патент
№ RU 2564056
МПК B64G7/00

СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА

Авторы:
Смирнов Александр Сергеевич Пожалов Вячеслав Михайлович Митрофанов Михаил Сергеевич
Все (4)
Номер заявки
2014121836/11
Дата подачи заявки
30.05.2014
Опубликовано
27.09.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области космической техники, а именно к наземной отработке теплового режима космических аппаратов. Способ тепловакуумных испытаний космического аппарата заключается в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, и воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков. На КА воздействуют созданной имитатором внешних тепловых потоков температурой, эквивалентной среднерадиационному значению равновесных температур внешних поверхностей КА в орбитальном полете. Температуру определяют тепловым расчетом без учета внутреннего теплового нагружения КА. Одновременно воспроизводят внутреннее тепловое нагружение КА, соответствующее штатной циклограмме энергопотребления КА в орбитальном полете, которое осуществляют включением приборов КА с помощью наземной контрольно-проверочной аппаратуры. Техническим результатом изобретения является снижение трудо- и энергозатрат с одновременным получением результатов с необходимой степенью достоверности. 1 ил.

Формула изобретения

Способ тепловакуумных испытаний космического аппарата (КА), заключающийся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков, размещенного в вакуумной камере, отличающийся тем, что на КА воздействуют созданной имитатором внешних тепловых потоков температурой, эквивалентной среднерадиационному значению равновесных температур внешних поверхностей КА в орбитальном полете, причем температура определена тепловым расчетом без учета внутреннего теплового нагружения КА, при этом одновременно воспроизводят внутреннее тепловое нагружение КА, соответствующее штатной циклограмме энергопотребления КА в орбитальном полете, которое осуществляют включением приборов КА с помощью наземной контрольно-проверочной аппаратуры.

Описание

[1]

Техническое решение относится к области космической техники, а более конкретно к наземной отработке теплового режима космических аппаратов преимущественно микро- и малого класса, корпус которых образован тепловыми сотопанелями.

[2]

Накопленный за последние несколько десятилетий опыт определения внешних тепловых потоков, расчетов теплового режима КА, результаты которых показывают хорошую сходимость с данными летных испытаний, дает основание предложить новый подход к проведению тепловакуумных испытаний (ТВИ), отличающийся от традиционного существенным снижением трудо- и энергозатрат.

[3]

Широко известны способы тепловакуумных испытаний КА в вакуумной камере с криоэкранами с имитацией внешних воздействий, заключающиеся в вакуумировании камеры до давления, исключающего конвективный теплообмен в камере, захолаживании криоэкранов для имитации холода окружающего космического пространства и облучении наружных поверхностей КА тепловым потоком от имитатора солнечного излучения. Указанные способы испытаний и устройства для их осуществления описаны как в научно-технической литературе (см. Моделирование тепловых режимов КА и окружающей его среды. Под ред. академика Петрова Г.И., 1971 г.; О.Б. Андрейчук, Н.Н. Малахов. Тепловые испытания космических аппаратов. Машиностроение, 1982), так и в источниках патентной информации (см. патент РФ 2208564, B64G 7/00, 2003 г. Способ тепловакуумных испытаний и устройство для его реализации; патент РФ 2302984, B64G 7/00, 2007 г. Способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов).

[4]

Известные способы ТВИ решают задачу повышения достоверности имитации внешних тепловых потоков при наземной отработке теплового режима КА, а следовательно, и увеличения точности тепловакуумных испытаний.

[5]

К недостаткам способов испытаний следует отнести большие трудозатраты и энергозатраты, обусловленные:

[6]

- большим расходом дорогостоящего жидкого азота при захолаживании криоэкранов;

[7]

- длительным временем выхода вакуумной камеры на низкий температурный режим;

[8]

- высокой стоимостью имитатора солнечного излучения и его значительным энергопотреблением.

[9]

Целью предложенного технического решения является устранение указанных недостатков, а именно снижение трудо- и энергозатрат при обеспечении необходимой степени достоверности ТВИ.

[10]

Поставленная цель достигнута тем, что в способе тепловакуумных испытаний космического аппарата, заключающемся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков, размещенного в вакуумной камере, на КА воздействуют созданной имитатором внешних тепловых потоков температурой, эквивалентной среднерадиационному значению равновесных температур внешних поверхностей КА в орбитальном полете, причем температура определена тепловым расчетом без учета внутреннего теплового нагружения КА, при этом одновременно воспроизводят внутреннее тепловое нагружение КА, соответствующее штатной циклограмме энергопотребления КА в орбитальном полете, которое осуществляют включением приборов КА с помощью наземной контрольно-проверочной аппаратуры.

[11]

Сущность предложенного технического решения заключается в следующем.

[12]

Перед проведением ТВИ поверочным расчетом теплового режима КА определяют среднерадиационное значение равновесных температур внешних поверхностей КА на условия воздействия натурных внешних тепловых потоков для экстремальных в тепловом отношении режимов эксплуатации - «переохлаждения» и «перегрева». Указанный расчет проводится без учета внутреннего теплового нагружения КА, т.е. тепловыделение бортовой аппаратуры принимается равным нулю.

[13]

Начальный этап испытаний по предложенному способу не отличается от традиционного - изделие (КА) помещают в камеру, которую начинают вакуумировать до давления, исключающего конвективный теплообмен (например, до давления 10-5 Па).

[14]

При этом в камере размещен имитатор внешних тепловых потоков, представляющий собой экран, внутри которого устанавливают испытываемый КА. На указанном экране поддерживают предварительно определенное среднерадиационное значение равновесных температур КА для одного из режимов эксплуатации - «переохлаждения» или «перегрева».

[15]

Среднерадиационная равновесная температура для большинства КА, совершающих орбитальный околоземный полет, находится в пределах от 0 до ~ минус 50°C, что существенно выше, чем температура охлаждаемых жидким азотом криоэкранов - минус 160 - минус 180°C, используемых в известных способах испытаний. В предложенном способе ТВИ экран (имитатор внешних тепловых потоков) охлаждается широко применяемыми в наземных холодильных установках холодоносителями - фреонами, антифризами, аммиаком и т.п.

[16]

На внешней поверхности экрана устанавливают экранно-вакуумную теплоизоляцию, которая уменьшает тепловые потери и обеспечивает стабильное значение необходимой температуры.

[17]

Одновременно с вакуумированием камеры и захолаживанием экрана включают с помощью наземной контрольно-проверочной аппаратуры бортовые приборы КА, энергопотребление (тепловыделение) которых соответствует одному из режимов эксплуатации, а также и испытаний - «переохлаждения» или «перегрева».

[18]

Функционирование приборов обуславливает нагрев конструкции КА, в том числе и внешних поверхностей, с которых тепловой поток излучением сбрасывается на экран - имитатор внешних тепловых потоков. При этом между экраном и поверхностью КА устанавливается равновесное состояние, обеспечиваемое работой холодильной установки, которая поддерживает на экране рассчитанную ранее равновесную температуру (т.е. отводит тепловыделение приборов КА).

[19]

Каждый из режимов испытаний проводят до стационарного состояния, характеризуемого неизменностью контролируемых в определенных зонах КА значений температур. По полученным в процессе ТВИ данным делается вывод об обеспечении теплового режима КА и допуске его к натурным испытаниям.

[20]

Следует отметить, что, по мнению авторов, предложенный способ тепловакуумных испытаний наиболее приемлем для КА микро- и малого класса массой до 102 кг и энергопотреблением до 102 Вт. Конструкция КА предпочтительно должна быть образована тепловыми сотопанелями с хорошей тепловой связью между ними, а наружные поверхности КА, кроме радиационного теплообменника и необходимых поверхностей внешних агрегатов (антенн, приемопередающих устройств), теплоизолированы.

[21]

Предложенное техническое решение поясняется схемой стенда для тепловакуумных испытаний КА, на которой введены обозначения:

[22]

1 - вакуумная камера;

[23]

2 - экран-имитатор внешних тепловых потоков;

[24]

3 - космический аппарат;

[25]

4 - система вакуумирования камеры;

[26]

5 - холодильная установка;

[27]

6 - контрольно-проверочная аппаратура с системой измерений;

[28]

7 - теплоизоляция экрана.

[29]

Таким образом, предложенным способом тепловакуумных испытаний осуществлено моделирование теплового режима КА, по внешнему воздействию эквивалентное воздействию на КА натурных тепловых потоков, с помощью имитатора внешних тепловых потоков, который воспроизводит среднюю равновесную температуру внешних поверхностей КА в орбитальном полете, предварительно определенную тепловым расчетом.

[30]

Положительный эффект предложенного способа тепловакуумных испытаний заключается в существенном снижении материальных, трудо- и энергозатрат с одновременным получением результатов с необходимой достоверностью.

Как компенсировать расходы
на инновационную разработку
Похожие патенты