патент
№ RU 2261935
МПК C23C14/06

СПОСОБ ОБРАБОТКИ ИЗДЕЛИЯ С РАВНООСНОЙ СТРУКТУРОЙ ИЗ ЖАРОПРОЧНОГО СПЛАВА

Авторы:
Будиновский С.А.
Номер заявки
2003137754/02
Дата подачи заявки
30.12.2003
Опубликовано
10.10.2005
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[25]

Изобретение относится к области металлургии, в частности к способу обработки изделия с равноосной структурой из жаропрочного сплава, и может найти применение в авиационном и энергетическом машиностроении при изготовлении деталей горячего тракта газотурбинных двигателей. Наносят покрытие из жаропрочного никелевого сплава для монокристального литья на изделие с равноосной структурой из жаропрочного никелевого сплава. Проводят упрочнение путем первой вакуумной термообработки изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия. После этого подвергают пластической деформации поверхность изделия с нанесенным покрытием. Затем осуществляют вторую вакуумную термообработку изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия. Технический результат заключается в продлении срока службы рабочих лопаток турбин из жаропрочных сплавов, не содержащих редких и дорогостоящих легирующих элементов, в снижении трудоемкости, энергоемкости и стоимости производства газотурбинных двигателей. 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ обработки изделия с равноосной структурой из жаропрочного никелевого сплава, включающий нанесение покрытия на поверхность изделия и последующее упрочнение, отличающийся тем, что наносят покрытие из жаропрочного никелевого сплава для монокристального литья, а упрочнение проводят путем первой вакуумной термообработки изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия, последующей пластической деформации поверхности изделия с нанесенным покрытием и затем второй вакуумной термообработки изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия.

2. Способ по п.1, отличающийся тем, что покрытие наносят ионно-плазменным напылением.

3. Способ по любому из п.1 или 2, отличающийся тем, что на покрытие из сплава для монокристального литья дополнительно наносят алюминидное покрытие.

Описание

[1]

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом машиностроении при изготовлении деталей горячего тракта газотурбинных двигателей, преимущественно лопаток газовых турбин.

[2]

Известен способ обработки изделий типа лопаток турбин, при котором на поверхности пера лопаток из высокотемпературной импульсной плазмы образуют покрытие толщиной до 20 мкм, а затем проводят упрочнение поверхности виброшлифованием (патент РФ №2094486, 1997 г.).

[3]

Обработка поверхности изделий из жаропрочного сплава высокотемпературной импульсной плазмой приводит к изменениям структурно-фазового состава поверхности сплава. Измененный слой приобретает повышенные характеристики коррозионной стойкости, но имеет более низкую прочность по сравнению с жаропрочным сплавом изделий, что уменьшает величину несущего сечения изделий на толщину измененного слоя, соизмеримую с толщиной стенки пера рабочих лопаток турбин. Кроме того, малая толщина покрытия не обеспечивает длительных ресурсов работы изделий типа лопаток турбин при высоких температурах из-за диффузионного взаимодействия покрытия с жаропрочным сплавом.

[4]

Известен способ обработки изделий из жаропрочных никелевых сплавов, при котором для предотвращения разупрочнения поверхностного слоя сплава изделий при высоких температурах, в результате образования вторичной реакционной зоны под защитным покрытием, проводят вакуумную термообработку изделий по режиму, обеспечивающему выравнивание содержания легирующих элементов в дендритных осях и междендритных пространствах материала изделий (патент ЕР №1146134, 2001 г.).

[5]

Однако способ не исключает разупрочнения поверхностного слоя и уменьшения несущего сечения изделий при формировании диффузионного защитного покрытия и дальнейшего взаимодействия с жаропрочным никелевым сплавом изделий при их эксплуатации. Кроме того, для достижения результата способ требует длительной вакуумной термообработки изделий при температурах выше температуры растворения упрочняющей γ'-фазы из-за низкой скорости диффузии некоторых легирующих элементов (рения).

[6]

Известен способ обработки изделий из литейного сплава на никелевой основе с упрочняющей γ'-фазой, имеющего равноосную или направленную структуру, включающий нагрев изделия до температуры начала растворения γ'-фазы, выдержку и охлаждение с заданной скоростью [патент США №4753686, 1988 г.].

[7]

Недостаточно высокая температура плавления и растворения упрочняющей γ'-фазы ограничивают прочность и термическую стабильность сплава на никелевой основе при эксплуатации изделия в области рабочих температур и, соответственно, ресурс его работы.

[8]

Недостатками известных способов являются пониженные прочностные свойства поверхностного слоя жаропрочного сплава, уменьшение несущего сечения изделий из-за изменения элементного состава сплава изделий при образовании покрытия и в процессе дальнейшей эксплуатации из-за диффузионного взаимодействия покрытия с защищаемым сплавом.

[9]

Наиболее близким аналогом, взятым за прототип, является способ обработки изделий, включающий образование на поверхности изделий защитного покрытия, поверхностную обработку для снижения шероховатости поверхности покрытия и последующее упрочнение (патент РФ №2115763, 1998 г.).

[10]

Недостатком известного способа является низкая прочность покрытия, уменьшение площади несущего сечения деталей при эксплуатации из-за коррозии и диффузионного взаимодействия покрытия со сплавом детали, неудовлетворительная жаростойкость покрытия в области высоких температур.

[11]

Технической задачей изобретения является повышение прочности поверхностного слоя изделия с равноосной структурой из жаропрочного сплава, увеличение площади его несущего сечения, увеличение ресурса работы изделия в области высоких температур.

[12]

Технический результат достигается тем, что предложен способ обработки изделия с равноосной структурой из жаропрочного сплава, включающий нанесение на поверхность изделия покрытия с последующим упрочнением поверхности, отличающийся тем, что на поверхность изделия наносят покрытие из жаропрочного никелевого сплава для монокристального литья, а упрочнение поверхности проводят путем первой вакуумной термообработки изделия с покрытием из жаропрочного никелевого сплава для монокристального литья, последующей пластической деформации поверхности изделия, а затем второй вакуумной термообработки изделия.

[13]

Вакуумную термообработку изделия проводят в диапазоне от температуры отжига до температуры растворения упрочняющей фазы жаропрочного сплава изделия с равноосной структурой. Покрытие из жаропрочного никелевого сплава для монокристального литья наносят ионно-плазменным напылением. На покрытие из сплава для монокристального литья наносят дополнительно жаростойкое алюминидное покрытие.

[14]

Нанесение на поверхность изделия с равноосной структурой из жаропрочного сплава покрытия из сплава для монокристального литья приводит к повышению прочности поверхностного слоя изделия в результате образования на поверхности изделий покрытия и зоны диффузионного взаимодействия покрытия с основой, близких по элементному и фазовому составу жаропрочному сплаву изделия с равноосной структурой. Но в отличие от сплава основы покрытие из сплава для монокристального литья и его зона диффузионного взаимодействия с основой, в силу особенностей своего элементного состава, имеют более высокие температуры солидуса, температуры растворения упрочняющей γ'-фазы и, соответственно, прочность в области высоких температур. Легирование поверхности изделий с равноосной структурой из жаропрочного сплава элементами, повышающими его прочность, происходит в процессе вакуумных термообработок. Для интенсификации процессов диффузии после первой вакуумной термообработки проводят пластическую деформацию поверхности, например, стальными или керамическими шарами. Это стимулирует процессы роста зерна в покрытии из жаропрочного никелевого сплава для монокристального литья и диффузионного взаимодействия покрытия с жаропрочным сплавом изделий при второй вакуумной термообработке. В результате прочность покрытия возрастает, а жаропрочный сплав основы упрочняется с поверхности за счет дополнительного легирования элементами сплава покрытия, повышающими его термическую стабильность и прочность. Нанесение упрочняющего покрытия из сплава для монокристального литья на поверхность изделия с равноосной структурой из жаропрочного сплава увеличивает площадь несущего сечения изделия, исключает возможность разупрочнения поверхностного слоя основы в случае формирования жаростойкого алюминидного покрытия. Кроме того, при эксплуатации изделия с равноосной структурой в области высоких температур дальнейшая диффузия легирующих элементов, повышающих температуры солидуса сплава и растворения упрочняющей γ'-фазы, от поверхности в основу будет приводить к упрочнению внутренних слоев жаропрочного сплава и тормозить процессы коагуляции или растворения γ'-фазы, приводящих к его разупрочнению.

[15]

В результате упрочнения поверхностного слоя изделия с равноосной структурой из жаропрочного сплава, увеличения несущего сечения изделия и увеличения толщины зоны диффузионного взаимодействия покрытия из жаропрочного никелевого сплава для монокристального литья с основой при эксплуатации ресурс работы изделия в области высоких температур возрастает.

[16]

Предложенный способ может быть использован для обработки лопаток турбин из сплавов ЖС6У, ЖС6К, ВЖЛ12У, ЖС26, ЖС26У и т.д. В качестве упрочняющего покрытия могут быть использованы сплавы для монокристального литья ЖС32, ЖС36, ЖС40, ЖС47 и т.д.

[17]

Пример осуществления.

[18]

На образцы из жаропрочного никелевого сплава ЖС6У с равноосной структурой диаметром рабочей части 5 мм на установке МАП-1 по серийной технологии было нанесено ионно-плазменное покрытие из сплава ЖС36 для монокристального литья толщиной 80 мкм. Образцы с покрытием были отожжены в вакууме при температуре 1000°С в течение 4 часов. Затем поверхность образцов с покрытием была подвергнута пластической деформации путем обработки стальными шариками диаметром 4-10 мм в центробежно-ротационной установке при 250 об/мин в течение 15 мин. После удаления с поверхности образцов с покрытием из жаропрочного никелевого сплава для монокристального литья слоя шлама и загрязнений промывкой в бензине, ацетоне и опескоструивания сухим электрокорундом при давлении сжатого воздуха (4-6) атм образцы отжигались в вакууме по режиму закалки сплава ЖС6У при температуре 1210°С в течение 75 мин. Затем на часть образцов по серийной технологии на установке МАП-1 было нанесено ионно-плазменное жаростойкое алюминидное покрытие СДП-2 (NiCrAlY) толщиной 40 мкм.

[19]

Провели испытания образцов из жаропрочного сплава ЖС6У, изготовленных по данному способу, способу прототипа, а также образцов в необработанном состоянии с покрытием СДП-2 на длительную прочность при температуре испытаний 1000°С и нагрузке 170 МПа. По результатам испытаний рассчитали значение длительной прочности сплава ЖС6У на базе испытаний 100 часов при температуре 1000°С, определили среднее значение долговечности и металлографическими методами определили толщину разупрочненной зоны на поверхности основного металла образцов под покрытием. Полученные средние значения перечисленных выше характеристик представлены в таблице.

[20]

Из представленных в таблице данных видно, что изготовление образцов из жаропрочного никелевого сплава ЖС6У, имеющего равноосную структуру, по предлагаемому способу позволяет увеличить долговечность образцов в 1,5 раза, а длительную прочность на 10%. При этом толщина разупрочненного слоя уменьшается более чем в 8-10 раз.

[21]

Вид образцов из сплава ЖС6УХарактеристики прочностиТолщина разупрочненного слоя на поверхности образцов после испытаний при 1000°С на базе 100 ч, мкм
Длительная прочность при температуре 1000°С на базе испытаний 100 ч, МПаДолговечность образцов при температуре 1000°С и нагрузке 170 МПА
Без покрытия16595150
С покрытием СДП-2173105 40
Изготовленные по предлагаемому способу1871455
Изготовленные по предлагаемому способу, без внешнего покрытия СДП-2 18114110
Виброшлифовка покрытия СДП-2 до шероховатости 5(прототип)1609060

[22]

Изготовление изделий с равноосной структурой из жаропрочных никелевых сплавов, преимущественно рабочих лопаток турбин, по данному способу с формированием на поверхности покрытия из жаропрочного никелевого сплава для монокристального литья практически не увеличивает массы деталей в отличие от способов повышения прочности литейных сплавов на никелевой основе, связанных с объемным легированием, что приводит к заметному росту их плотности, исключает возможность образования вторичной реакционной зоны под жаростойким покрытием, которая значительно снижает длительную прочность изделия из литейных никелевых сплавов при эксплуатации.

[23]

Изобретение может быть использовано при проведении ремонта рабочих лопаток турбин, а также для восстановления несущего сечения и геометрии поверхности пера рабочих лопаток турбин.

[24]

Применение изобретения в промышленности при изготовлении рабочих лопаток турбин в 1,5-2 раза продлит срок службы рабочих лопаток турбин из жаропрочных никелевых сплавов, не содержащих редких и дорогостоящих легирующих элементов, а также снизит трудоемкость, энергоемкость и стоимость производства ГТД.

Как компенсировать расходы
на инновационную разработку
Похожие патенты