патент
№ RU 2557784
МПК G01S5/06

СПОСОБ СТРОБОВОГО ОТОЖДЕСТВЛЕНИЯ СИГНАЛОВ С ИСТОЧНИКАМИ РАДИОИЗЛУЧЕНИЯ В МНОГОЦЕЛЕВОЙ ОБСТАНОВКЕ

Авторы:
Тетеруков Александр Григорьевич Косогор Алексей Александрович Васильев Александр Владимирович
Все (7)
Номер заявки
2014102720/07
Дата подачи заявки
29.01.2014
Опубликовано
27.07.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР). Достигаемый технический результат - повышение достоверности отождествления сигналов в многоцелевой обстановке. Указанный результат достигается за счет того, что СРТР вычисляет оценкикоординат состояния обнаруженных и сопровождаемых ИРИ, на основании которых производится отождествление результатов измерения координат X(k), полученных в k-й момент времени, с соответствующим ИРИ, при этом для каждой координаты состояния каждого обнаруженного и сопровождаемого ИРИ определяется интервал значений, зависящий от дисперсий измерения величин X(k), дисперсий скорости изменения координат состояния, а также от коэффициента пропорциональности K, значение которого выбирается в диапазоне от 1 до 2. Совокупность интервалов по всем координатам состояния каждого ИРИ образует многомерный строб, при попадании в который результат измерения вектора состояния X(k) в k-й момент времени отождествляется, например, с конкретным ИРИ. Если измеренный вектор X(k) не попал в пределы ни одного из стробов j-го ИРИ, где, то принимается решение об обнаружении нового ИРИ с индексом N+1. 2 ил.

Формула изобретения

Способ стробового отождествления сигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке, заключающийся в том, что система радиотехнической разведки вычисляет оценки i-x координат состояния j-х обнаруженных и сопровождаемых ИРИ, на основании которых производится отождествление результатов измерения координат состояния Xин,i(k), полученных в k-й момент времени, с соответствующим ИРИ, отличающийся тем, что для каждой i-й координаты состояния каждого j-го обнаруженного и сопровождаемого ИРИ определяется интервал значений

где ΔXиj,i(k)max - размер строба для j-го ИРИ по i-й измеренной координате состояния;
K - коэффициент пропорциональности, значение которого выбирается в диапазоне от 1 до 2, обеспечивающее выполнение (1) с заранее заданной вероятностью;
- дисперсия скорости изменения координат состояния
Δt(k)=tk-tk-1 - дискрет времени;
Dиj,i(k) - дисперсия измерения величины Xиj,i(k);
а также совокупность интервалов по всем координатам состояния каждого ИРИ образует многомерный строб, при попадании в который результат измерения вектора состояния Хин(k) в k-й момент времени отождествляется с конкретным ИРИ, при этом, если измеренный вектор Хин(k) не попал в пределы ни одного из стробов j-го ИРИ, где то принимается решение об обнаружении нового ИРИ с индексом N+1.

Описание

[1]

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения (МП) и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР).

[2]

Ожидаемая высокая насыщенность районов военных действий ИРИ различного назначения создает сложную (многоцелевую) радиоэлектронную обстановку и предопределяет для СРТР принципиальную необходимость решения следующих задач:

[3]

- идентификации ИРИ по типам, экземплярам и тактическому назначению;

[4]

- сопровождения обнаруженных ИРИ по всем значимым информационным параметрам: несущей частоте, периоду повторения (интервалу следования) и длительности импульсов, ширине спектра сигналов, местоположению и др.

[5]

Актуальность решения этих задач обусловлена, в частности, необходимостью оценки угроз с ранжированием ИРИ по степени важности и выдачи команд целеуказания, например, противорадиолокационным ракетам для поражения наиболее опасных целей. При этом следует подчеркнуть, что успешность решения этих задач в многоцелевой обстановке во многом зависит от способности СРТР отождествлять принятые сигналы с конкретными экземплярами ИРИ, что и предопределяет потенциальные возможности их достоверного сопровождения.

[6]

Здесь под отождествлением сигналов понимается процесс взаимно однозначного установления принадлежности принятых сигналов к конкретным экземплярам ИРИ в условиях многоцелевой обстановки. Процесс правильного отождествления сигналов не вызывает существенных затруднений, если сигналы, принимаемые от различных ИРИ, имеют устойчивые различия численных значений радиотехнических параметров. В противном случае, когда в зоне наблюдения находится несколько однотипных ИРИ, то вероятность ошибочного отождествления их сигналов резко возрастает.

[7]

В [1, 2] представлены способы отождествления, применяемые в бортовых пеленгационных системах для обработки измеренных азимутов ИРИ. Среди них наиболее часто применяется на практике так называемый «площадной» способ, который рассматривается в качестве прототипа.

[8]

«Площадной» способ отождествления азимутальных пеленгов поясняется фиг. 1. Предполагается, что в точках x1, x2, x3, … производится измерение пеленгов, например, α1, β1, α2, β2, α3, β3 … на ИРИ «А» и ИРИ «В» соответственно. При этом точки пересечения пеленгов, измеренных в различных точках на один и тот же ИРИ, группируются в пределах небольших областей, которые называются доверительными областями (ДО) и с заданной доверительной вероятностью Рдов включают в себя точки истинного МП ИРИ. Точки пересечения пеленгов, измеренных на разные ИРИ, распределены по сравнительно большой площади и плотно не группируются. Пеленги, пересекающиеся в пределах ДО, отождествляются с тем ИРИ, к которому эта область относится. Точки пересечения пеленгов, находящиеся за пределами ДО, определяют местоположение ложных (несуществующих) ИРИ.

[9]

Недостатком «площадного» способа является невозможность обработки других параметров принимаемых сигналов (кроме пеленгов), а также совместной обработки нескольких разнотипных параметров.

[10]

Ниже будет предложен более рациональный по критерию «достоверность - вычислительные затраты» способ отождествления принятых сигналов с конкретными экземплярами обнаруженных (сопровождаемых) ИРИ в многоцелевой обстановке, основанный на использовании многомерных стробов (доверительных областей) по измеряемым фазовым координатам (параметрам). При этом будет полагаться, что выполняются следующие условия:

[11]

1) СРТР предназначена для оценки n координат состояния ИРИ, объединенных в вектор

[12]

[13]

каждого из N источников радиоизлучения при наличии соответствующих измерений

[14]

[15]

2) сигналы ИРИ поступают на СРТР в общем случае не одновременно, а результаты измерений определяются моделью

[16]

[17]

где k - номер дискрета времени, ξj,i(k) - центрированные некоррелированные гауссовские шумы с известной дисперсией Dиj,i(k) в k-й момент времени;

[18]

3) оценки X^j,i(k) координат состояния всех обнаруженных ИРИ являются известными и получены на k-й момент времени по результатам предыдущих измерений.

[19]

В процессе разработки предлагаемого способа отождествления необходимо решить две задачи:

[20]

1) определить размеры стробов, гарантирующих требуемую достоверность отождествления;

[21]

2) сформулировать правило принятия решения о принадлежности полученных измерений конкретным ИРИ.

[22]

При решении этих задач будет полагаться, что за время, равное Δt (k)=tk-tk-1, координаты (1) состояния ИРИ изменяются по закону

[23]

[24]

где X˙j,i(k1) - скорость изменения оцениваемого параметра.

[25]

Тогда с учетом (3) и (4) приращение измерений и его дисперсия за интервал Δt (k) будут определяться выражениями соответственно [3]

[26]

[27]

[28]

где - дисперсия скорости изменения параметров [3].

[29]

Здесь следует отметить, что численные значения могут определяться по правилу вытекающему из соотношения Для большинства параметров наземных (морских) неподвижных (малоподвижных) ИРИ, не зависящих от перемещений самолета-носителя СРТР, можно полагать

[30]

Поскольку процесс (3) является гауссовским, то все приращения (5) должны с вероятностью 0,997 укладываться в диапазон

[31]

[32]

При этом размер строба ΔXиj,i(k)max для j-го ИРИ по i-й измеренной фазовой координате должен удовлетворять условию

[33]

[34]

где K=1…2 обеспечивает выполнение условия (8) с заранее заданной вероятностью Р=0,68…0,95, a Dиj,i(k) - дисперсия шумов измерений ΔXиj,i(k)max.

[35]

Выражение (8) определяет размеры строба для каждого j-го ИРИ по каждой i-й фазовой координате, а также предопределяет использование следующего правила принятия решения об отождествлении. Если все измерения Xин,i(k), принадлежащие в k-й момент времени неизвестному экземпляру ИРИ, удовлетворяют условию

[36]

то принимается решение об их отождествлении с фазовыми координатами j-го ИРИ. При этом результат отождествления представляется в виде вектора Xиj*(k)=Xин. Здесь Xиj*(k)=[Xиj*,1(k), Xиj*,2(k), …, Xиj*i(k), …, Xиj*,i(k)], а Xин(k)=[Xин,1(k), Xин,2(k), …, Xин,i(k), …, Xин,i(k)], где j* - индекс ИРИ, с которым отождествлен измеренный вектор параметров Xин(k). Если условие (9) не выполняется хотя бы по одной из n координат, то проверяется выполнение этого условия для следующего экземпляра сопровождаемого ИРИ в соответствии с выражением

[37]

[38]

и так далее для всех обнаруженных (сопровождаемых) ИРИ. Если условия (9), (10) не выполняются ни для одного из обнаруженных (сопровождаемых) экземпляров ИРИ, то принимается решение об обнаружении нового ИРИ, т.е. j*=N+1.

[39]

На фиг. 2 представлена упрощенная структурная схема одного из возможных вариантов системы, реализующей предлагаемый способ стробового отождествления пеленгов ИРИ в многоцелевой обстановке. Система включает в себя n-канальный измеритель параметров принимаемых сигналов (И) 3, устройство сравнения (УС) 4, а также бортовую вычислительную систему (БВС) 5. Принимаемые сигналы поступают на измеритель И, формирующий в каждый k-й момент времени результаты Xин,i(k), которые подаются на УС, а также в БВС, вычисляющую в соответствии с (8) размеры стробов ΔXиj,i(k)max. При этом информация о местоположении СРТР и скорости ее движения поступает от навигационной системы, а значения X^j,i(k) - от системы формирования оценок координат состояния ИРИ. Координаты МП и оценки координат состояния также подаются на УС, которая реализует алгоритм, определяемый выражениями (9), (10). По результатам сравнения принимается решение о принадлежности принятых сигналов соответствующим j*-м ИРИ либо об обнаружении новых ИРИ cj*=N+1.

[40]

Реализация описанного выше способа позволит повысить достоверность отождествления сигналов в многоцелевой обстановке и тем самым обеспечит качественное определение местоположения обнаруживаемых ИРИ и их надежное сопровождение.

[41]

ЛИТЕРАТУРА

[42]

1. Мельников Ю.П. Воздушная радиотехническая разведка (методы оценки эффективности). М.: Радиотехника, 2005.

[43]

2. Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008.

[44]

3. Тихонов В.И. Статистическая радиотехника. 2-ое изд., перераб. и доп. М.: Радио и связь, 1982.

Как компенсировать расходы
на инновационную разработку
Похожие патенты