патент
№ RU 2404959
МПК C07C45/00
Номер заявки
2009115308/04
Дата подачи заявки
23.04.2009
Опубликовано
27.11.2010
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Настоящее изобретение относится к способу получения формальдегида дегидрированием метанола в присутствии оксидного Zn-Na содержащего катализатора при повышенной температуре. При этом дегидрирование метанола проводят путем химического сопряжения в присутствии перекиси водорода, взятой в количестве, обеспечивающей ее концентрацию в метаноле 0,8-1,5%, и в присутствии катализатора, дополнительно содержащего диоксид кремния при следующем исходном составе компонентов, мас.%: ! Na2O - 1,2-1,4 ! ZnO - 0,8-1,2 ! SiO2 - остальное, ! при температуре 790-900°С, преимущественно 820-850°С. Предлагаемое изобретение позволяет осуществлять процесс с высокой производительностью катализатора по формальдегиду при увеличенном сроке службы катализатора. 1 з.п. ф-лы.

Формула изобретения

1. Способ получения формальдегида дегидрированием метанола в присутствии оксидного Zn-Na содержащего катализатора при повышенной температуре, отличающийся тем, что проводят дегидрирование метанола путем химического сопряжения в присутствии перекиси водорода, взятой в количестве, обеспечивающем ее концентрацию в метаноле 0,8-1,5%, и в присутствии катализатора, дополнительно содержащего диоксид кремния, при следующем исходном составе компонентов, мас.%:

Na2O 1,2-1,4
ZnO 0,8-1,2
SiO2остальное

2. Способ получения формальдегида дегидрированием метанола по п.1, отличающийся тем, что дегидрирование осуществляют при температуре 790-900°С, преимущественно 820-850°С.

Описание

[2]

Изобретение относится к способам получения нефтехимических продуктов каталитическим дегидрированием углеводородов и их производных, в частности к получению формальдегида дегидрированием метанола.

[3]

Формальдегид - один из важнейших химических продуктов, используемый в производстве красителей, лекарственных препаратов, взрывчатых веществ, высокомолекулярных соединений и др.

[4]

В настоящий момент существуют два принципиальных технологических подхода к дегидрированию метанола, известных из научно-технической и патентной литературы, - это окислительное дегидрирование и прямое дегидрирование.

[5]

Процесс окислительного дегидрирования представляет собой реакцию отщепления водорода с последующим окислением ее в воду и протекает по следующему механизму:

[6]

[7]

Существенным недостатком описанного процесса является выделение большого количества стехиометрической воды в результате взаимодействия отщепляющегося водорода с молекулярным кислородом.

[8]

В связи с этим встает проблема отделения воды от конечного продукта, что связано с усложнением технологии и аппаратурного оформления процесса, поэтому данный метод получения формальдегида нами рассмотрен не будет.

[9]

Прямое классическое дегидрирование метанола представляет собой реакцию отщепления молекулы водород с образованием формальдегида и имеет преимущество перед окислительным, связанное с отсутствием указанного недостатка, т.е. отсутствием выделения большого количества воды.

[10]

Кроме того, в связи с актуальностью водородной энергетики дегидрирование, протекающее в отсутствие кислорода, также имеет дополнительное преимущество в силу образования водорода, используемого, в частности, в производстве топливных элементов.

[11]

Однако при переходе от окислительного процесса к обычному дегидрированию возникают существенные энергозатраты, связанные с термодинамическими ограничениями (реакция практически значимо протекает с конверсией более 50% и селективностью не менее 70% по формальдегиду при повышенных температурах, 900°С и выше). При температурах ниже 800°С рассматривать имеющиеся данные в литературе по прямому несопряженному дегидрированию не имеет смысла: низкие производительности (менее 3 г/г·ч) или низкие селективности по формальдегиду (ниже 60%) приводят к нерентабельным технологиям.

[12]

Известен процесс получения формальдегида каталитическим дегидрированием метанола, описанный в работе Ruterana P.; Buffat P.A.; Prairie М; Renken A. // The structure of the Na2MoO4 catalyst for water free dehydrogenation of methanol to formaldehyde. - In: Helvetica Physica Acta, v.62, 1989, pp.227-230.

[13]

Недостатком процесса является небольшой срок службы катализатора, который работает в области низких степеней превращения с низкой производительностью в низкой температурной области.

[14]

Известен способ получения формальдегида из метанола путем прямого его дегидрирования, описанный в патенте DE №3719055, С07С 45/00, опубликованный 15.12.1988 г., согласно которому реакция протекает при температуре от 300 до 800°С.

[15]

Недостатком способа является невысокий выход формальдегида.

[16]

Известен способ получения формальдегида дегидрированием метанола на серебряном катализаторе (Meyer A., Renken A. New catalysts for the dehydrogenation of methanol to water-free formaldehyde // Proc. 9th Int. Congr. Catal. V.4. P.1898-1905 (1988).

[17]

Показатели дегидрирования здесь также невысоки. Конверсия метанола на серебре, модифицированном небольшим количеством теллура (0.5%) и Na2CO3, составляет 37% при 800°С, но селективность по формальдегиду не превышает 7%.

[18]

Более высокие степени превращения метанола в формальдегид на серебряных композициях возможны, как это описано в работе Усачев Н.Я., Круковский и И.М., Канаев С.А. Неокислительное дегидрирование метанола в формальдегид // Нефтехимия. 2004. Т.44. С.411 // за счет использования циклической подачи кислорода в реакционное пространство с одной стороны и организации посткаталитического пространства, в котором реализуются цепные превращения, с другой.

[19]

Известен ряд способов прямого дегидрирования метанола в присутствии Zn-Na-катализаторов: Usachev N.Ya., Belanova E.P., Kazakov А.V. et al. // Stud. Surf. Sci. Catal. (Zeolites and Mesoporous materials at the dawn of the 21st century). V.135. P.206 (2001); Н.Я.Усачев, Е.Л.Беланова, И.М.Круковский и др. // Изв. РАН, Сер. хим. Т.52. С.1839 (2003) [Russ. Chem. Bull. 2003. V.52. P.1940 (Engl. Transl.)].

[20]

Однако в упомянутых работах выход формальдегида не превышает 5% при селективности 60% и 15% при селективности 42%.

[21]

Имеющиеся в литературе указания на возможность повышения выхода формальдегида до 50% в мягких условиях (600°С) носят противоречивый характер.

[22]

Так, в работе Sagou M., Deguchi Т., Nakamura S. // Stud. Surf. Sci. Catal. (Successive Design of Catalysts). V.44. P.139 (1988) и патенте Японии №1880209, С07В 61/00, 21.10.1994 г.; в патенте США No. 4788347, С07В 61/00, 29.11.1988 г. и в европейском патенте №0261867, С07С 47/00, 02.01.92 г.описано получение формальдегида дегидрированием метанола прямым неокислительным путем в присутствии цинк - кремниевых каталитических комплексов.

[23]

Однако производительность катализатора в этих работах в отдельных опытах либо не указана, либо указана предельно низкая (не более 1 г/г·ч), при этом селективность по формальдегиду также предельно низка.

[24]

Наиболее близким к предлагаемому техническому решению является способ прямого дегидрирования метанола, описанный в работе «Каталитические свойства некислотных цинксодержащих систем на основе цеолитов типа Y, Х и А в превращении метанола» Н.Я.Усачев, Е.П.Беланова, А.С.Фомин и др. // Нефтехимия. Т.42. С.95 (2002) [Petrol. Chem. 2002 V.42. P.78 (Engl. Transl.)].

[25]

В описанном способе дегидрирование осуществляют в присутствии оксидного Zn-Na содержащего катализатора, способ приготовления которого влияет на активность этих систем в дегидрировании метанола в температурном интервале 500-750°С.

[26]

Недостатком процесса является недостаточно высокая производительность (не более 5 СН2О г/г кат.·ч) и низкий выход по формальдегиду не более 22% при времени непрерывной работы не более 9 часов, а каталитическая система становится неустойчивой при повышении температуры выше 600°С. Использование в технологии циклической подачи кислорода переводит процесс в класс непрямого каталитического дегидрирования, предполагающего наличие посткаталитического пространства и циклической подачи кислорода. Срок службы катализатора (до 9 час) и время цикла непрерывной его работы без ввода кислорода в систему также снижает достоинства предлагаемой технологии получения формальдегида.

[27]

Задача предлагаемого изобретения заключается в разработке способа получения формальдегида дегидрированием метанола, в котором бы были устранены недостатки обоих известных принципиальных методов и окислительного и прямого дегидрирования, а именно проведение процесса в условиях незначительного выделения воды и с высокой производительностью катализатора по формальдегиду.

[28]

Поставленная задача решается тем, что предложен способ получения формальдегида дегидрированием метанола в присутствии оксидного Zn-Na содержащего катализатора при повышенной температуре, в котором проводят сопряженное дегидрирование метанола в присутствии перекиси водорода, взятой в количестве, обеспечивающей ее концентрацию в метаноле 0,8-1.5%, и в присутствии катализатора, дополнительно содержащего диоксид кремния при следующем соотношении компонентов, мас.%:

[29]

Na2O - 1,2-1,4

[30]

ZnO - 0,8-1,2

[31]

SiO2 - остальное.

[32]

Проведение процесса получения формальдегида дегидрированием метанола осуществляют преимущественно в температурном интервале от 790 до 900°С.

[33]

Технический результат, который может быть получен при использовании предлагаемого изобретения, заключается в повышении производительности катализатора по формальдегиду, увеличении срока службы катализатора, а также снижении скорости коксования поверхности контакта.

[34]

Предложенный способ получения формальдегида является разновидностью прямого дегидрирования и относится к сопряженным реакциям, в частности к сопряженной реакции дегидрирования веществ, когда с использованием индуктора протекает реакция, наличие которой стимулирует протекание основного процесса:

[35]

СН3ОН=СН2О+Н2

[36]

Побочные реакции:

[37]

СН2О=СО+Н2

[38]

CH3OH+СО=СН4+CO2

[39]

По всей видимости при вводе в систему H2O2 происходит ее взаимодействие с гидроксилированной поверхностью катализатора с образованием мобильных поверхностных радикалов, блокирующих образование кокса на поверхности:

[40]

H2O2+ZOH→ZHO2+H2O

[41]

При этом частично развитие цепи происходит на поверхности контакта, а частично - в объеме реакционной зоны:

[42]

[43]

В инициировании реакции в общем случае участвуют две активированные частицы, мигрирующие в гомогенно-гетерогенном цепном процессе между поверхностью катализатора и реакционным объемом - ОН HO2. При этом обеспечиваются одновременно химическое сопряжение и саморегенерирующие свойства поверхности контакта.

[44]

На возможность сопряженного дегидрирования указано в монографии Т.М.Нагиева «Химическое сопряжение» М.: Наука, 1989. 216 с, в которой, на примере дегидрирования этилбензола в стирол, описано действие перекиси водорода, использованного в качестве индуктора дегидрирования.

[45]

Однако подобной реакции сопряжения для дегидрирования метанола в формальдегид ни в патентной, ни в научно-технической литературе не найдено.

[46]

Следует отметить, что в каждом конкретном процессе действие перекиси водорода специфично. Поэтому подробно рассматривать и останавливаться на механизме сопряженного действия в процессе дегидрирования этилбензола в стирол в данном случае не имеет смысла.

[47]

Однако отметим, что термодинамически ощутимо активация с последующим разложением перекиси водорода происходит при температурах выше 790°С, и использование данного способа при более низких температурах теряет смысл.

[48]

Нижеследующие примеры иллюстрируют предлагаемое изобретение, но никоим образом не ограничивают область его применения относительно аналогичных каталитических систем в реакциях прямого дегидрирования соединений.

[49]

Катализатор К-1 готовят пропиткой оксида кремния раствором азотнокислого натрия и хлорида цинка с последующей сушкой при 120°С в течение 1 ч и ступенчатым прокаливанием в течение 2 ч при каждой следующей температуре 200, 400 и 600°С.

[50]

Опыты по испытанию активности проводят в стандартном кварцевом цилиндрическом реакторе, загруженным катализатором К-1 и расположенном в печке, разогреваемой до температур 790-920°С.

[51]

Поток метанола разбавляют перекисью водорода с концентрацией 0,8-1,5%. В испарительной зоне поток метанола смешивается и подхватывается потоком газообразного азота в мольном отношении СН3ОН:N2=1:0,5-1,3.

[52]

Анализ продуктов осуществляют хроматографически.

[53]

Во всех опытах использовался 30% раствор перекиси водорода, в связи с чем количество воды во всех примерах искусственно поддерживалось постоянным с целью сопоставления между собой полученных результатов.

[54]

Пример 1 («холостой», в отсутствии перекиси водорода). Через 20 см3 кремнийсодержащего катализатора К-1 (насыпная масса 0,75 г/см3), содержащего 1,0 мас.% ZnO и 1,0 мас.% Na2O, пропускают метанол со скоростью 3,65 г/мин. В зоне испарения поток метанола смешивается с потоком газообразного азота в мольном соотношении СН3ОН:N2=1:1. При температуре 920°С выход формальдегида составляет 41%, селективность процесса по водороду 86%. Выход метана 0,5%.

[55]

Общая конверсия метанола - 94%.

[56]

Масса 20 см3 катализатора составляет 15 г.

[57]

Нагрузка по сырью:

[58]

W=3,65·(60:15)=14,6 г/г·ч (60 мин, 15 г катализатора)

[59]

Производительность катализатора по формальдегиду рассчитывается с учетом выхода формальдегида как

[60]

14,6×0,41=-5,99 г/г·ч

[61]

и составляет 5,99 г/г·ч, по сравнению с 5 г/г·ч в прототипе.

[62]

Скорость коксообразования, определенная весовым, термогравиметрическим и контрольным атомно-адсорбционным независимыми методами, составляет 0,08 г/г·ч.

[63]

Выход кокса

[64]

(0,08:14,6)×100=0,55 мас.%.

[65]

Время непрерывной работы до ощутимых признаков снижения активности составляет 20 ч. Далее требуется регенерация воздухом при 900°С в течение 2 ч.

[66]

Пример приводится для сопоставления с приемом сопряжения и соотносится с нижеследующими примерами.

[67]

Пример 2.

[68]

Через 20 см3 кремнийсодержащего катализатора К-1, содержащего 0,8 мас.% ZnO и 1.4 мас.% Na2O, пропускают метанол со скоростью 3,8 г/мин. В зоне испарения поток метанола смешивается с потоком газообразного азота в мольном соотношении СН3ОН:N2=1:1. Концентрация перекиси водорода в метаноле составляет 1%.

[69]

При температуре 820°С выход формальдегида составляет 55%, селективность процесса по водороду 92%. Выход СО2 0,3%. Метана не обнаружено.

[70]

Общая конверсия метанола - 95%.

[71]

Нагрузка по сырью:

[72]

W=3,8×(60:15)=15,2 г/г·ч (60 мин, 15 г катализатора)

[73]

Производительность катализатора по формальдегиду рассчитывается с учетом выхода формальдегида как

[74]

15,2×0,55=8,36 г/г·ч

[75]

и составляет 8,36 г/г·ч, по сравнению с 5 г/г·ч в прототипе.

[76]

Скорость коксования, определенная весовым, термогравиметрическим и контрольным атомно-адсорбционным независимыми методами, составляет 0,03 г/г·ч.

[77]

Выход кокса

[78]

(0,03:15,2)×100=0,20 мас.%.

[79]

В течение 200 ч реакционного цикла снижения активности не наблюдается. Катализатор не коксуется до степеней, при которых проявляется блокировка активных центров.

[80]

Пример 3.

[81]

Через 20 см кремний содержащего катализатора К-1, содержащего 1,2 мас.% ZnO и 1,2 мас.% Na2O, пропускают метанол со скоростью 3,4 г/мин. В зоне испарения поток метанола смешивается с потоком газообразного азота в мольном соотношении СН3ОН:N2=1:0,8. Концентрация перекиси водорода в метаноле составляет 1,5%. При температуре 800°С выход формальдегида составляет 69%, селективность процесса по водороду 95%. Выход CO2 0,1%. Выход метана - 0,5%.

[82]

Общая конверсия метанола - 95%.

[83]

Нагрузка по сырью:

[84]

W=3,4×(60:15)=13,6 г/г·ч (60 мин, 15 г катализатора)

[85]

Производительность катализатора по формальдегиду рассчитывается с учетом выхода формальдегида как

[86]

13,6×0,69=9,38 г/г·ч

[87]

и составляет 9,38 г/г·ч, по сравнению с 5 г/г·ч в прототипе.

[88]

Скорость коксования, определенная весовым, термогравиметрическим и контрольным атомно-адсорбционным независимыми методами, составляет 0,01 г/г·ч.

[89]

Выход кокса

[90]

(0,01:13,6)×100=0,07 мас.%.

[91]

В течение 200 ч реакционного цикла снижения активности не наблюдается. Катализатор не коксуется до степеней, при которых проявляется блокировка активных центров.

[92]

Пример 4.

[93]

Через 20 см3 кремний содержащего катализатора К-1, содержащего 1,0 мас.% ZnO и 1,0 мас.% Na2O, пропускают метанол со скоростью 2,5 г/мин. В зоне испарения поток метанола смешивается с потоком газообразного азота в мольном соотношении СН3ОН:N2=1:1,3. Концентрация перекиси водорода в метаноле составляет 1,0%. При температуре 790°С выход формальдегида составляет 51%, селективность процесса по водороду 92%. Выхода CO2 не наблюдается. Выход метана - 1,5%.

[94]

Общая конверсия метанола - 91%.

[95]

Производительность катализатора по формальдегиду составляет

[96]

5,92 г/г·ч.

[97]

Нагрузка по сырью:

[98]

W=2,9×(60:15)=11,6 г/г·ч (60 мин, 15 г катализатора)

[99]

Производительность катализатора по формальдегиду рассчитывается с учетом выхода формальдегида как

[100]

11,6×0,51=5,92 г/г·ч

[101]

и составляет 5,92 г/г·ч, по сравнению с 5 г/г·ч в прототипе.

[102]

Скорость коксования, определенная весовым, термогравиметрическим и контрольным атомно-адсорбционным независимыми методами, составляет 0,04 г/г·ч.

[103]

Выход кокса

[104]

(0,04:11,6)×100=0,34 мас.%.

[105]

В течение 200 ч реакционного цикла снижения активности не наблюдается. Катализатор не коксуется до степеней, при которых проявляется блокировка активных центров.

[106]

Пример 5.

[107]

Через 20 см3 кремний содержащего катализатора К-1, содержащего 1,0 мас.% ZnO и 1,0 мас.% Na2O, пропускают метанол со скоростью 4,5 г/ мин. В зоне испарения поток метанола смешивается с потоком газообразного азота в мольном соотношении СН3ОН:N2=1:1. Концентрация перекиси водорода в метаноле составляет 1,2%. При температуре 850°С выход формальдегида составляет 57%, селективность процесса по водороду 98%. Выход СО2 - 0,1%. Выхода метана не наблюдается.

[108]

Общая конверсия метанола - 82%.

[109]

Нагрузка по сырью:

[110]

W=4,5×(60:15)=18,0 г/г·ч (60 мин, 15 г катализатора)

[111]

Производительность катализатора по формальдегиду рассчитывается с учетом выхода формальдегида как

[112]

18,0×0,57=10,26 г/г·ч

[113]

и составляет 10,26 г/г·ч, по сравнению с 5 г/г·ч в прототипе.

[114]

Скорость коксования, определенная весовым, термогравиметрическим и контрольным атомно-адсорбционным независимыми методами, составляет 0,03 г/г·ч.

[115]

Выход кокса

[116]

(0,03:18,0)×100=0,17 мас.%.

[117]

В течение 200 ч реакционного цикла снижения активности не наблюдается. Катализатор не коксуется до степеней, при которых проявляется блокировка активных центров.

[118]

Пример 6.

[119]

Через 20 см3 кремний содержащего катализатора К-1, содержащего 1,0 мас.% ZnO и 1,0 мас.% Na2O, пропускают метанол со скоростью 5,0 г/мин. В зоне испарения поток метанола смешивается с потоком газообразного азота в мольном соотношении СН3ОН:N2=1:0,5. Концентрация перекиси водорода в метаноле составляет 1,0%. При температуре 880°С выход формальдегида составляет 40%, селективность процесса по водороду 90%. Выхода CO2 не обнаруживается. Выход метана 1,7%. Выход СО 57%.

[120]

Общая конверсия метанола - 98%.

[121]

Нагрузка по сырью:

[122]

W=5,0×(60:15)=20,0 г/г·ч (60 мин, 15 г катализатора)

[123]

Производительность катализатора по формальдегиду рассчитывается с учетом выхода формальдегида как

[124]

20,0×0,40=8,0 г/г·ч

[125]

и составляет 8,0 г/г×ч, по сравнению с 5 г/г·ч в прототипе.

[126]

Скорость коксования, определенная весовым, термогравиметрическим и контрольным атомно-адсорбционным независимыми методами, составляет 0,04 г/г·ч.

[127]

Выход кокса

[128]

(0,04:20,0)×100=0,20 мас.%.

[129]

В течение 200 ч реакционного цикла снижения активности не наблюдается. Катализатор не коксуется до степеней, при которых проявляется блокировка активных центров.

[130]

Таким образом, предложен способ получения формальдегида прямым неокислительным дегидрированием метанола, позволяющий увеличить производительность катализатора до 10,2 г/г·ч, что в 2 раза выше, чем в прототипе и снизить коксование почти втрое (в отн. ед.).

[131]

Однако достижение указанных результатов возможно при выборе температурного интервала от 790 до 900°С преимущественно 920-850°С.

[132]

При температуре процесса ниже 790°С производительность катализатора по формальдегиду не высока, что связано с недостаточно эффективной активацией перекиси водорода.

[133]

Кроме того, увеличивается срок службы катализатора, о чем свидетельствует тот факт, что в течение 200 ч реакционного цикла снижения активности каталитической системы не наблюдается (в прототипе после 9 часов работы катализатора наблюдается заметное снижение активности).

Как компенсировать расходы
на инновационную разработку
Похожие патенты