патент
№ RU 2680391
МПК G01N31/22

Индикаторная полоса РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества

Авторы:
Островская Вера Михайловна Шпигун Лилия Константиновна Шушеначев Ярослав Владимирович
Все (9)
Номер заявки
2018115553
Дата подачи заявки
25.04.2018
Опубликовано
20.02.2019
Страна
RU
Дата приоритета
21.06.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Иллюстрации 
2
Реферат

Настоящее изобретение относится к аналитической химии, конкретно к индикаторной полосе РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества. Данная индикаторная полоса состоит из целлюлозы с закрепленным на ней индикатором, в качестве которого используют 1–гидрокси–2–нитрозо-2-{2'-[5''-(2-диазо-5-нитрофенил)-1'',5'-диоксапентил]-4-нитрофенил}-2-азаэтилцеллюлозы пара-толуолсульфат общей формулы. Технический результат – повышение избирательности хромогенной реакции индикаторной полосы с лекарственным веществом из групп антибиотиков, витаминов и нейротрансмиттеров, определяемой с помощью визуальной индикации. 2 ил., 1 табл., 6 пр.

Формула изобретения

Индикаторная полоса РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества, состоящая из целлюлозы с закрепленным на ней индикатором, отличающаяся тем, что в качестве индикатора содержит 1–гидрокси–2–нитрозо-2-{2'-[5''-(2-диазо-5-нитрофенил)-1'',5'-диоксапентил]-4-нитрофенил}-2-азаэтилцеллюлозы пара-толуолсульфат общей формулы
.

Описание

Изобретение относится к аналитической химии, конкретно, к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения подлинности поступающих в продажу лекарственных средств, способных к реакциям азосочетания с диазосоединениями в присутствии металлов, с глубоким цветовым переходом. Отличие в способе реакций с изменением цвета индикаторной полосы (ИП) с каждым лекарственным веществом, наблюдаемое визуально, позволяет идентифицировать лекарственное вещество, что имеет значение для фармацевтической промышленности и требуется в условиях клинической лаборатории, а также во внелабораторных условиях (аптеки, у постели больного).

При просмотре научно-технической и патентной информации было выявлено, что суммарное содержание ЛВ, в молекулах которых содержатся фрагменты фенольных и анилиновых групп, из ряда антибиотиков, витаминов и нейротрансмиттеров определяют с помощью растворимых диазореагентов, вступающих в растворе в реакции азосочетания с этими ЛВ, с образованием азосоединений окрашенных в цвета, визуально малоразличимые между собой. Диазореагенты такого типа, применяемые в колориметрии, уже давно определены как не селективные [Scudi J.V. On the colorimetricderemination of vitamine B6. // J. Biol. Chem. 1941. 139: P. 707-720]. Если в пробе присутствуют кроме вышеуказанных анализируемых ЛВ еще фенолы и амины активные к азосочетанию с диазосоединением, необходимо их полное отделение, что осложняет метод анализа [Hochberg М., Melnick D., Oser B.L.J. Biol. Chem. 1944. 155: P. 109-117, 119]. Диазореагенты в реакциях с такими ЛВ с фотометрическим детектированием и в капельных реакциях (spot tests) относят к групповым, так как образующиеся из них азокрасители с одним и тем же реагентом практически не значительно различаются между собой по окраске. [Глущенко Н.Н., Плетнева Т.В., Попков В.А. Фармацевтическая химия. М.: Академия, 2004. 382 с.], [Calatayud J.M., Zamora L.L. Spectrophotometry: Pharmaceutical applications / Reference module in chemistry, molecular sciences and chemical engineering 2013. P. 9-13]. [Calatayud J.M. Spectrophotometry. Pharmaceutical applications / Encyclopedia of analytical science. 2nd ed. Под ред. Worsfold P., Townshend A., Poole C. Elsevier, 2005. P. 380-383].

Например, предложен способ одновременного колориметрического определения пиридоксина, синоменина и морфина (витамина, стероида и алкалоида), которые содержат подобные фенольным гидроксильные группы и были использованы как сочетающиеся компоненты в реакциях с диазотированным 4-амино-6-хлор-мета-бензендисульфонамидом. Недостатком данного способа является то, что электронные спектры поглощения трех продуктов азосочетания незначительно различались между собой по батохромным и гиперхромным сдвигам максимумов абсорбции [Urbanyl Т., Budavary S. Further applications of diazotized 4-amino-6-chloro-m-benzenedisulfonamide. // Journal of Pharmaceutical Sciences. 1968. V. 57. №8. P. 1386-1390].

Известны способы определения ЛВ, способных к азосочетанию с диазореагентами, с образованием азокрасителей, но для достоверности этих способов, образующиеся азокрасители далее на следующей стадии идентифицировали более сложными методами анализа: жидкостной [Abano Е.Е., Dadzie R.G. Simultaneous detection of water-soluble vitamins using the High Performance Liquid Chromatography (HPLC) - a review. // Croat. J. Food Sci. Technol. 2014. V. 6. №2. P. 116-123], бумажной хроматографии [Brown J.F., Marsh M.M. Paper chromatographic separation and determination of some water-soluble vitamins. // Analytical Chemistry. 1952. V 24 №12. P. 1952-1956]; проточно-инжекционного анализа со спектрофотометрическим детектированием [Monferrer-Pons L., Alvarez-Rodriguez L., Esteve-Romero J., Garcia-Alvarez-Coque M.C. Flow-injection analysis of pyridoxine hydrochloride by coupling with the diazonium ion of p-sulfanilic acid. // Analytical Letters. 2000. V. 33. №3. P. 539-552].

Общим недостатком методов определения ЛВ, включающих реакцию азосочетания, с использованием лабораторных приборов, является неудобство их применения во внелабораторных условиях.

Известен твердофазный минеральный сорбент, с сорбированными на нем индикатором бромфеноловым синим и ионами железа (II). Способ определения пиридоксина заключается в том, что при концентрировании на этом сорбенте пиридоксина формируется окрашенное трехкомпонентное соединение при участии пиридоксина, ионов железа (II) и бромфенолового синего [Садомцева О.С., Фадеева М.В., Шакирова В.В., Уранова ВВ. // Метод качественного и количественного определения пиридоксина. // Пат. RU 2632629, 2016. Бюл. №28.].

Недостатками данного тест-средства является сложная процедура с центрофугированием и тремя стадиями анализа, на которые затрачивается 40 мин; при этом цветовой переход основан на принципе гипохромного и гипсохромного уменьшения окраски сорбента, т.е. практически его обесцвечивания, низкая селективность: такую же цветную реакцию дает смесь бромфенолового синего с железом (II) в присутствии гидроксиамино-арилсоединений, непригодность для внелабораторных условий; при этом способ определения пиридоксина проверен не прямым методом, а по приему «введено-найдено».

Наиболее близким по технической сущности и взятым за прототип является индикаторная полоса, содержащая в качестве индикатора 4-мет-оксибензолдиазоний тетрафторборат, с помощью которой определялся N-метиланилин, как присадка в бензине. Недостатком этой полосы, как и вышеупомянутых диазосоединений, является то, что она может давать окраску со многими амино- и гидроксиароматическими соединениями [Островская В.М., Сергеев С.М., Шарапа О.В. Способ определения моно-метиланилина в автомобильном бензине индикаторным тестовым средством. Пат. RU 2489715. 2013. Бюл. 22].

Таким образом, каждый из известных способов определения ЛВ имеет свои преимущества и свою область применения, но не может обеспечить определение одного ЛВ с гидроксиарил- и/или аминоарилгруппой в присутствии веществ с такими же группами.

В основу изобретения положена задача создания индикаторной полосы для индикаторного средства для селективного определения одного лекарственного вещества в присутствии других ЛВ. Предложение направлено на создание индикаторной полосы для реализации способа определения подлинности лекарственных препаратов.

Конкретно с одной стороны был выбран ряд ЛВ из групп антибиотиков, витаминов и нейротрансмиттеров, вступающих в групповые неселективные реакции азосочетания с диазосоединениями; с другой стороны - индикаторная полоса на основе диазоарилцеллюлозы с координационной группой, с помощью которой можно было бы разработать селективные хромогенные реакции с этими ЛВ, которые позволили бы определить их подлинность.

Технический результат изобретения - повышение избирательности хромогенной реакции индикаторной полосы с лекарственным веществом, определяемое с помощью визуальной индикации.

Указанный технический результат достигается тем, что предложена индикаторная полоса РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества, состоящая из целлюлозы с закрепленным на нем индикатором, в качестве индикатора содержит 1-гидрокси-2-нитрозо-2-{2'-[5''-(2-диазо-5-нитрофенил)-1'',5''-диоксапентил]-4'-нитрофенил}-2-азаэтилцеллюлозы пара-толуолсульфат общей формулы

Определение подлинности лекарственного вещества проводят в присутствии иона металла, способного вступать в хромогенную реакцию комплексообразования с продуктом азосочетания индикаторной полосой РИБ-Диазо-Тест и лекарственного вещества.

Целесообразно, что определение подлинности лекарственного вещества проводят в присутствии иона такого металла, как железо, золото, кадмий, кобальт, медь, никель, серебро, цинк, образующего окрашенное соединение с азопроизводным этого лекарственного вещества.

Сущность изобретения состоит в том, что была создана индикаторная полоса на основе полимерного целлюлозного индикатора, в котором имеется диазогруппа, обеспечивающая реакцию азосочетания с ЛВ с образованием азосоединения, которое избирательно вступает на следующей стадии в реакцию комплексообразования с металлом с образованием окрашенного комплекса, причем металл для каждого лекарственного вещества должен быть выбран индивидуально.

Изобретение проиллюстрировано фигурами 1-2:

Фиг. 1. Индикаторная полоса РИБ-Диазо-Тест: А - вид сверху до тест-реакции, Б - вид сбоку, В - вид сверху после тест-реакции, 1 - реакционная индикаторная бумажная зона, 2 - полимерная державка, 3 - реакционная индикаторная бумажная зона, после проведения реакции, 4 - скрепляющий слой.

Фиг. 2. Набор для определения подлинности пяти лекарственных веществ, указанных далее в Таблице, включающий в себя: пеналы с ИП, с белыми полимерными подложками и полоски для определения рН среды, а также капельницы с растворами ионов металлов: железа, золота, меди, никеля, серебра и капельницы с буферными растворами рН 5 и рН 8.

Изобретение поясняется следующими примерами приготовления индикаторной полосы РИБ-Диазо-Тест и примерами ее использования для селективного определения ЛВ из ряда антибиотиков, витаминов и нейротрансмиттеров, способных к реакциям азосочетания.

Пример 1. Изготовление индикаторной полосы РИБ-Диазо-Тест.

Эпоксидированную хроматографическую бумагу [Островская В.М., Фомин Н.А., Аксенова М.С., Казакова Т.С., Попова Т.Д., Прищеп Е.Т. Способ получения эпокисдированной хроматографической бумаги. Пат. 1651204 RU. 1991. Бюл. 19], пропитывали 1%-ым раствором 1,5-бис(2-амино-5-нитрофенил)-1,5-диоксапентана в хлороформе [Островская В.М., Дьяконова И.А., Попонова Р.В., Козлова Н.И., Рябокобылко Ю.С., Филатова М.П. / Журн. Орг. Химии, 1989, Т. 25, №8. С. 1753-1758.], нагревали при 130°С, в течение 0.5 ч, затем промывали хлороформом «ч.». Получали реагентную бумагу на основе 1-гидрокси-2-нитрозо-2-{2'-[5''-(2-амино-5-нитрофенил)-1'',5''-диоксапентил]-4'-нитрофенил}-2-азаэтилцеллюлозы. Доказательством химического ковалентного закрепления 1,5-бис(2-амино-5-нитрофенил)-1,5-диоксапентана является то, что только после нагрева он не смывался с целлюлозы любыми растворителями. Далее реагентную бумагу обрабатывали раствором из 1%-ой соляной кислоты (HCl) и 0.2%-го натрия нитрита (NaNO2) при 0-2°С в течение 0.5 ч, реакционный раствор удаляли, затем бумагу обрабатывали 1%-ым водным раствором 4-толуолсульфокислоты, промывали водой и высушивали. Полученную бумагу на основе 1-гидрокси-2-нитрозо-2-{2'-[5''-(2-диазо-5-нитрофенил)-1'',5''-диоксапентил]-4'-нитрофенил}-2-азаэтилцеллюлозы 4-толуолсульфата, разрезали на ленты шириной 25 мм, прикрепляли вдоль края к полимерной пропиленовой белой ленте шириной 20 мм и заготовку разрезали поперек на полосы шириной 9,8±0,05 мм (фиг. 1) с помощью устройства размерной резки заготовок индикаторов на твердофазных носителях. [Островская В.М. Устройство размерной резки для получения кислотно-основных, реагентных и диагностических индикаторных полос. Пат. РФ на полезную модель №117853. //Бюл. 2012. №19]. Получали индикаторные полосы РИБ-Диазо-Тест (ИП) светло-желтого цвета.

Пример 2. Определение подлинности лево-допа.

На первой стадии раствор лево-допа (0.5 мл), [L-допа гидрохлорид, L-3-(3,4-дигидроксифенил)аланин гидрохлорид, Acros Organics, Бельгия] помещали на часовое стекло, добавляли буферный раствор до рН 6-7, помещали индикаторную бумажную зону ИП в раствор лево-допа. ИП окрашивалась в темно-оранжевый цвет. Затем, на второй стадии добавляли 20-50 мкл (1 каплю) стандартного раствора иона серебра. ИП окрашивалась в светло-коричневый цвет.

Пример 3. Определение подлинности норадреналина (норэпинефрина).

Процедуру проводили как в примере 2, с тем отличием, что к пробе норадреналина (Aldrich. Co., США) на второй стадии вместо ионов серебра добавляли ионы золота(III). На первой стадии ИП окрашивалась в светло-оранжевый цвет, на второй стадии - в светло-коричневый, в случае определения лево-допа и адреналина (эпинефрина) окраски с ионами золота не наблюдалось.

Пример 4. Определение подлинности пиридоксина (витамина В6) в его аптечных препаратах.

Процедуру проводили как в примере 2, с тем отличием, что к пробе пиридоксина (ООО «OZON» Россия) на второй стадии вместо ионов серебра добавляли ионы меди. На первой стадии ИП окрашивалась в красно-оранжевый цвет, на второй стадии - в сине-фиолетовый. Если в раствор пиридоксина добавляли раствор меди до взаимодействия с ИП, промежуточная стадия красно-оранжевого цвета не наблюдалась, а сразу же появлялась сине-фиолетовое окрашивание ИП. Такое окрашивание не наблюдалось для других испытанных нами ЛВ (Таблица).

Пример 5. Определение подлинности фолиевой кислоты (витамина В9).

Процедуру проводят как в примере 2, с тем отличием, что к пробе фолиевой кислоты (ОАО «Борисовский завод медицинских препаратов», г. Борисов, республика Беларусь) на второй стадии вместо ионов серебра добавляли ионы никеля. На первой стадии ИП окрашивалась в оранжевый цвет, на второй стадии - в светло-коричневый. Селективность данного определения подтверждена тем, что лево-допа, адреналин, норадреналин, и пиридоксин окраски с ионами никеля не давали. Кроме того, продукт азосочетания ИП с фолиевой кислотой являлся гексадентатным реагентом и вступал в цветные реакции не только с никелем, но и с ионами меди и серебра.

Пример 6. Определение подлинности доксициклина.

Процедуру проводят как в примере 2, с тем отличием, что к пробе доксициклина (РУП «Белмедпрепараты», г. Минск, Республика Беларусь) на второй стадии вместо ионов серебра добавляли ионы железа(III). На первой стадии ИП окрашивалась в оранжево-желтый цвет, на второй стадии - в светло-коричневый. Другие антибиотики: тетрациклин и амоксициллин с ИП образовывали азосоединения соответственно темно-желтого и желтого цвета, но окрашенных соединении с ионами железа(III) не давали.

Обобщенные данные по определению подлинности пяти лекарственных веществ представлены в Таблице: «Цвета ИП в результате азосочетания с ЛВ с образованием ИП с азосоединением (ИП-Азо) и последующим комлексообразованием с ионами металлов».

Примечание: * - Т - Темно; С - светло; Оранж. - оранжевый, оранжево; Кр. - красный; Ж - желтый; Ф - фиолетовый; К - коричневый.

Предложен набор для определения подлинности пяти лекарственных веществ указанных в таблице (фиг. 2)

Таким образом предложена индикаторная полоса РИБ-Диазо-Тест пригодная для использования в индикаторном средстве по избирательному определению подлинности лекарственных веществ из групп антибиотиков, витаминов и нейротрансмиттеров.

Как компенсировать расходы
на инновационную разработку
Похожие патенты