патент
№ RU 2534714
МПК C23C4/04

СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ

Авторы:
Тишина Галина Николаевна Пильщик Марина Анатольевна Полежаева Екатерина Михайловна
Все (6)
Номер заявки
2013111477/02
Дата подачи заявки
15.03.2013
Опубликовано
10.12.2014
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к порошковой металлургии. Способ получения эрозионностойких теплозащитных покрытий включает плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% порошка никеля, плакированного алюминием, дисперсностью 63÷125 мкм. Керметную композицию подают в плазменную струю под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности. Используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия. Обеспечивается повышение в 1,5-2 раза адгезионной стойкости покрытия. 1 табл., 1 пр.

Формула изобретения

Способ получения эрозионностойких теплозащитных покрытий, включающий плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, отличающийся тем, что в качестве никельсодержащего материала в керметной композиции используют порошок никеля, плакированный алюминием, с содержанием алюминия 10÷15 мас.%, дисперсностью 63÷125 мкм, при этом используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия.

Описание

[1]

Изобретение относится к области порошковой металлургии и может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок, том числе камер сгорания (КС) жидкостных ракетных двигателей (ЖРД), от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива путем нанесения методом плазменного напыления эрозионностойких теплозащитных покрытий (ЭТЗП).

[2]

Одной из актуальных задач, связанных с повышением работоспособности плазменных теплозащитных покрытий, является задача увеличения их адгезионной прочности и термостойкости, что обеспечивает работоспособность теплонапряженных узлов в условиях многоразового воздействия высокотемпературных газовых потоков продуктов сгорания топлива.

[3]

Известен способ получения ЭТЗП с повышенными значениями отрывной прочности и термостойкости (см. «Порошковая металлургия и напыленные покрытия». Под редакцией Б.О. Митина, М.: Металлургия, 1987 г., стр.560), в котором повышение технических характеристик плазменных покрытий достигается за счет добавок в покрытие пластичного материала, например нихрома, и использование между основой и покрытием переходных слоев, имеющих переменное, уменьшающееся от подложки к основному покрытию содержание пластичной добавки. Такими слоями, например, могут быть:

[4]

- 1-й слой 95-65% вес. NiCr ÷ 5÷35% вес. ZrO2;

[5]

- 2-й слой 65-35% вес. NiCr ÷ 35÷65% вес. ZrO2;

[6]

- 3-й слой 5-35% вес. NiCr ÷ 95÷65% вес. ZrO2.

[7]

Таким образом, в данном способе реализуется решение по созданию зоны фазового перехода от подложки к покрытию.

[8]

Описанный способ позволяет повысить адгезионную прочность ЭТЗП до величины σA≈7,0÷8,0 МПа и получить термостойкость n≈8÷10 циклов. Недостатком способа является то, что приведенные характеристики не обеспечивают работоспособность в условиях воздействия высокотемпературных газовых потоков КС ЖРД перспективных образцов ракетной техники. Недостатком способа также являются значительные трудности в обеспечении стабильности и воспроизводимости нанесения многослойных покрытий на сложные внутренние поверхности КС ракетных двигателей. Кроме того, нанесение покрытий за несколько проходов нетехнологично и ухудшает когезионные характеристики пакета теплозащитного покрытия в целом.

[9]

Известен также способ получения ЭТЗП (см. патент РФ на изобретение №2283363), принятый за прототип, в котором повышение характеристик плазменных покрытий достигается за счет напыления подслоя нихрома и керметной композиции, содержащей 50÷80 масс.% диоксида циркония и 50÷20 масс.% нихрома, при этом керметную композицию готовят из порошков диоксида циркония и нихрома с размером частиц 10÷40 мкм и 40÷100 мкм соответственно, а ее подачу в плазменную струю осуществляют под срез сопла плазматрона в направлении его перемещения относительно напыляемой поверхности, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид кальция, содержание которого составляет величину 4÷6% масс.

[10]

Данный способ позволяет за один проход формировать зону фазового перехода от металлического подслоя к исходному составу ЭТЗП и, как следствие, повысить адгезионную прочность теплозащитных покрытий и их термостойкость до средних значений σA≈12,0÷17,0 МПа и n≈0÷30 циклов.

[11]

Приведенные характеристики ЭТЗП достигаются при подводимой к плазмотрону мощности N≈32÷34 кВт, дистанции напыления L≈(100±10) мм и угле напыления θ≈(90±5)°.

[12]

Недостатком способа является то, что в случае нанесения ЭТЗП на КС перспективных ЖРД, имеющих малый диаметр критического сечения, необходимо снижать подводимую к плазменному распылителю мощность, увеличивать дистанцию напыления при малых углах оси плазменной струи к напыляемой поверхности, что приводит к снижению степени проплавления порошковых частиц композиционных смесей, уменьшению их кинетической энергии и, как следствие, к снижению уровня свойств ЭТЗП в целом.

[13]

Техническим результатом настоящего изобретения является повышение характеристик плазменных ЭТЗП, формируемых из механических керметных смесей методом плазменного напыления при пониженных значениях энтальпии плазменной струи, при увеличенной дистанции напыления под малыми углами.

[14]

Указанный технический результат достигается тем, что в способе, включающем плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 масс.% диоксида циркония и 50÷20 масс.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, согласно изобретению в качестве никельсодержащей металлической составляющей керметной композиции используют порошок никеля, плакированный алюминием с содержанием алюминия 10÷15 масс.% дисперсностью 63÷125 мкм, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид иттрия, содержание которого составляет величину 8÷12 масс.%.

[15]

Разработанный способ получения покрытий обеспечивает повышение характеристик ЭТЗП за счет дополнительного выделения тепла в пятне напыления в ходе экзотермической реакции образования алюминидов NiAl, Ni3Al:

[16]

[17]

[18]

Полнота протекания реакций (1) и (2) зависит от температуры и времени нахождения напыляемых частиц в реакционном состоянии. Максимальный тепловой эффект реакций достигается в диапазоне температур от 600 до 800°C и зависит от способа изготовления композиционного порошка.

[19]

Энтальпия напыляемых частиц при завершении реакции может достигать 150÷300 кДж/моль, что позволяет значительно повысить адгезионные и когезионные характеристики ЭТЗП.

[20]

Сущность заявленного способа поясняется таблицей, в которой приведены характеристики ЭТЗП.

[21]

Сущность заявленного способа будет ясна из приведенного ниже примера.

[22]

Пример

[23]

На образцы из медного сплава БрХ08 наносили методом плазменного напыления покрытия, состоящие из нихромового подслоя и кермета. Кермет готовили двух составов: 80 масс.% ZrO2+20 масс.% (Ni-Al) и 50 масс.% ZrO2+50 масс.% (Ni-Al).

[24]

Использовали порошок диоксида циркония грануляцией 10-40 мкм, стабилизированный 8÷12 масс.% оксида иттрия (Y2O3), и порошок никеля, плакированный алюминием, грануляции 63÷125 мкм. Содержание алюминия в порошке никеля составляло величину 10÷15 масс.%.

[25]

Выбор в качестве стабилизирующей добавки Y2O3 с указанным массовым содержанием обусловлен необходимостью обеспечения полной стабилизации ZrO2 с сохранением кубической модификации вплоть до комнатной температуры.

[26]

Диоксид циркония с содержанием оксида кальция (CaO) 4÷6 масс %, а также ZrO2 с содержанием стабилизирующей добавки Y2O3 менее 8 масс.% является частично стабилизированным (содержится до 10% моноклинной фазы), что отрицательно сказывается на термостойкости ЭТЗП.

[27]

Экспериментально было установлено, что увеличение содержания стабилизирующей добавки Y2O3 более 12 масс.% не приводит к повышению уровня служебных характеристик ЭТЗП, однако стоимость порошка ZrO2 при этом существенно возрастает.

[28]

Также экспериментально было получено, что при содержании алюминия в порошке никеля 20 масс.% и более имеет место снижение термостойкости ЭТЗП, которое обусловлено, по-видимому, увеличением количества хрупких алюминидов в покрытии.

[29]

Гранулометрический размер частиц порошка никеля, плакированного алюминием 63÷125 мкм определен на основании расчетных исследований по изучению нагрева и траектории движения порошковых частиц в плазменной струе с целью получения неравномерного распределения компонентов механической керметной смеси по сечению плазменной струи и, как следствие, формированию зоны фазового перехода.

[30]

Подачу механической керметной смеси в плазменную струю осуществляли под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности.

[31]

Режим напыления: подводимая к плазмотрону мощность N=21,6 кВт (ток дуги Jд=360 А, напряжение на дуге Uд=60 В); дистанция напыления L=150 мм; угол напыления θ=45°.

[32]

Для получения сравнительных данных параллельно проводили нанесение керметных теплозащитных покрытий на образцы из того же медного сплава известным способом.

[33]

Контроль фазового состава покрытий и распределение металлической составляющей по толщине выполняли металлографическим способом.

[34]

Определение адгезионной прочности и термостойкости покрытий осуществляли в соответствии с требованиями методик, изложенных в ОС 92-1406-68 «Покрытия эрозионностойкие неметаллические».

[35]

Полученные физико-механические и теплофизические свойства покрытий сведены в таблицу.

[36]

Как следует из таблицы, использование предложенного способа получения эрозионностойких теплозащитных покрытий по сравнению с известным решением позволяет при указанных выше режимах (подводимая к плазмотрону мощность, дистанция и угол напыления) повысить адгезионную прочность и термостойкость ЭТЗП в 1,5÷2 раза за счет дополнительного выделения тепла в пятне напыления в ходе экзотермической реакции при формировании зоны фазового перехода.

[37]

Содержание ZrO2 в смеси, масс.%Способ нанесения покрытийТолщина покрытия, мкмСтабилизирующая добавка, масс.%Содержание алюминия, масс.%Адгезионная прочность,
кгс/см2
Термостойкость, циклы
80Предложенный120÷1508÷12% Y2O310÷15120÷15017÷20
Известный120÷1504÷6% CaO-70÷808÷12
50Предложенный120÷1508÷12% Y2O310÷15150÷18025÷30
Известный120÷1504÷6% CaO-90÷10015÷18

Как компенсировать расходы
на инновационную разработку
Похожие патенты