHgTe), в частности, для выявления различных типов дислокаций на структурах КРТ кристаллографической ориентации (310) при помощи химических травлений поверхности пластин селективным и полирующим травителями.

Как компенсировать расходы
на инновационную разработку
Похожие патенты