патент
№ RU 2575513
МПК C22C38/44

ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

Авторы:
Вознесенская Наталья Михайловна Шалькевич Андрей Борисович Елисеев Эдуард Анатольевич
Все (7)
Номер заявки
2014133356/02
Дата подачи заявки
14.08.2014
Опубликовано
20.02.2016
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[39]

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали, используемой для изготовления изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра, используемой в авиационной промышленности и машиностроении. Сталь содержит углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, празеодим, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,21, хром 15,0-16,5, никель 6,0-7,2, молибден 2,7-3,2, азот 0,04-0,09, марганец не более 1,0, кремний не более 0,6, иттрий не более 0,002, лантан не более 0,002, церий не более 0,002, празеодим не более 0,002, железо и неизбежные примеси - остальное. Повышается кратковременная прочность до значений не менее 2550 МПа и относительное удлинение до значений не менее 35%. 2 з.п. ф-лы, 2 табл., 1 пр.

Формула изобретения

1. Высокопрочная коррозионно-стойкая сталь, содержащая углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит празеодим при следующем соотношении компонентов, мас.%:

Углерод0,21
Хром15,0-16,5
Никель6,0-7,2
Молибден2,7-3,2
Азот0,04-0,09
Марганецне более 1,0
Кремнийне более 0,6
Иттрийне более 0,002
Лантанне более 0,002
Церийне более 0,002
Празеодимне более 0,002
Железо и неизбежные примесиостальное

2. Высокопрочная коррозионно-стойкая сталь по п. 1, отличающаяся тем, что общее количество иттрия, лантана, церия и празеодима не превышает 0,005 мас.%.

3. Высокопрочная коррозионно-стойкая сталь по п. 1 или 2, отличающаяся тем, что соотношение компонентов, определяющих фазовый состав стали, характеризуется следующими выражениями:


где Км - эквивалент мартенситообразования;
Кф - эквивалент ферритообразования.

Описание

[1]

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали для изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра (не более 0,36 мм), для торсионов несущего винта вертолета, и может быть использовано в авиационной промышленности и машиностроении.

[2]

Известна высокопрочная сталь следующего химического состава, масс. %:

[3]

Углерод0,064-0,069
Кремний0,60-0,65
Марганец0,19-1,30
Фосфор0,018-0,021
Сера0,010-0,014
Хром17,1-17,2
Никель8,9-9,0
Молибден0,13-0,16
Азот0,034
Алюминий0,82-1,06
Титан0,09-0,10
Железоостальное

[4]

(Европейский патент №ЕР 0031800 В1, опубл. 14.12.1983 г.).

[5]

Данная сталь принадлежит к аустенитному классу сталей, которые обладают хорошими пластическими свойствами.

[6]

Для увеличения прочностных характеристик стали используют ее обработку давлением. Проволока диаметром 1,83 мм из данной стали после термической обработки и обработки давлением обладает прочностью σв=2525 МПа, что является недостаточным. Дальнейшая обработка давлением приводит к разрушению проволоки.

[7]

Известна высокопрочная коррозионно-стойкая сталь следующего химического состава, масс. %:

[8]

Углерод0,04-0,07
Кремнийне более 0,6
Хром15,5-16,5
Никель4,8-5,8
Азот0,11-0,18
Ниобий0,03-0,08
Ванадий0,03-0,08
Марганец0,5-1,0
Кальций0,02-0,03
Железо и неизбежные примесиостальное,

[9]

при выполнении условий

[10]

и

[11]

[Cr]-1,5[Ni]+2[Si]-0,75[Mn]-30[C+N]+1,5[V]+0,9[Nb]=1÷4 (Патент РФ №2318068, опубл. 27.02.2008 г.).

[12]

Недостатком указанной стали является низкая кратковременная прочность изделий из нее после холодной деформации, σв=1813-1880 МПа.

[13]

Наиболее близким аналогом, принятым за прототип, является высокопрочная коррозионно-стойкая сталь аустенитно-мартенситного класса, полученная в открытой печи с последующим электрошлаковым переплавом, следующего химического состава, масс. %:

[14]

Углерод0,18-0,21
Хром13-14
Никель4-4,5
Молибден2,3-2,8
Кремний1,7-2,5
Кобальт3,5-4,5
Азот0,06-0,09
Марганец0,1-1,0
Иттрий0,001-0,05
Церий0,001-0,05
Лантан0,001-0,05
Железоостальное,

[15]

при этом сумма Y+Се+La примерно равна 0,1% (патент РФ №2164546, опубл. 27.03.2001 г.). Недостатком указанной стали являются ее недостаточная прочность, менее 2500 МПа и недостаточная пластичность, ввиду чего при волочении проволоки из данной стали ее обрыв происходит уже при достижении диаметра 1,6 мм.

[16]

Техническим результатом настоящего изобретения является повышение кратковременной прочности (временного сопротивления разрыву) σв изделий, в том числе проволоки, изготовленных из предлагаемой высокопрочной коррозионно-стойкой стали, до значений не менее 2550 МПа и технологической пластичности полуфабриката проволоки, характеризующейся относительным удлинением δ, до значений не менее 35%, что позволяет при последующем процессе волочения получить проволоку диаметром не более 0,36 мм.

[17]

Для достижения заявленного технического результата предложена высокопрочная коррозионно-стойкая сталь, содержащая углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, железо и

[18]

неизбежные примеси, которая дополнительно содержит празеодим, при следующем соотношении компонентов, масс. %:

[19]

Углерод0,21
Хром15,0-16,5
Никель6,0-7,2
Молибден2,7-3,2
Азот0,04-0,09
Марганецне более 1,0
Кремнийне более 0,6
Иттрийне более 0,002
Лантанне более 0,002
Церийне более 0,002
Празеодимне более 0,002
Железо и неизбежные примесиостальное.

[20]

Общее количество иттрия, лантана, церия и празеодима в составе стали может не превышать 0,005 масс. %. Соотношение компонентов, определяющих фазовый состав стали, может быть охарактеризовано следующими формулами:

[21]

[22]

[23]

где Км - эквивалент мартенситообразования;

[24]

Кф - эквивалент ферритообразования.

[25]

Празеодим, обладающий высокой термодинамической активностью, является сильным раскислителем и способствует повышению пластичности стали. Заявленное содержание церия и лантана оптимально для связывания серы, являющейся неизбежной примесью, в тугоплавкие сульфиды, исключая образование строчечных выделений серы, снижающих пластичность стали. Редкоземельные элементы в предлагаемых соотношениях также обеспечивают мелкозеренную структуру стали и чистоту межзеренных границ, что, в свою очередь, приводит к повышению механических свойств стали до заявленных значений.

[26]

Подобранное соотношение легирующих элементов (Км и Кф) позволяет получить минимальное количество δ-феррита, менее 1,5 об.%, и соотношение мартенсита и аустенита, близкое к заданному. Оптимальное процентное содержание углерода и азота, а также хрома, обеспечивающего коррозионную стойкость стали, и никеля, повышающего пластичность, в заявленной концентрации также повышают механические свойства высокопрочной коррозионно-стойкой стали.

[27]

Для достижения вышеуказанного технического результата важным является также способ выплавки стали.

[28]

Известен способ получения стали, включающий расплавление металла, введение редкоземельных элементов, термообработку, закалку стали (патент США №7662247, опубл. 16.02.2010 г.). Недостатком данного способа является то обстоятельство, что он не предусматривает стадии получения требуемого фазового состава стали (соотношение содержания аустенита и мартенсита), что в свою очередь не обеспечивает возможности холодной деформации (волочения) проволоки до диаметра 0,36 мм.

[29]

Известен способ производства (выплавки) стали, включающий завалку шихты с добавлением углеродсодержащих материалов в количестве, превышающем расчетное содержание углерода в 1,1-1,5 раза, последующее введение кислорода с различной интенсивностью подачи, плавление и рафинирование металла (авторское свидетельство СССР №937520, опубл. 23.06.1982 г. ). Указанный способ принят за прототип предлагаемого способа выплавки стали. Способ выплавки стали по прототипу позволяет получить содержание азота в стали, составляющее 0,009-0,010 масс. %, тогда как предлагаемая группа изобретений обеспечивает содержание азота в готовой стали 0,04-0,09 масс. %. Недостаточное количество азота в способе по прототипу приводит к понижению прочности стали. Кроме того, отсутствие в способе по прототипу стадии получения требуемого фазового состава стали не позволяет при последующей холодной деформации получить проволоку требуемого диаметра.

[30]

Для достижения вышеуказанного технического результата разработан способ выплавки предлагаемой стали, включающий завалку шихты, плавление, рафинирование и электрошлаковый переплав. В процессе рафинирования расплава осуществляют доводку его фазового состава до следующего соотношения: 6-10% мартенсита, 90-94% аустенита. В способе доводку фазового состава могут осуществлять с помощью легирования расплава металлическим никелем и азотированным марганцем или электротехническим железом. Добавление металлического никеля и азотированного марганца позволяет получить большее количество аустенита в стали, в то время как добавление электротехнического железа позволяет снизить количество аустенита.

[31]

Авторами установлено, что вышеуказанные параметры обеспечивают при последующем волочении достижение заявленных механических свойств изделия из предлагаемой стали. Кроме того, оптимальное количество аустенита как пластичной фазы и мартенсита как упрочняющей фазы обеспечивает высокую технологическую пластичность изделий наряду с высокой прочностью, что в свою очередь обеспечивает возможность применения повышенных степеней деформации при волочении проволоки. Дополнительное легирование расплава стали металлическим никелем и азотированным марганцем или электротехническим железом упрощает процесс получения требуемого фазового состава стали.

[32]

Таким образом, предлагаемые высокопрочная коррозионно-стойкая сталь и способ ее выплавки позволяют повысить кратковременную прочность и технологическую пластичность изделий из данной стали, что, в свою очередь, приводит к уменьшению стоимости изготовления таких изделий вследствие уменьшения количества промежуточных термических обработок, экономии металла из-за уменьшения количества обрывов проволоки на последних стадиях волочения.

[33]

Пример осуществления изобретения

[34]

Выплавку предлагаемой высокопрочной коррозионно-стойкой стали различных составов осуществляли в индукционной печи, всего с использованием разработанного способа было произведено три плавки предлагаемой стали и плавка стали по патенту РФ №2164546. Составы выплавленной стали с различным соотношением компонентов приведены в таблице 1.

[35]

Соотношение фазового состава стали фиксировали по намагниченности насыщения литой магнитной пробы на приборе МКЛ-3М. После этого осуществляли доводку фазового состава до оптимальных значений при помощи дополнительного легирования расплава металлическим никелем и азотированным марганцем. Для первой плавки фазовый состав составил 93% аустенита и 7% мартенсита, для второй плавки - 94% аустенита и 6% мартенсита, для третьей - 90% аустенита и 10% мартенсита. Электрошлаковый переплав нечищеных электродов производили в кристаллизатор. Вес слитков составлял 730-750 кг.

[36]

[37]

Из полученной стали была изготовлена проволока-полуфабрикат диаметром 6 мм, а затем путем холодной деформации (волочения) была изготовлена готовая проволока диаметром 0,36 мм. Механические характеристики проволоки определяли в соответствии с ГОСТ 10446. Результаты измерений приведены в таблице 2.

[38]

Как компенсировать расходы
на инновационную разработку
Похожие патенты