патент
№ RU 2635211
МПК C22B34/12

СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННОГО ГУБЧАТОГО ТИТАНА

Авторы:
Рымкевич Дмитрий Анатольевич Тетерин Валерий Владимирович Пермяков Андрей Александрович
Все (15)
Правообладатель:
Все (2)
Номер заявки
2016132113
Дата подачи заявки
03.08.2016
Опубликовано
09.11.2017
Страна
RU
Дата приоритета
21.06.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к cпособу получения легированного губчатого титана, содержащего ванадий. Способ включает приготовление смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия. Очищенный тетрахлорид ванадия получают хлорированием очищенного окситрихлорида ванадия четыреххлористым углеродом. Соотношение смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия поддерживают в пределах 1:(0,7-1,0). При этом смесь подают на восстановление сначала в течение одного часа при скорости подачи смеси не более 100 кг/час и затем при скорости подачи не более 150 кг/час. В процессе подачи смеси поддерживают постоянную температуру и постоянное избыточное давление аргона. При восстановлении периодически сливают хлорид магния. Изобретение позволяет получить легированный губчатый титан однородный по составу, а также с заданным содержанием легирующего металла. 11 з.п. ф-лы.

Формула изобретения

1. Способ получения легированного губчатого титана, содержащего ванадий, включающий приготовление смеси тетрахлорида титана и тетрахлорида ванадия, подачу смеси на восстановление металлическим магнием при избыточном давлении аргона и вакуумтермическую очистку блока легированного губчатого титана от примесей, отличающийся тем, что смесь готовят из очищенного тетрахлорида титана и очищенного тетрахлорида ванадия, полученного хлорированием очищенного окситрихлорида ванадия четыреххлористым углеродом, смесь перемешивают и подают на восстановление сначала в течение одного часа при скорости подачи смеси не более 100 кг/час и затем при скорости подачи не более 150 кг/час при поддержке в процессе подачи смеси постоянной температуры и постоянного избыточного давления аргона, при этом восстановление ведут при периодическом сливе хлорида магния.
2. Способ по п. 1, отличающийся тем, что смесь очищенного тетрахлорида титана и очищенного тетрахлорида ванадия готовят при соотношении, равном 1:(0,7-1,0).
3. Способ по п. 1, отличающийся тем, что приготовление смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия проводят в герметичной емкости, при этом последовательно в емкость заливают очищенный тетрахлорид титана, а затем очищенный тетрахлорид ванадия.
4. Способ по п. 1, отличающийся тем, что смесь очищенного тетрахлорида титана и очищенного тетрахлорида ванадия дополнительно перемешивают путем подачи смеси самотеком из одной герметичной емкости в другую, и затем перекачку смеси обратно.
5. Способ по п. 4, отличающийся тем, что смесь перекачивают из одной герметичной емкости в другую и обратно не менее 3 раз.
6. Способ по п. 1, отличающийся тем, что очищенный тетрахлорида ванадия получают хлорированием очищенного окситрихлорида ванадия четыреххлористым углеродом при соотношении, равном 1:(0,4-0,5).
7. Способ по п. 1, отличающийся тем, что хлорирование очищенного окситрихлорида ванадия четыреххлористым углеродом проводят в герметичной емкости, при этом последовательно в емкость заливают очищенный окситрихлорид ванадия, а затем четыреххлористый углерод.
8. Способ по п. 1, отличающийся тем, что хлорирование очищенного окситрихлорида ванадия четыреххлористым углеродом проводят при температуре 500-700°C.
9. Способ по п. 1, отличающийся тем, что хлорирование очищенного окситрихлорида ванадия четыреххлористым углеродом проводят при непрерывном перемешивании.
10. Способ по п. 1, отличающийся тем, что процесс восстановления проводят при температуре 850-860°C.
11. Способ по п. 1, отличающийся тем, что процесс восстановления проводят при избыточном давлении аргона 4,9-19,6 кПа.
12. Способ по п. 1, отличающийся тем, что аргон перед подачей его на восстановление предварительно очищают от примесей азота и кислорода.

Описание

Изобретение относится к цветной металлургии, а именно к получению легированного губчатого титана магниетермическим восстановлением.

Известен способ получения легированного губчатого титана (ст. Металлотермическое получение легированного титана. - Сандлер Р.А., Захаревич А.А., Голубева О.А. - Ж. Цветные металлы, 1985, №8, стр. 84-90), в котором экспериментально подтверждено, что для получения равномерно легированного губчатого титана оптимальным является процесс металлотермического восстановления при одновременном введении в реактор многокомпонентного хлоридного расплава и восстановителя. Недостатками способа являются то, что использование сложных многокомпонентных расплавов должно выполняться в условиях, исключающих нарушение однородности вводимой смеси в ходе процесса металлотермического восстановления, а это исключает возможность получения легированного губчатого титана заданного состава, высокое содержание примесей в полученном продукте, и невысокая производительность процесса.

Известен способ получения легированного губчатого титана из ванадийсодержащих отходов титанового производства (Ст. Получение титано-ванадиевой губки магниетермическим восстановлением смеси тетрахлорида титана и ванадия. - А.Н. Зеликман, А.И. Чепрасов. - Ж. Цветные металлы, №8, 1983, стр. 4-8), по количеству общих признаков принятый за ближайший аналог-прототип. Способ включает три основных передела: хлорирование окситрихлорида ванадия в смеси с тетрахлоридом титана в солевом расплаве в присутствии углеродистого восстановителя с получением конденсата тетрахлорида ванадия-тетрахлорида титана, ректификационную очистку тетрахлорида ванадия, магниетермическое восстановление. В солевой расплав (состав, % (по массе): 50-80KCL, 5-10 NaCl, 8-10 CaCl2, 4-5 MgCl2 предварительно в течение 1,5 ч пропускали хлор, затем загружали просушенный активированный уголь и продолжали хлорирование еще в течение 0,5 ч (восстановитель добавляли далее каждые 4 часа). Затем, не прекращая подачи хлора, начинали подавать исходную жидкость - очищенный окситрихлорид ванадия и чистый тетрахлорид титана. Полученный в процессе хлорирования продукт, содержащий более 1,6-1,7% V+5, подвергали экстрактивной ректификационной очистке. Очищенные от окиситрихлорида ванадия раствор тетрахлорида ванадия - тетрахлорида титана использовали в качестве исходного сырья для магниетермического получения титан-ванадиевой губки. Процесс проводили при температуре 780-800°C и при коэффициенте использования магния 50%. Процесс восстановления вели без слива хлористого магния. Полученный в процессе восстановления легированный губчатый титан подвергали вакуумной сепарации при температуре 960°C. Структура полученной легированного губчатого титана от крупнодендритной до мелковолокнистой.

Недостатком способа является низкое качество легированного губчатого титана за счет высокого содержания примесей железа и кислорода в полученном продукте, что не позволяет использовать его для получения сплавов титана специального назначения. Кроме того, при хлорировании в солевом расплаве образуется солевые отходы производства, содержащие токсичные соединения ванадия, вещества 3 класса опасности, что требует создания специальных условий для их захоронения.

Технический результат направлен на устранение недостатков прототипа и позволяет получить легированный губчатый титан однородный по составу, а также с заданным содержанием легирующего металла.

Задачей, на которую направлено изобретение, является получение легированного губчатого титана заданного состава, что позволяет использовать его для получения титановых сплавов специального назначения, и повышение производительности процесса.

Технический результат достигается тем, что в способе получения легированного губчатого титана, включающем приготовление смеси тетрахлорида титана и тетрахлорида ванадия, подачу смеси на процесс восстановления металлическим магнием при избыточном давлении аргона, вакуумтермическую очистку блока легированного губчатого титана от примесей, новым является то, что готовят смесь очищенного тетрахлорида титана и очищенного тетрахлорида ванадия, полученного хлорированием очищенного окситрихлорида ванадия четыреххлористым углеродом, смесь дополнительно перемешивают и подают на процесс восстановления сначала в течение одного часа при скорости подачи смеси не более 100 кг/час и затем при скорости подачи не более 150 кг/час, поддерживая в процессе подачи смеси постоянную температуру и постоянное избыточное давление аргона, в процессе восстановления периодически сливают хлорид магния.

Кроме того, смесь очищенного тетрахлорида титана и очищенного тетрахлорида ванадия готовят при соотношении, равном 1:(0,7-1,0).

Кроме того, приготовление смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия проводят в герметичной емкости, при этом последовательно в емкость заливают очищенный тетрахлорид титана, а затем очищенный тетрахлорид ванадия.

Кроме того, смесь очищенного тетрахлорида титана и очищенного тетрахлорида ванадия дополнительно перемешивают путем подачи смеси самотеком из одной герметичной емкости в другую, и затем перекачку смеси обратно.

Кроме того, смесь перекачивают из одной герметичной емкости в другую и обратно не менее 3 раз.

Кроме того, получают очищенный тетрахлорида ванадия хлорированием очищенного окситрихлорида ванадия четыреххлористым углеродом при соотношении, равном 1:(0,4-0,5).

Кроме того, хлорирование очищенного окситрихлорида ванадия четыреххлористым углеродом проводят в герметичной емкости, при этом последовательно в емкость заливают очищенный окситрихлорид ванадия, а затем четыреххлористый углерод.

Кроме того, хлорирование очищенного окситрихлорида ванадия четыреххлористым углеродом проводят при температуре 500-700°C.

Кроме того, хлорирование очищенного окситрихлорида ванадия четыреххлористым углеродом проводят при непрерывном перемешивании.

Кроме того, процесс восстановления проводят при температуре 850-860°C.

Кроме того, процесс восстановления проводят при избыточном давлении аргона 4,9-19,6 кПа.

Кроме того, аргон перед подачей его на процесс восстановления предварительно чистят от примесей азота и кислорода.

Выбранные экспериментальными исследованиями условия и режимы приготовления смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия при соотношении, равном 1:(0,7-1,0) и дополнительное перемешивание смеси позволяют создать оптимальные условия процесса и получить легированный губчатый титан с заданным содержанием ванадия, что позволяет использовать его при изготовлении сплавов титана особого назначения.

Подача смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия на восстановление сначала в течение одного часа при скорости подачи смеси не более 100 кг/час и затем при скорости подачи не более 150 кг/час, поддерживая в процессе подачи смеси постоянную температуру и постоянное избыточное давление аргона, позволяет получить легированный губчатый титан заданного состава для получения сплава титана специального назначения, а также повысить срок службы оборудования за счет уменьшения коррозии материала патрубка для подачи смеси и аппарата восстановления.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения легированного губчатого титана, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию "новизна".

Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. В заявленном изобретении имеется новая совокупность признаков, и новые условия осуществления действий. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".

Промышленную применимость предлагаемого изобретения подтверждает следующий пример осуществления способа получения легированного губчатого титана.

Предварительно готовят очищенный тетрахлорид ванадия хлорированием очищенного окситрихлорида ванадия (ТУ 1761-486-05785388-2015) четыреххлористым углеродом (ГОСТ 20288-74) в герметичном аппарате, состоящем из реторты и крышки. После герметичный аппарат устанавливают в электропечь типа УКР-37Б. Из аппарата откачивают воздух (вакуумируют). После вакуумирования в аппарат задают предварительно очищенный аргон до значения 0,005 кПа. Очистку аргона проводят путем пропускания его через слой губчатого титана при температуре 800°C в герметичном реакторе. Губчатый титан взаимодействует с присутствующим в аргоне кислородом и азотом и происходит очистка аргона. Очищенный аргон соответствует ГОСТ 10157-79. В реторту через патрубок на крышке подают очищенный окситрихлорид ванадия в количестве 2700 кг и четыреххлористый углерод в количестве 1200 кг, поддерживая соотношение, равное 1:0,44. Залитые в аппарат жидкости непрерывно перемешивают механической лопастной мешалкой в атмосфере аргона с одновременным разогревом получаемой смеси до температуры 600°C. В течение всего процесса хлорирования поддерживают заданный температурный режим 500-700°C с помощью системы автоматического регулирования. В аппарате происходит образование очищенного тетрахлорида ванадия:

2VOCl3+CCl4=2VCl4+CO2+Cl2.

Отходящие газы, содержащие VCl4, CO2, Cl2, удаляют из аппарата в кожухотрубный теплообменник, охлаждаемый водой, где при температуре не выше 140°C происходит конденсация паров очищенного тетрахлорида ванадия. Конденсат сливается с теплообменника и накапливается в емкости для сбора и хранения очищенного тетрахлорида ванадия, несконденсированные газы поступают на газоочистную систему, где газы очищают щелочным сорбентом (растворами известкового молока или едкого натра). При прекращении выделения тетрахлорида ванадия, достижении уровня смеси в аппарате ниже лопастей перемешивающего устройства, перемешивающее устройство отключают. Отключают также разогрев печи. В аппарат задают аргон до давления от 0,035 до 0,065 МПа для передавливания не прореагировавшей части смеси по трубе, нижний срез которой опущен на глубину не менее высоты реторты. Передавливание жидкости производят в герметичную емкость, где она хранится под аргоном до последующего ее использования.

Готовят смесь очищенного тетрахлорида титана и очищенного тетрахлорида ванадия. Для этого в герметичную емкость, например напорный бак, последовательно заливают очищенный тетрахлорид титана (ТУ 1715-455-03785388-2011) в количестве 3141 кг, а затем через верхний патрубок емкости с помощью воронки заливают очищенный тетрахлорид ванадия в количестве 3000 кг, поддерживая соотношение, равное 1:0,96. Для повышения однородности смесь терахлорид титана и тетрахлорид ванадия дополнительно перемешивают. Для этого смесь самотеком сливают по трубопроводу во вторую герметичную емкость, и затем с помощью герметичного насоса типа ЦНГ-68 смесь подают обратно в первую герметичную емкость. Такое перемешивание проводят 3 раза. Очистку аргона проводят путем пропускания его через слой губчатого титана при температуре 800°C в герметичном реакторе. Губчатый титан активно взаимодействует с присутствующим в аргоне кислородом и азотом и происходит очистка аргона. Очищенный аргон (ГОСТ 10157-79) подают на процесс восстановления магнием смеси очищенного тетрахлоридов титана и очищенного тетрахлорида ванадия. Реторту герметично закрывают крышкой с патрубками для подачи магния и смеси присоединяют сливное устройство, подсоединяют к трубопроводу для подачи аргона и устанавливают в электропечь типа СШО (шахтная печь сопротивления). В реторту заливают магний (ТУ 1714-004-05785388-2012) в количестве 1562 кг, аппарат восстановления разогревают до температуры 850°C, создают избыточное давление 19,6 кПа и начинают подачу смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия через патрубок в реторту первоначально в течение часа со скоростью подачи смеси не более 100 кг/час и затем со скоростью подачи не более 150 кг/час. В течение всего времени подачи смеси в аппарат процесс восстановления проводят при поддерживании постоянных режимов без отклонений от заданных значений (при температуре 850°C и избыточном давлении 19,6 кПа). Суммарная реакция складывается из параллельно последовательных реакций:

VCl4+2Mg=V+2MgCl2

TiCl4+2Mg=Ti+2MgCl2

V+T=TiV

Процесс ведут до коэффициента использования магния, равного 55%. В результате восстановления смеси очищенного тетрахлорида титана и очищенного тетрахлорида магнием в аппарате образуется легированный губчатый титан в твердом виде, поры которого заполнены жидким магнием и хлористым магнием. Так как плотность хлористого магния больше плотности магния, то он концентрируется в нижней части аппарата, и его периодически сливают через сливное устройство в короб. Полученный в аппарате восстановления блок легированного губчатого титана подвергают вакуумтермической очистке. Для этого проводят демонтаж реторты из печи, охлаждение и установку на него реторты-конденсатора с охладителем. Собранный аппарат устанавливают в вакуумную электропечь типа СШВ (шахтная вакуумная печь сопротивления), подключают к вакуумным насосам и начинают процесс очистки легированного губчатого титана от магния и хлорида магния. Процесс вакуумтермической очистки основан на способности магния и хлористого магния интенсивно испаряться при высоких температурах в условиях глубокого вакуумметрического давления с последующей конденсацией в охлаждаемой зоне аппарата. Процесс проводят в вакууме при температуре 1020°C. По окончании процесса вакуумтермической очистки блок легированного губчатого титана в реторте охлаждают в атмосфере аргона: сначала в печи, затем в холодильнике. Из реторты после удаления гарниссажа производят извлечение блока легированного губчатого титана с помощью крана. Блок обрабатывают с помощью отбойных молотков и измельчают. В результате получают 1585 кг легированного губчатого титана, при массовом соотношении титан:ванадий, равном 1:1, с содержанием железа - 0,06 мас. %, кремния - 0,02 мас. %, углерода - 0,03 мас. %, хлора - 0,08 мас. %, азота - 0,02 мас. %, кислорода - 0,04 мас. %.

Как компенсировать расходы
на инновационную разработку
Похожие патенты