патент
№ RU 2662720
МПК E21B43/22

Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты)

Авторы:
Сергеев Виталий Вячеславович
Номер заявки
2017135375
Дата подачи заявки
05.10.2017
Опубликовано
27.07.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
6
Реферат

Изобретение относится к нефтедобывающей промышленности, а именно к технологиям глушения нефтяных и газовых скважин. Технический результат - повышение эффективности геолого-технических мероприятий по глушению нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта. Способ согласно первому варианту применяется при приемистости скважин выше 350 м/сут и включает последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор гидрофобных наночастиц двуокиси кремния, тампонирующие частицы - гидрофильные наночастицы двуокиси кремния, а также водный раствор хлористого кальция или хлористого калия. Коллоидный раствор гидрофобных наночастиц двуокиси кремния состоит из двуокиси кремния, монометилового эфира пропиленгликоля и воды. В качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора. Способ согласно второму варианту применяется при приемистости скважин выше 350 м/сут, в данном случае в качестве тампонирующих частиц используют гидрофильные микрочастицы ильменита или тетраоксида тримарганца. 2 н.п. ф-лы, 10 ил.

Формула изобретения

1. Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта при приемистости скважин ниже 350 м3/сут, включающий последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.):

дизельное топливо или подготовленную нефть с
пункта подготовки и перекачки нефти10-30
эмульгатор2-3
коллоидный раствор гидрофобных наночастиц двуокиси
кремния с размером частиц от 5 до 100 нм, содержащий
(% об.) двуокись кремния - 31-32,5, монометиловый эфир
пропиленгликоля - 67-69, воду - остальное0,5-1
гидрофильные наночастицы двуокиси кремния1-3
водный раствор хлористого кальция или хлористого калияостальное,

в качестве эмульгатора используют композицию, содержащую (% об.):

эфиры высших ненасыщенных кислот жирного ряда
и смоляных кислот40-42
окись амина0,7-1
высокомолекулярный органический термостабилизатор0,5-1
дизельное топливоостальное,

в качестве гидрофильных наночастиц двуокиси кремния используют композицию, содержащую (% об.): двуокись кремния 30-31 в изопропаноле - 67-69 и метиловом спирте остальное, или двуокись кремния 29-31 в этиленгликоле - остальное, или сухую аморфную двуокись кремния с размером частиц от 5 до 500 нм, в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием 2% об. гидрофобизатора марок ИВВ-1 или ЧАС-М.

2. Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта при приемистости скважин выше 350 м3/сут, включающий последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.):

дизельное топливо или подготовленную нефть с
пункта подготовки и перекачки нефти10-30
эмульгатор2-3
коллоидный раствор гидрофобных наночастиц двуокиси
кремния с размером частиц от 5 до 100 нм, содержащий (% об.)
двуокись кремния 31-32,5, монометиловый эфир
пропиленгликоля 67-69, воду - остальное, гидрофильные
микрочастицы ильменита или тетраоксида тримарганца
с размером частиц от 0,2 до 5 мкм 2-5, водный раствор
хлористого кальция или хлористого калия - остальное0,5-1,

в качестве эмульгатора используют композицию, содержащую (% об.):

эфиры высших ненасыщенных кислот жирного ряда
и смоляных кислот40-42
окись амина0,7-1
высокомолекулярный органический
термостабилизатор0,5-1
дизельное топливоостальное,

в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием 2% об.гидрофобизатора марок ИВВ-1 или ЧАС-М.

Описание

[1]

Изобретение относится к нефтедобывающей промышленности, а именно к технологиям глушения нефтяных и газовых скважин.

[2]

Современное состояние нефтегазоносных объектов разработки в основных нефтегазодобывающих странах характеризуется истощением запасов нефти и газа. Данный факт приводит к необходимости широкого внедрения различных видов физических и химических методов воздействия на нефтегазоносные пласты с целью интенсификации добычи нефти. Одним из наиболее широко распространенных физических методов интенсификации добычи нефти является гидравлический разрыв пласта (далее - ГРП). Гидравлический разрыв пласта направлен на создание в продуктивном пласте сети высокопроницаемых трещин, которые обеспечивают приток нефти и газа из менее проницаемых и слабодренируемых зон продуктивного пласта.

[3]

Наряду с этим, гидравлический разрыв пласта имеет и недостатки, к примеру, неконтролируемый рост трещины гидравлического разрыв пласта приводит к тому, что под высоким давлением гидроразрыва, трещины прорываются к ниже или вышележащим водоносным пластам и этим обеспечивают гидродинамическое сообщение скважины с водоносными пластами.

[4]

Дополнительные сложности для специалистов отрасли представляют вопросы глушения скважин, в которых был проведен гидравлический разрыв пласта, т.к. наличие в призабойной зоне пласта (далее - ПЗП) искусственно созданной сети высокопроницаемых трещин, закрепленной пропантом, приводит к поглощению огромных объемов жидкостей глушения на водной основе, что отрицательно сказывается на фазовой проницаемости горных пород и снижает эффективность геолого-технических мероприятий по глушению, освоению и выводу скважины на режим.

[5]

Из уровня техники известен способ глушения нефтяных и газовых скважин (патент РФ на изобретение №2047745, МПК E21B 43/12, C09K 7/06, опубликован 10.11.1995), включающий последовательную закачку в призабойную зону пласта буферной жидкости, блокирующей жидкости и жидкости для глушения. При этом в качестве буферной жидкости используют поверхностно-активное вещество (далее - ПАВ) или водоуглеводородную эмульсию с содержанием ПАВ. В качестве блокирующей жидкости используют гидрофобно-эмульсионный раствор, содержащий нефть, солевой раствор, эмульгатор, стабилизатор. В качестве жидкости для глушения используют минерализованную воду или солевой раствор. Недостатком способа является отсутствие в технологических жидкостях тампонирующих частиц. В связи с этим, применение способа будет неэффективно в коллекторах с высокопроницаемыми трещинами ГРП.

[6]

Из патента РФ на изобретение №2483092, МПК C09K 8/42, опубликован 27.05.2013 известен способ приготовления состава полисахаридного геля для глушения скважин, содержащего пресную или минерализованную воду, полисахаридный загуститель, сшиватель -ацетат хрома с оксидом магния, хлористый кальций. Недостатком способа является применение нерастворимого в пластовых условиях полисахаридного геля, приводящего к неконтролируемой кольматации ПЗП и отсутствие в технологических жидкостях тампонирующих частиц, применяющихся для снижения фильтрационно-емкостных характеристик коллекторов с высокопроницаемыми трещинами ГРП.

[7]

Из патента РФ на изобретение №2616632, МПК E21B 43/12, C09K 8/48, C09K 8/493, опубликован 18.04.2017 известен способ глушения скважин после гидравлического разрыва пласта, включающий последовательную закачку в призабойную зону пласта солевого раствора на основе хлористого калия, вязкоупругого состава (солевой раствор на основе хлористого калия, каустическая сода и полимер-загуститель с наполнителем) и солевого раствора. Недостатком способа является применение полимера-загустителя с содержанием ксантановой камеди и вермикулита для создания вязкоупругого состава. Применение полимеров-загустителей с содержанием вермикулита приводит к неконтролируемому снижению проницаемости принимающих интервалов и невыполнению одного из основных условий глушения скважин - временное снижение фильтрационно-емкостных характеристик ПЗП. Также закачка в продуктивный пласт водного раствора хлористого калия на первом этапе реализации способа и его продавка вглубь ПЗП на второй и третьей стадиях отрицательно влияет на фазовую проницаемость продуктивного пласта.

[8]

Из патента РФ на изобретение №2279462, МПК C09K 8/42, опубликован 10.07.2006 известен способ приготовления жидкости для глушения нефтегазовых скважин, содержащей эмульсию полимера, эмульгатор - поверхностно-активное вещество, водный раствор минеральной соли - в частности, хлористого кальция или хлористого калия, высокодисперсный гидрофобный материал - в частности, диоксид кремния, оксиды титана, железа, по одному из вариантов дополнительно применяется углеводород. Недостатком способа является применение полимеров для загущения жидкости глушения. Применение водных растворов полимеров к неконтролируемому снижению проницаемости принимающих интервалов и невыполнению одного из основных условий глушения скважин - временное снижение фильтрационно-емкостных характеристик ПЗП.

[9]

Из патента РФ на изобретение №2184839, МПК E21B 43/12, опубликован 10.07.2002 известен способ глушения скважин, включающий закачку в призабойную зону пласта инвертной эмульсионно-суспензионной системы, содержащей минерализованную водную дисперсную фазу, углеводородную дисперсионную фазу - в частности, нефть или продукты ее переработки, эмульгатор, стабилизатор - гидрофобный модифицированный парами диметилдихлорсилана кремнезем. Недостатком способа является то, что добавка химически модифицированного кремнезема не изменяет фазовую проницаемость поверхности поровых каналов, а лишь увеличивает стабильность эмульсионно-суспензионной системы. А также отсутствие в инвертной эмульсионно-суспензионной системе тампонирующих частиц, применяющихся для снижения фильтрационно-емкостных характеристик коллекторов с высокопроницаемыми трещинами ГРП.

[10]

Из патента СА 2765192, МПК C09K 8/36, C09K 8/467, E21B 7/00, опубликован 23.12.2010 известен способ приготовления инвертной эмульсии для глушения скважин. Эмульсия содержит углеводороды, водный раствор, эмульгатор, разлагаемые частицы и тампонирующие частицы. Недостатком способа является технологически необоснованное объемное содержание в инвертной эмульсии водной фазы в интервале от 1 до 70% об. Содержание водной фазы в указанном интервале не обеспечит эмульсии вязкость, достаточную для блокировки высокопроницаемых интервалов ПЗП. Также применение волокнистых материалов в совокупности с крупными частицами со средним диаметром от 1 до 1500 мкм неэффективно в коллекторах со средними и низкими фильтрационно-емкостными характеристиками, т.к. диаметр крупных частиц не обеспечит достаточное проникновение эмульсии вглубь ПЗП для предотвращения перетоков в системе пласт-скважина.

[11]

Для решения указанных проблем разработки нефтяных и газовых месторождений предлагается способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта, основанный на последовательной закачке в ПЗП эмульсионно-суспензионной системы и водного раствора хлористого кальция или хлористого калия с содержанием гидрофобизатора.

[12]

Сущность изобретения заключается в том, что способ согласно первому варианту выполнения, применяющийся при приемистости скважин ниже 350 м3/сут, включает последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 10-30, эмульгатор - 2-3, коллоидный раствор гидрофобных наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, содержащий (% об.) двуокись кремния - 31-32,5, монометиловый эфир пропиленгликоля - 67-69, воду - остальное, гидрофильные наночастицы двуокиси кремния - 1-3, водный раствор хлористого кальция или хлористого калия - остальное, в качестве эмульгатора используют композицию, содержащую (% об.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо - остальное, в качестве гидрофильных наночастиц двуокиси кремния используют композицию, содержащую (% об.): двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное, или двуокись кремния - 29-31 в этиленгликоле - остальное, или сухую аморфную двуокись кремния с размером частиц от 5 до 500 нм, в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора марок ИВВ-1 или ЧАС-М с содержанием 2% об.

[13]

Способ согласно второму варианту выполнения, применяющийся при приемистости скважин выше 350 м3/сут, включает последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 10-30, эмульгатор - 2-3, коллоидный раствор гидрофобных наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0.5-1, содержащий (% об.) двуокись кремния - 31-32,5, монометиловый эфир пропиленгликоля - 67-69, воду - остальное, гидрофильные микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 2-5, водный раствор хлористого кальция или хлористого калия - остальное, в качестве эмульгатора используют композицию, содержащую (% об.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот -40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо - остальное, в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора марок ИВВ-1 или ЧАС-М с содержанием 2% об.

[14]

Техническим результатом изобретения является повышение эффективности геолого-технических мероприятий по глушению нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта.

[15]

Изобретение иллюстрируется следующими графическими материалами.

[16]

На фиг. 1 приведено схематическое изображение структуры множественной эмульсии.

[17]

На фиг. 2 приведена таблица, раскрывающая технику и оборудование для приготовления и закачки блокирующей пачки (далее - БП).

[18]

На фиг. 3 приведена таблица, иллюстрирующая результаты измерения плотности эмульсионно-суспензионной системы (далее - ЭСС) с содержанием гидрофобных и гидрофильных наночастиц двуокиси кремния.

[19]

На фиг. 4 приведена таблица, иллюстрирующая результаты измерения плотности ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц ильменита.

[20]

На фиг. 5 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости (электростабильности) ЭСС с содержанием гидрофобных и гидрофильных наночастиц двуокиси кремния.

[21]

На фиг. 6 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости (электростабильности) ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц ильменита.

[22]

На фиг. 7 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости (электростабильности) ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц тетраоксида тримарганца.

[23]

На фиг. 8 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости ЭСС с содержанием гидрофобных и гидрофильных наночастиц двуокиси кремния.

[24]

На фиг. 9 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц ильменита.

[25]

На фиг. 10 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц тетраоксида тримарганца.

[26]

Содержание в ЭСС тампонирующих частиц - наночастиц с различными поверхностно-активными свойствами - позволяет создать множественную эмульсию. Множественная эмульсия является одним из наиболее стабильных видов эмульсий и позволяет регулировать реологические свойства ЭСС в широком диапазоне. На фиг. 1 представлено схематическое изображение структуры множественной эмульсии, в которой 1 - углеводородная среда, 2 - глобулы водной фазы, 3 - глобулы углеводородной фазы, 4 - адсорбционно-сольватные слои наночастиц и ПАВ.

[27]

При адсорбции поверхностно-активных наночастиц двуокиси кремния на адсорбционно-сольватные слои глобул водной и углеводородной фаз эмульсии создается дополнительный слой, предотвращающий коалесценцию глобул.

[28]

Приготовление блокирующей пачки (БП) производится на установке приготовления растворов: блок приготовления растворов «БПР» - миксер с мешалкой и внешним центробежным насосом.

[29]

Необходимое оборудование для приготовления блокирующей пачки указано на фиг. 2.

[30]

Для скважин с приемистостью ниже 350 м3/сут в емкость для приготовления эмульсионной системы набирается (% об.): дизельное топливо или подготовленная нефть с пункта подготовки и перекачки нефти - 10-30, далее запускается центробежный насос на циркуляцию и лопастной перемешиватель, после этого последовательно в дизельном топливе диспергируются эмульгатор - 2-3, коллоидный раствор гидрофобных наночастиц двуокиси кремния в монометиловом эфире пропиленгликоля и воде - 0.5-1, гидрофильные наночастицы двуокиси кремния - 1-3, водный раствор хлористого кальция или хлористого калия - остальное.

[31]

В качестве тампонирующих частиц - гидрофильных наночастиц двуокиси кремния - можно использовать, в частности, композицию одного из следующих составов (% об.):

[32]

- двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное;

[33]

- двуокись кремния - 29-31 в этиленгликоле - остальное;

[34]

- сухую аморфную двуокись кремния с размером частиц от 5 до 500 нм.

[35]

Содержание сухой аморфной двуокиси кремния составляет 92-99% масс., оставшаяся часть - это примеси, остающиеся после выработки. В качестве примесей могут быть, в частности, следующие вещества (% масс.): нелетучие с фтористо-водородной кислотой вещества (0.2-0.5), нитраты (0.002-0.005), сульфаты (0.015), хлориды (0.001-0.005), железо (0.002-0.005), тяжелые металлы (0.003-0.007) и др. согласно ГОСТ 9428-73 «Реактивы. Кремний (IV) оксид. Технические условия (с Изменениями N 1, 2)». Какие именно содержатся примеси в сухой аморфной двуокиси кремния в настоящем изобретении - не является его существенным признаком, поскольку не влияет на достижение его технического результата.

[36]

Для скважин с приемистостью выше 350 м3/сут в емкость для приготовления систем набирается (% об.) дизельное топливо или подготовленная нефть с пункта подготовки и перекачки нефти - 10-30, далее запускается центробежный насос на циркуляцию и лопастной перемешиватель, после этого последовательно в дизельном топливе диспергируются эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, микрочастицы ильменита или тетраоксида тримарганца размером от 0.2 до 5 мкм - 2-5 в качестве тампонирующих частиц, а также водный раствор хлористого кальция или хлористого калия - остальное.

[37]

В качестве эмульгатора как для скважин с приемистостью ниже 350 м3/сут, так и для скважин с приемистостью выше 350 м3/сут, может применяться композиция следующего состава (% об.): эфиры высших ненасыщенных кислот жирного ряда (линолевая, олеиновая, линоленовая) и смоляных кислот - 40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо (летнее или зимнее) - остальное.

[38]

Ввод составляющих ЭСС в углеводородную основу производится последовательно в указанном порядке через эжектор с помощью вакуумного шланга. Скорость загрузки составляющих лимитируется всасывающей производительностью эжектора.

[39]

Используемые емкости должны быть оборудованы лопастными или иными мешалками, обеспечивающими постоянное и равномерное распределение реагентов по всему объему. Для обеспечения получения и поддержания стабильности свойств ЭСС рекомендуется применять лопастные мешалки с реверсивным направлением вращения.

[40]

Качество приготовления и стабильность свойств ЭСС зависит от полноты охвата перемешиванием всего объема емкости приготовления, чистоты емкостей, скорости ввода составляющих и времени диспергирования. Рекомендуется использовать емкость со «скошенными» углами (форма, близкая к цилиндрической).

[41]

Контроль качества приготовления ЭСС проводится путем проверки седиментационной устойчивости ЭСС. Тест считается положительным, если при выдержке образца ЭСС при температуре 20°C в течение 2 ч произошло отделение водной фазы в объеме, не превышающим 3% от объема ЭСС.

[42]

Ниже приведен расчет объема блокирующей пачки.

[43]

Объем БП (VБП), м3 определяется объемами вскрытого интервала перфорации, зумпфа скважины и запаса безопасности, по формуле:

[44]

[45]

где hтз - уровень текущего забоя, м;

[46]

hвд - уровень верхней отметки интервала перфорации, м;

[47]

hзап - уровень безопасного запаса, м (при эксплуатационной колонне глубиной менее 500 м ≈ 25 метров);

[48]

Vуд - удельный внутренний объем обсадной колонны, м3 на 1 погонный метр;

[49]

0,0007 - коэффициент расхода БП на смачивание стенок труб;

[50]

hсп - глубина спуска колонны НКТ;

[51]

Vпродавки - объем продавки БП в пласт, м3.

[52]

Объем Vпродавки, м3, определяют по формуле:

[53]

[54]

где hвскр - вскрытый интервал перфорации, м

[55]

Ka - коэффициент аномальности, при этом Ka=Pпласт./ Pгидростат., где Pпласт. - пластовое давление, Pгидростат. - гидростатическое давление.

[56]

Критерии расчета hзап - верхней границы установки БП (при эксплуатационной колонне глубиной более 500 м):

[57]

1) При наличии подвески электроцентробежного насоса (ЭЦН), БП устанавливается от забоя до интервала, находящегося на 50 м выше верхних отверстий перфорации, но ниже приема насоса на 50 м:

[58]

[59]

где hвд - уровень верхних перфорационных отверстий, м;

[60]

hтек.заб. - уровень текущего забоя, м.

[61]

2) При наличии пакерного устройства БП устанавливается от текущего забоя до интервала установки пакера:

[62]

[63]

где hпак - уровень установки пакерного устройства, м;

[64]

hтек.заб. - уровень текущего забоя, м.

[65]

3) При применении гибких насосно-компрессорных труб (ГНКТ) с пакерным устройством, БП устанавливается от текущего забоя до интервала установки пакера аналогично формуле 4.

[66]

4) При применении ГНКТ без пакера, БП устанавливается от забоя до интервала, находящегося на 50 м выше верхних отверстий перфорации:

[67]

[68]

гдеhвд - уровень верхних дыр перфорации, м;

[69]

hтек.заб. - уровень текущего забоя, м.

[70]

Дополнительный объем БП на смачивание стенок определяется исходя из минимальной нормы в 1 м3 на скважину, расчетный расход БП на смачивание составляет 0,7 дм3/1 метр спущенных труб. Верхняя граница установки БП должна быть не менее чем на 50 м ниже приема спущенного глубинно-насосного оборудования (ГНО) для обеспечения циркуляции при уравновешивании скважины в процессе глушения.

[71]

Установку блокирующей пачки (БП) проводят стандартными методами: «прямой закачки» или «обратной закачки» в зависимости от наличия, вида подземного оборудования скважины и конструктивных особенностей скважины. Предпочтительным является метод «обратной закачки» через кольцевое межтрубное пространство.

[72]

Не рекомендуется производить глушение «прямой закачкой» при наличии спущенного электроцентробежного насоса (ЭЦН)/штангового глубинного насоса (ШГН) в связи с риском обрыва колонны с ростом давления при передавливании БП через отверстие сбивного клапана.

[73]

При наличии не герметичности эксплуатационной колонны возможным способом установки БП являет метод «прямой закачки» с ограничением максимально допустимого давления в 35 атм на колонну НКТ с ГНО.

[74]

Эмульсионная система с данными составляющими не предназначена для глушения скважин с не герметичностью эксплуатационной колонны.

[75]

Установка БП прямой закачкой:

[76]

1) Объем БП меньше объема НКТ.

[77]

Первый этап - закачка БП в НКТ доводка до низа НКТ (подвески насоса) на циркуляции при открытой затрубной задвижке.

[78]

БП закачивают в НКТ в объеме пустотного пространства НКТ и перемещают до низа НКТ (среза воронки) жидкостью глушения на циркуляции в объеме:

[79]

[80]

где V(цирк) - объем жидкости глушения закачиваемой при открытой затрубной задвижке, для перемещения БП до низа НКТ, м3;

[81]

V(НКТ) - внутренний объем НКТ, м3;

[82]

V(штат) - водоизмещение штанг, м3; (при ЭЦН У(штанг)=0);

[83]

V(БП) - объем БП, м3;

[84]

Второй этап - продавка БП на забой при закрытой затрубной задвижке жидкостью глушения в объеме:

[85]

[86]

где V(прод) - объем жидкости глушения закачиваемой при закрытой затрубной задвижке (на продавку), м3;

[87]

0,001 - коэффициент перерасчета дм3(л) в м3;

[88]

Vк.(уд) - удельный внутренний объем обсадной колонны под ГНО, дм3/м,

[89]

h(НКТ) - глубина подвески насоса или НКТ, м;

[90]

h(тек.заб.) - глубина текущего забоя, м;

[91]

V(БП) - объем БП, м3;

[92]

V(скв. под ГНО) - объем скважины под ГНО, м3,

[93]

1 - запас объема жидкости глушения на продавку БП в пласт, м3;

[94]

2) Объем БП больше объема НКТ.

[95]

Первый этап - закачка БП в НКТ в объеме пустотного пространства НКТ (до подвески насоса) на циркуляции при открытой затрубной задвижке на перемещение.

[96]

[97]

где V(БП-цирк) - объем БП закачиваемой при открытой затрубной задвижке, м3;

[98]

V(НКТ) - внутренний объем НКТ, м3;

[99]

V(штанг) - водоизмещение штанг, м3; (при ЭЦН V(штанг)=0);

[100]

Второй этап - закачка в НКТ оставшегося объема БП и ее продавка на забой при закрытой затрубной задвижке жидкостью глушения в объеме:

[101]

[102]

[103]

где V(прод) - объем жидкости глушения закачиваемой на продавку при закрытой затрубной задвижке, м3;

[104]

0,001 - коэффициент перерасчета дм3(л) в м3;

[105]

Vк.(уд) - удельный внутренний объем обсадной колонны под ГНО, дм3/м;

[106]

h(НКТ) - глубина подвески насоса или НКТ, м;

[107]

h(тек.заб.) - глубина текущего забоя, М;

[108]

VНКТ(уд.) - удельный внутренний объем НКТ, дм3/м;

[109]

V(штанг) - водоизмещение штанг,, М3; (при ЭЦН V(штанг)=0);

[110]

V(БП) - объем БП, м3;

[111]

V(скв. под ГНО) - объем скважины под ГНО, м3;

[112]

V(НКТ) - внутренний объем НКТ, м3;

[113]

1 - запас объема жидкости глушения на продавку БП в пласт, м3;

[114]

При продавке БП на забой скважины при глушении методом прямой закачки рекомендуется не превышать предельное давление на подвеску насоса, давление опрессовки колонны и кабельного ввода (как правило, максимально до 60 атм).

[115]

После установки БП на забое скважины операция глушения заканчивается замещением затрубного объема скважинной жидкости расчетным объемом жидкости глушения:

[116]

[117]

где V(замещ.) - объем жидкости глушения закачиваемой в НКТ на циркуляции для замещения затрубной жидкости, м3;

[118]

0,001 - коэффициент перерасчета дм3 в м3;

[119]

Vзатруб. (уд) - удельный объем затрубного пространства, дм3/м;

[120]

h(НКТ) - глубина подвески насоса или НКТ, м;

[121]

1,5 - запас жидкости глушения для полноценной промывки с выходом чистого раствора глушения на устье скважины.

[122]

Установка БП при глушении обратной закачкой:

[123]

1) Первый этап - закачка БП в затрубное пространство и доводка до низа НКТ (или до подвески насоса) на циркуляции при открытой задвижке НКТ на перемещение жидкостью глушения в объеме.

[124]

[125]

где V(цирк) - объем жидкости глушения закачиваемой при открытой задвижке НКТ, м3;

[126]

V(затр.) - объем затрубного пространства до низа НКТ или до подвески насоса, м3;

[127]

V(БП) - объем БП, м3;

[128]

2) Второй этап - продавка БП при закрытой задвижке НКТ жидкостью глушения в объеме:

[129]

[130]

[131]

где V(прод) - объем жидкости глушения закачиваемой на продавку при закрытой задвижке НКТ, м3;

[132]

0,001 - коэффициент перерасчета дм3(л) в м3;

[133]

Vзатр..(уд) - удельный внутренний объем затрубного пространства, дм3/м;

[134]

V(затр.) - объем затрубного пространства до низа НКТ или подвески насоса, м3;

[135]

h(НКТ) - глубина подвески насоса или НКТ, м;

[136]

h(тек.заб.) - глубина текущего забоя, м;

[137]

V(БП) - объем БП, м3;

[138]

V(скв. под ГНО) - объем скважины под ГНО, м3;

[139]

1 - запас объема жидкости глушения на продавку БП в пласт, м3.

[140]

При продавке БП к забою скважины методом обратной закачки рекомендуется не превышать давление опрессовки кабельного ввода (как правило, 80 атм), давления опрессовки эксплуатационной колонны.

[141]

В качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора. При этом в качестве гидрофобизатора как для скважин с приемистостью ниже 350 м3/сут, так и для скважин с приемистостью выше 350 м3/сут, можно использовать, в частности, гидрофобизаторы марок ИВВ-1 или ЧАС-М с содержанием 2% об.

[142]

Гидрофобизатор «ИВВ-1» выпускается по ТУ 2482-111-56856807-2016 и представляет собой смесь алкилдиметилбензиламоний хлорида и четвертичной амониевой соли третичного амина, получаемый путем конденсации алкилдиметиламина и бензилхлорида.

[143]

Гидрофобизатор «ЧАС-М» выпускается по ТУ 20.41.20-125-56856807-2017 и представляет собой водно-спиртовой раствор четвертичных аммониевых солей алкилдиметиламина.

[144]

После установки БП заполняют и промывают «до чистого» оставшийся объем (затрубный или трубный) водным раствором ПАВ, закрывают трубную и затрубную задвижки, оставляют скважину на уравновешивание в течение 1 часа. После чего измеряют избыточное давление в затрубном и трубном пространстве и, при необходимости, уравновешивают. Стравливают избыточное давление через технологические трубки на желобную емкость.

[145]

БП считается установленной в заданном интервале при прокачке расчетного количества жидкости глушения на доставку по лифту (в режиме циркуляции), и продавке расчетного количества жидкости глушения при его установке на забой скважины (в режиме продавки). По окончании режима продавки, возможен рост устьевого давления на 15-20 атм при посадке БП на забой.

[146]

Для предотвращения преждевременного выноса БП из ПЗП при проведении спускоподъемных операций на скважине, заглушенной с использованием БП, запрещается превышать предельную скорость подъема подземного скважинного оборудования.

[147]

Удаление блокирующей пачки рекомендуется проводить путем перевода скважины на нефть и вызовом притока флюидов в скважину. В случае отсутствия возможности перевода скважины на нефть, допускается проводить удаление БП путем перевода скважины на водный раствор ПАВ и вызовом притока жидкости в скважину. Приток в скважину можно вызвать классическими методами освоения скважины. Не рекомендуется вызывать приток жидкости в скважину пуском ЭЦН. Остатки БП в каналах фильтрации углеводородов разрушаются самопроизвольно в ходе притока продукции скважины в течение первых суток.

[148]

Для удаления БП без вызова притока из пласта, необходимо произвести закачку подготовленной нефти в интервал установки БП. Рекомендуемый расход нефти: объем 0,6-0,8 м3 на 1 м3 БП с продавкой в пласт.

[149]

Лабораторные исследования физических свойств ЭСС

[150]

Для исследования физических свойств ЭСС были подготовлены образцы с различным объемным содержанием компонентов.

[151]

В результате проведения экспериментов определялись следующие параметры ЭСС:

[152]

- Плотность;

[153]

- Агрегативная устойчивость;

[154]

- Термостабильность;

[155]

- Кинематическая вязкость.

[156]

После приготовления образцов ЭСС производилась их выдержка не менее 2 часов при комнатной температуре до начала проведения экспериментов.

[157]

Исследование плотности ЭСС Результаты измерения плотности ЭСС пикнометрическим методом представлены на фиг. 3 и 4.

[158]

Исследование агрегативной устойчивости ЭСС Агрегативная устойчивость - это способность ЭСС сохранять степень дисперсности внутренней фазы. Оценку проводили экспериментально по показателю электростабильности -измерений значений электрического напряжения, соответствующего моменту разрушения ЭСС, заключенной между электродами измерительной ячейки прибора. Эксперименты проводились на приборе марки FANN. Результаты измерения агрегативной устойчивости (электростабильности) ЭСС представлены на фиг. 5, 6 и 7.

[159]

Исследование термостабильности ЭСС Измерение термостабильности ЭСС проводили путем их выдержки в мерных герметично закрытых цилиндрах в термошкафу в течение 24 часов при заданном температурном режиме 80°C. Тест считался положительным (образец стабилен), если после 6 ч термостатирования из ЭСС отделилось не более 2 об. % воды от общего объема водной составляющей ЭСС. В результате экспериментов на термостабильность определено, что все образцы стабильны в течение 24 часов.

[160]

Исследование кинематической вязкости ЭСС Результаты исследований кинематической вязкости ЭСС представлены на фиг. 8, 9 и 10. Измерения проводились при температуре 20°C (погрешность измерения температуры ± 0,1°C) на вискозиметре ВПЖ-2 с константой вискозиметра - 0,09764. Перед экспериментами ЭСС перемешивали в механической мешалке при заданной скорости 1200 об/мин в течение 20 минут.

[161]

Результаты комплекса проведенных базовых лабораторных исследований физических свойств ЭСС подтвердили высокие технологические свойства разработанного состава. Особенно важными параметрами с точки зрения промышленного применения ЭСС являются высокая термостабильность и агрегативная устойчивость, а также возможность регулировать вязкостные свойства ЭСС изменяя объемную долю составляющих компонентов в зависимости от фильтрационно-емкостных и геолого-физических характеристик ПЗП.

[162]

Далее приведены примеры осуществления способа глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта при приемистости скважин ниже и выше 350 м3/сут.

Как компенсировать расходы
на инновационную разработку
Похожие патенты