патент
№ RU 2665998
МПК B64G5/00

ПОДВИЖНЫЙ АГРЕГАТ ДЛЯ ТЕРМОСТАТИРОВАНИЯ И ГАЗОНАСЫЩЕНИЯ КОМПОНЕНТОВ РАКЕТНОГО ТОПЛИВА И ЗАПРАВКИ РАКЕТНОЙ ТЕХНИКИ КОМПОНЕНТАМИ РАКЕТНОГО ТОПЛИВА

Авторы:
Назаренко Вадим Вадимович Лемешев Святослав Валентинович Горяев Андрей Николаевич
Все (8)
Номер заявки
2017123339
Дата подачи заявки
03.07.2017
Опубликовано
05.09.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к наземному оборудованию для изделий ракетно-космической техники. Подвижный агрегат (3) содержит емкость (8) для перевозки компонентов ракетного топлива (КРТ) на высокопроходимой колесной базе (2). Емкость (8) соединена с теплообменником (9) для термостатирования КРТ и оснащена душевой установкой (5) с трубопроводами и форсунками (6), распыляющими КРТ через газовую подушку (7). Давление в подушке (7) поддерживается сжатым газом из баллонов (4). Насосный агрегат (15) служит для перемешивания КРТ в емкости (8) при проведении термостатирования и/или газонасыщения. Он соединен с емкостью (14) для приема КРТ и с дозирующей установкой (13), через которую заправляется ракета-носитель. Система управления технологическим оборудованием подвижного агрегата (3) размещена в шкафах (17). Технический результат состоит в сокращении численности расчета, количества опасных операций и потребного оборудования, вероятности утечки при работах с КРТ, в обеспечении мобильности. 2 ил.

Формула изобретения

Подвижный агрегат для термостатирования, газонасыщения и заправки ракетной техники компонентами ракетного топлива, содержащий емкость для перевозки компонентов ракетного топлива, размещенную на высокопроходимой колесной базе, транспортируемой тягачом повышенной проходимости, предназначенным для движения по всем видам дорог и местности, отличающийся тем, что емкость для перевозки компонентов ракетного топлива соединена с теплообменником, предназначенным для термостатирования компонентов ракетного топлива, и оснащена душевой установкой, выполненной в виде системы трубопроводов с форсунками, распыляющими компоненты ракетного топлива через газовую подушку, давление в которой поддерживается путем подачи сжатого газа из баллонов, размещенных в подвижном агрегате, насосный агрегат, осуществляющий перемешивание компонентов ракетного топлива в емкости для их перевозки при проведении термостатирования и/или газонасыщения, соединен трубопроводом с емкостью для приема компонентов ракетного топлива и с дозирующей установкой, из которой по трубопроводу подачи компонентов ракетного топлива в заправляемую ракету-носитель поступает установленная доза компонентов, при этом система управления технологическим оборудованием размещена в шкафах управления технологическим оборудованием и соединена с вышеперечисленными элементами подвижного агрегата трубопроводами, кабелями и магистралями.

Описание

[1]

Изобретение относится к устройствам заправки летательных аппаратов компонентами жидкого ракетного топлива и может быть использовано в ракетно-космической технике.

[2]

Известен автомобильный полуприцеп для транспортирования компонента жидкого ракетного топлива, например, жидкого водорода, содержащий теплоизолированную цистерну, отсек для размещения контрольно-измерительных приборов, предохранительное устройство, сливо-наливное и другое необходимое оборудование (см. книгу: В.Н. Зрелов, Е.П. Серегин. Жидкие ракетные топлива. М.: Химия, 1975, с. 62-65, рис. 41).

[3]

К недостаткам этого технического решения можно отнести отсутствие автоматизации и, следовательно, низкую надежность проведения работ, а также ограниченную возможность, связанную только с транспортированием компонента жидкого ракетного топлива.

[4]

Известен автотопливозаправщик, содержащий тягач, соединенный с полуприцепом-цистерной, связанной с наполнительной магистралью, снабженной наполнительным клапаном, соединенным с сигнализатором наполнения (см. патент RU №2206478, МПК: B64F 1/28, B60S 5/02, B65D 88/12, B67D 5/04, В60Р 3/24, 20.06.2003 г.).

[5]

К недостаткам известного топливозаправщика относятся низкая надежность работы и ограниченность его применения, поскольку он предназначен только для наполнения цистерны, поэтому без существенных доработок он не может быть использован для заправки, например ракет-носителей и космических аппаратов на стартовых комплексах.

[6]

Известен автозаправщик для заправки летательных аппаратов компонентом жидкого ракетного топлива, содержащий тягач, соединенный с полуприцепом и цистерной, пневмогидросистему, включающую насосный агрегат, запорную арматуру, контрольно-измерительные приборы, раздаточные штуцеры с постоянно пристыкованными шлангами и систему управления (см. патент RU №2286289 С2, МПК: B64F 1/00, B67D 5/04, B60S 5/02, В60Р 3/22, 27.10.2006 г.).

[7]

К недостаткам известного автозаправщика относятся невозможность заполнения цистерны автозаправщика компонентом (например, керосином) из средства его доставки - контейнера-цистерны, невозможность поддерживать температурные режимы заправки ракеты-носителя в требуемых пределах, невозможность охлаждения компонента топлива, например, керосина, в цистерне автозаправщика.

[8]

Анализ патентов и научно-технической литературы показал, что по технической сущности и достигаемому результату подвижный агрегат по патенту RU 82677 U1 (МПК B64G 1/00, 10.05.2009 г.) является наиболее близким к предлагаемому изобретению и выбран в качестве прототипа.

[9]

Известный подвижный агрегат предназначен для заправки летательных аппаратов компонентом жидкого ракетного топлива, для проведения охлаждения компонентов жидкого ракетного топлива с помощью внешних стационарных средств, содержит тягач, соединенный с полуприцепом и цистерной, пневмогидросистему, включающую насосный агрегат, запорную арматуру, контрольно-измерительные приборы, раздаточные штуцеры с постоянно пристыкованными шлангами и систему управления.

[10]

К недостаткам прототипа можно отнести следующее:

[11]

- невозможность проведения термостатирования компонентов ракетного топлива без использования стационарного оборудования;

[12]

- невозможность нагрева компонентов ракетного топлива с целью обеспечения заданных температурных параметров;

[13]

- невозможность подготовки компонентов ракетного топлива по степени газосодержания без использования дополнительных систем.

[14]

Кроме того, в известном подвижном агрегате отсутствует возможность насыщения компонентов ракетного топлива растворенными газами, что приводит к невозможности долговременного хранения изделия в заправленном виде.

[15]

Техническим результатом заявленного изобретения является:

[16]

1. Сокращение количества опасных операций по перестыковке магистралей подачи компонентов ракетного топлива.

[17]

2. Обеспечение мобильности при проведении термостатирования и газонасыщения компонентов ракетного топлива.

[18]

3. Сокращение количества задействуемого оборудования при проведении технологических операций подготовки и заправки компонентов ракетного топлива.

[19]

4. Сокращение численности расчета, задействуемого при проведении опасных операций.

[20]

Предлагаемый подвижный агрегат позволяет выполнить безопасную перевозку компонентов ракетного топлива в герметичной емкости, уменьшить количество опасных операций, сократить вероятность утечки компонентов ракетного топлива в ходе сборки-разборки магистралей подачи компонентов ракетного топлива.

[21]

Указанные технические результаты достигаются благодаря тому, что подвижный агрегат для термостатирования, газонасыщения и заправки ракетной техники компонентами ракетного топлива, содержит емкость для перевозки компонентов ракетного топлива (КРТ), размещенную на высокопроходимой колесной базе, транспортируемой тягачом повышенной проходимости, предназначенным для движения по всем видам дорог и местности, при этом емкость для перевозки компонентов ракетного топлива соединена с теплообменником, предназначенным для термостатирования компонентов ракетного топлива, и оснащена душевой установкой, выполненной в виде системы трубопроводов с форсунками, распыляющими компоненты ракетного топлива через газовую подушку, давление в которой поддерживается путем подачи сжатого газа из баллонов, размещенных в подвижном агрегате, насосный агрегат, осуществляющий перемешивание компонентов ракетного топлива в емкости для перевозки КРТ при проведении термостатирования и/или газонасыщения, соединен трубопроводом с емкостью для приема компонентов ракетного топлива и с дозирующей установкой, из которой по трубопроводу подачи компонентов ракетного топлива в заправляемую ракету-носитель поступает установленная доза компонентов, система управления технологическим оборудованием размещена в шкафах управления технологическим оборудованием и соединена с вышеперечисленными элементами подвижного агрегата трубопроводами, кабелями и магистралями.

[22]

Сущность предлагаемого изобретения поясняется чертежами.

[23]

На фиг. 1 представлен общий вид подвижного агрегата для термостатирования, газонасыщения и заправки ракетной техники компонентами ракетного топлива:

[24]

(1) - тягач повышенной проходимости;

[25]

(2) - высокопроходимая колесная база;

[26]

(3) - подвижный агрегат;

[27]

(4) - баллоны со сжатым газом;

[28]

(5) - душевая установка;

[29]

(6) - форсунки;

[30]

(7) - газовая подушка;

[31]

(8) - емкость для перевозки компонентов ракетного топлива;

[32]

(9) - теплообменник;

[33]

(10) - трубопроводы подачи теплоносителя;

[34]

(11) - источник подачи теплоносителя;

[35]

(12) - трубопровод подачи компонентов ракетного топлива в заправляемое изделие (ракета-носитель);

[36]

(13) - дозирующая установка;

[37]

(14) - емкость для приема компонентов ракетного топлива;

[38]

(15) - насосный агрегат;

[39]

(16) - трубопровод забора компонентов ракетного топлива;

[40]

(17) - шкафы управления технологическим оборудованием.

[41]

На фиг. 2 представлена пневмогидравлическая схема подвижного агрегата для термостатирования, газонасыщения и заправки ракетной техники компонентами ракетного топлива:

[42]

(3) - подвижный агрегат;

[43]

(4) - баллоны со сжатым газом;

[44]

(5) - душевая установка;

[45]

(6) - форсунки;

[46]

(8) - емкость для перевозки компонентов ракетного топлива;

[47]

(9) - теплообменник;

[48]

(10) - трубопроводы подачи теплоносителя;

[49]

(12.1, 12.2) - трубопроводы подачи компонентов ракетного топлива в заправляемое изделие (ракета-носитель);

[50]

(13) - дозирующая установка;

[51]

(14) - емкость для приема компонентов ракетного топлива;

[52]

(15) - насосный агрегат;

[53]

(16) - трубопровод забора компонентов ракетного топлива;

[54]

(18) - штуцер для стыковки с дренажной магистралью второго заправочного агрегата (штуцер 20);

[55]

(19) - электропневмоклапаны К2, К4;

[56]

(20) - штуцер для стыковки с дренажной магистралью изделия (штуцером 18 второго агрегата), для дренажа при заборе КРТ в емкость для перевозки компонентов ракетного топлива;

[57]

(21) - трубопроводы отбора проб;

[58]

(22) - фильтр грубой очистки Ф1;

[59]

(23) - смотровое устройство УСМ1;

[60]

(24) - фильтр тонкой очистки АД1;

[61]

(25) - штуцер для стыковки с продуктовой магистралью второго заправочного агрегата (трубопровод 12.1), для забора КРТ в емкость для перевозки компонентов ракетного топлива;

[62]

(26) - манометры МН4, МН6;

[63]

(27) - клапан обратный К01;

[64]

(28) - редуктор КР1;

[65]

(29) - штуцер зарядки баллонов (4) сжатым газом;

[66]

(30) - индикатор уровня ИУ;

[67]

(31) - сигнализатор уровня 2СУ;

[68]

(32) - датчик температуры;

[69]

(33) - дроссельная шайба ДРН2;

[70]

(34) - предохранительная мембрана МБ1;

[71]

(35) - предохранительный клапан КП2;

[72]

(36) - вентили ВН9, ВН10;

[73]

(37) - ручной насос HI;

[74]

(38) - шкаф управления электропневмоклапанами.

[75]

Описание работы подвижного агрегата (3) для термостатирования и газонасыщения компонентов ракетного топлива и заправки ракетной техники компонентами ракетного топлива.

[76]

Подвижный агрегат (3) представляет собой тягач повышенной проходимости (1), перевозящий высокопроходимую колесную базу (2) с размещенным на ней специальным оборудованием, включающим в себя емкость для перевозки компонентов ракетного топлива (8), теплообменник (9), баллоны со сжатым газом (4), дозирующую установку (13), емкость для приема компонентов ракетного топлива (14), насосный агрегат (15), пневмогидравлическое оборудование и другие необходимые элементы.

[77]

1. Зарядка баллонов

[78]

Через штуцер зарядки баллонов (29) в магистрали подвижного агрегата (3) подается сжатый газ под высоким давлением. Для зарядки баллонов со сжатым газом (4) открыть вентили ВН1 и ВН3. Сжатый газ проходит через фильтр грубой очистки Ф1 (22). Контроль зарядки баллонов со сжатым газом производится по манометру МН2. По окончании зарядки баллонов со сжатым газом (4) закрыть вентиль ВН3 и сбросить давление из магистрали.

[79]

2. Подача давления на шкаф управления электропневмоклапанами

[80]

Давление на шкаф управления электропневмоклапанами (38) подается от баллонов (4). Для этого открыть вентили ВН3, ВН2 и настроить редуктор КР1 (28) по манометру МН1.

[81]

3. Проливка насосного агрегата

[82]

Для проливки насосного агрегата (15) наддуть емкость для перевозки компонентов ракетного топлива (8) с помощью баллонов со сжатым газом (4) до избыточного давления - 1 кгс/см2. Для наддува емкости для перевозки компонентов ракетного топлива (8) открыть вентили ВН3, ВН4 и установить по манометру МНЗ редуктором КР2 давление 1 кгс/см2. Далее открыть вентиль ВН6 и наддуть емкость для перевозки компонентов ракетного топлива (8) до давления 1 кгс/см2. Контроль избыточного давления в емкости для перевозки компонентов ракетного топлива производить по манометрам МН4 (26) и МН6 (26), открыв вентиль ВН7. По окончании наддува емкости для перевозки компонентов ракетного топлива (8) закрыть вентиль ВН6. Далее открыть вентили ВН14, ВН16, клапаны К12 и К10, контролировать поступление КРТ в емкость для приема компонента ракетного топлива (14) по смотровому устройству УСМ2, осуществлять пролив в течение 5 минут, закрыть клапан К10, открыть вентиль ВН17, контролировать поступление КРТ в емкость для приема компонентов ракетного топлива (14) по смотровым устройствам УСМ2 и УСМ3 в течение 5 минут. Далее закрыть вентиль ВН17.

[83]

4. Термостатирование и газонасыщение КРТ

[84]

Для проведения термостатирования и газонасыщения КРТ осуществить проливку насосного агрегата (15) (в соответствии с п. 3). Далее осуществить запуск насоса при открытых вентилях ВН14, ВН16, ВН15, ВН11 и ВН7 для контроля давления в емкости для перевозки компонентов ракетного топлива (8) и клапаны К12 и К4 (19). КРТ из емкости для перевозки КРТ (8) при открытых вентилях ВН14, ВН15, ВН16 и клапане К12 подается в межтрубное пространство теплообменника (9), а теплоноситель подается по трубопроводам подачи теплоносителя (10) от источника подачи теплоносителя (11) после открытия вентилей ВН12 и ВН13 в трубки теплообменника (9). КРТ, проходящий через теплообменник (9) поступает при открытом вентиле ВН11 и клапане К4 в емкость для перевозки компонентов ракетного топлива (8) через форсунки (6) душевой установки (5), распыляется через газовую подушку (7) и насыщается газом. Газовая подушка (7) поддерживается с помощью баллонов со сжатым газом (4) открытием вентилей ВН3, ВН4, ВН6 и настройкой редуктора КР2. Нагрев/охлаждение КРТ производится за счет подачи в теплообменник (9) нагретого/охлажденного теплоносителя. Термостатирование может проводиться как одновременно с газонасыщением, так и отдельно, для чего необходимо закрыть клапан К4 и открыть клапан К5.

[85]

5. Заправка изделий

[86]

Заправка изделия (ракеты-носителя) производится после выполнения проливки насосного агрегата (15). К дренажной магистрали изделия пристыковать штуцер для стыковки с дренажной магистралью изделия (20), а трубопроводы подачи компонентов ракетного топлива в заправляемое изделие (12.1, 12.2) к штуцерам продуктовых магистралей изделия первой и второй ступени соответственно. После пролива насосного агрегата (15) при открытых клапанах К2 (19), К12, К6, вентилях ВН14 и ВН16 и открытых клапанах К7 или К8 (в зависимости от заправляемой ступени изделия) подают КРТ через дозирующую установку (13). Дренаж воздушной подушки баков изделия происходит через штуцер для стыковки с дренажной магистралью изделия (20).

[87]

6. Удаление КРТ из емкости для приема компонентов ракетного топлива

[88]

После проливки насосного агрегата (15) необходимо КРТ из емкости для приема компонентов ракетного топлива (14) удалить в емкость для перевозки компонентов ракетного топлива (8). Для этого открыть вентили ВН1, ВН4, ВН5, ВН18 и клапан К10, контролировать убытие КРТ по смотровому устройству УСМ2.

[89]

7. Контроль параметров компонента

[90]

Контроль параметров компонентов ракетного топлива в емкости для перевозки компонентов ракетного топлива (8) производить с помощью:

[91]

- манометров МН4, МН6 (26) - давление в газовой подушке (7) при открытом вентиле ВН7:

[92]

- датчика температуры (32) - температуру компонентов ракетного топлива в емкости для перевозки компонентов ракетного топлива (8);

[93]

- индикатора уровня (30) - процент заполнения емкости для перевозки компонентов ракетного топлива КРТ;

[94]

- сигнализаторов уровня (31) - верхний и нижний уровень КРТ в емкости для перевозки компонентов ракетного топлива (8).

[95]

8. Отбор проб компонента ракетного топлива из емкости для перевозки компонентов ракетного топлива (8)

[96]

Отбор проб компонента ракетного топлива производят для определения качества КРТ в емкости для перевозки компонентов ракетного топлива (8). Для этого подстыковать пробоотборный сосуд к штуцерам трубопроводов отбора проб (21), открыть вентиль ВН10, ВН9 и осуществить прокачку компонента с помощью ручного насоса H1 (37), прохождение КРТ в пробоотборный сосуд контролировать по смотровому устройству УСМ1.

[97]

9. Заполнение емкости для перевозки компонентов ракетного топлива (8)

[98]

Для заполнения емкости для перевозки компонентов ракетного топлива (8) подстыковать подвижный агрегат (3) к источнику подачи КРТ - штуцер для забора КРТ в емкость для перевозки компонентов ракетного топлива (25) и штуцер для дренажа при заборе КРТ в емкость для перевозки компонентов ракетного топлива (20), осуществить заполнение емкости для перевозки компонентов ракетного топлива (8) до срабатывания сигнализатора уровня 1СУ.

Как компенсировать расходы
на инновационную разработку
Похожие патенты