патент
№ RU 2563903
МПК E21B37/00

УСТРОЙСТВО ДЛЯ ОЧИСТКИ И ВОССТАНОВЛЕНИЯ РАБОТОСПОСОБНОСТИ ВОДОНОСНЫХ И НЕФТЕГАЗОВЫХ СКВАЖИН

Авторы:
РОДИОНОВ Виктор Петрович
Номер заявки
2014140426/03
Дата подачи заявки
07.10.2014
Опубликовано
27.09.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
3
Реферат

Изобретение относится к нефтегазодобывающей отрасли, в частности, к гидрокавитационной обработке продуктивных пластов и фильтров скважин. Устройство содержит корпус с входным штуцером и кавитаторы, сопла которых направлены на обрабатываемую поверхность скважин, ротор с крыльчаткой и два шнека. Корпус выполнен из плотно соединенных между собой верхней и нижней частей с образованием внутренней полости, входной штуцер расположен по центральной оси в верхней части корпуса, внутри которого на входе во внутреннюю полость закреплен первый шнек с обеспечением завихрения рабочей жидкости. Внутри ротора по центральной оси установлен второй шнек с обеспечением вращения ротора. Встречные концы шнеков выполнены конусообразными. В роторе выполнены боковые каналы. Кавитаторы установлены в нижней части корпуса, их оси расположены в одной плоскости с осями боковых каналов ротора с обеспечением гидродинамической пульсации рабочей жидкости. Входной штуцер выполнен с возможностью перемещения по центральной оси с обеспечением регулировки частоты и амплитуды пульсаций истекающих из кавитаторов потоков рабочей жидкости. Повышается эффективность и производительность при обработке продуктивных пластов и фильтров скважин. 1 з.п. ф-лы, 4 ил.

Формула изобретения

1. Устройство для очистки и восстановления работоспособности водоносных и нефтегазовых скважин, содержащее корпус с входным штуцером и кавитаторы, сопла которых направлены на обрабатываемую поверхность скважин, отличающееся тем, что оно содержит ротор с крыльчаткой и два шнека, при этом корпус выполнен из плотно соединенных между собой верхней и нижней частей с образованием внутренней полости, входной штуцер расположен по центральной оси в верхней части корпуса, внутри которого на входе в упомянутую внутреннюю полость закреплен первый шнек с обеспечением завихрения рабочей жидкости, внутри указанного ротора по центральной оси установлен второй шнек с обеспечением вращения ротора, причем встречные концы шнеков выполнены конусообразными, в роторе выполнены боковые каналы, кавитаторы установлены в нижней части корпуса, а оси кавитаторов расположены в одной плоскости с осями боковых каналов ротора с обеспечением гидродинамической пульсации истекающих из кавитаторов потоков рабочей жидкости.

2. Устройство по п. 1, отличающееся тем, что входной штуцер выполнен с возможностью перемещения по центральной оси с обеспечением регулировки частоты и амплитуды пульсаций истекающих из кавитаторов потоков рабочей жидкости.

Описание

[1]

Изобретение относится к гидрокавитационной обработке продуктивных пластов и фильтров скважин и может быть использовано для очистки и восстановления работоспособности водоносных и нефтегазовых скважин.

[2]

Известно устройство для импульсной обработки продуктивных пластов и фильтров скважин (патент РФ №2211320, МПК Е21В 43/25, опубл. 2004 г.), включающее соединенный с высоконапорным насосом возбудитель кавитации, состоящий из диффузора и конфузора, связанных между собой соединительным элементом, включающее колонну труб, вибратор, состоящий из генератора колебаний давления жидкости с входным соплом и диффузором с углом раскрытия более 15° ствола, внутренний диаметр которого превышает не менее чем в 4 раза внутренний диаметр входного сопла, и выходного устройства, причем входное сопло сообщено с колонной труб и диффузором, а выходное устройство - со стволом и затрубным пространством; кроме того, оно снабжено размещенным над вибратором струйным насосом, состоящим из сопла, приемной камеры, камеры смешения и диффузора, причем вход сопла струйного насоса сообщен с колонной труб, камера смешения через обратный клапан и приемную камеру - с затрубным пространством, а его диффузор - с входным соплом вибратора.

[3]

Известное устройство имеет сложную конструкцию, включающую дополнительный насос, что снижает надежность этого устройства, и требует использования энерготехнологического оборудования высокой мощности, что обуславливает значительные энергозатраты при эксплуатации.

[4]

Наиболее близким по технической сущности к предлагаемому техническому решению является известное устройство для гидрокавитационной обработки продуктивных пластов и фильтров (патент РФ на изобретение №2318115, МПК Е21В 43/25 от 16.11.2005), включающее высоконапорный насос, подводящую магистраль и возбудитель кавитации, состоящий из диффузора и конфузора, связанных между собой соединительным элементом, корпус, в котором расположен возбудитель кавитации, виброрезонатор, размещенный в полости соединительного элемента, представляющей собой расширительную камеру, выполненного в виде тела вращения, диаметр которого выбирают больше диаметра наименьшего проходного отверстия диффузора, при этом возбудитель кавитации установлен в корпусе с возможностью осевого перемещения.

[5]

Это устройство обладает недостаточной производительностью и качеством очистки внутренних поверхностей в затопленном состоянии, т.е. под водой. Истекающие из сопел струи в затопленную полость теряют большую часть кинетической энергии за счет сопротивления окружающей струйные потоки воды.

[6]

В результате снижается эффективность воздействия этих потоков на отложения и тем самым снижается качество очистки.

[7]

Технический результат, заключающийся в повышении эффективности и производительности при обработке продуктивных пластов и фильтров скважин в широком диапазоне изменения внешних условий за счет обеспечения максимальной степени развития кавитации без использования дополнительного энергоемкого оборудования, достигается в предлагаемом устройстве для очистки и восстановления работоспособности водоносных и нефтегазовых скважин, содержащем корпус с входным штуцером и кавитаторы, сопла которых направлены на обрабатываемую поверхность скважин, отличающемся тем, что оно содержит ротор с крыльчаткой и два шнека, при этом корпус выполнен из плотно соединенных между собой верхней и нижней частей с образованием внутренней полости, входной штуцер расположен по центральной оси в верхней части корпуса, внутри которого на входе в упомянутую внутреннюю полость закреплен первый шнек с обеспечением завихрения рабочей жидкости, внутри указанного ротора по центральной оси установлен второй шнек с обеспечением вращения ротора, причем встречные концы шнеков выполнены конусообразными, в роторе выполнены боковые каналы, кавитаторы установлены в нижней части корпуса, а оси кавитаторов расположены в одной плоскости с осями боковых каналов ротора с обеспечением гидродинамической пульсации истекающих из кавитаторов потоков рабочей жидкости.

[8]

Указанный технический результат достигается также и тем, что входной штуцер выполнен с возможностью перемещения по центральной оси с обеспечением регулировки частоты и амплитуды пульсаций истекающих из кавитаторов потоков рабочей жидкости.

[9]

Сущность изобретения поясняется графическими материалами,

[10]

где на фиг. 1 представлена конструкция устройства в разрезе,

[11]

на фиг. 2 приведен вид устройства в рабочем состоянии с образованием суперкавитационных каверн в истекающих из кавитаторов струй жидкости,

[12]

на фиг. 3 приведена фотография, иллюстрирующая процесс истечения из кавитаторов пульсирующих кавитационных струй жидкости,

[13]

фиг. 4 иллюстрирует растекание кавитационных пульсирующих струй жидкости по поверхности обсадной трубы и фильтров скважины.

[14]

Устройство (фиг. 1) содержит корпус, выполненный из плотно соединенных между собой верхней 1 и нижней 2 частей с образованием внутренней полости.

[15]

По центральной оси устройства в верхней части 1 корпуса ввинчен входной штуцер 3, положение которого зафиксировано контргайкой 4.

[16]

Внутри штуцера 3 на входе в упомянутую внутреннюю полость закреплен первый шнек 5, выполненный с входным и выходным конусами для обеспечения завихрения потока рабочей жидкости.

[17]

В нижней части 2 корпуса смонтирован ротор 6 с крыльчаткой, выполненный в виде колеса центробежного насоса с возможностью свободного вращения его на центральной оси 7 в подшипнике 8.

[18]

Кавитаторы 9 (от 2 до 8) вмонтированы в соответствующие отверстия в нижней части 2 корпуса. Кавитаторы 9 выполнены по конструкции гидрокавитационных генераторов (патент РФ №2376193, МПК B63B 59/08, опубл. 20.12.2009).

[19]

По центральной оси в нижней части 2 корпуса установлен второй шнек 10 для обеспечения вращения ротора 6 под воздействием завихреннного потока рабочей жидкости.

[20]

При этом встречные концы шнеков 5 и 10 выполнены конусообразными.

[21]

Ротор 6 выполнен с боковыми каналами, оси которых расположены в одной плоскости с осями кавитаторов 9.

[22]

Входной штуцер 3 выполнен с возможностью перемещения по центральной оси для обеспечения регулировки частоты и амплитуды пульсаций истекающих из кавитаторов 9 потоков рабочей жидкости.

[23]

Предлагаемое устройство работает следующим образом.

[24]

Высоконапорный поток рабочей жидкости (вода, эмульсия или другая жидкость) от насоса высокого давления (на чертежах не показан) по гибкому высоконапорному шлангу (не показан) поступает во входной штуцер 3 (показано стрелкой) и попадает на первый шнек 5, с помощью которого закручивается и истекает во внутреннюю полость устройства в виде закрученного потока.

[25]

Закрученный поток после шнека 5, взаимодействуя со вторым шнеком 10, поступает на вход ротора 6 и создает вращательный момент для ротора 6. Закрученный поток жидкости поступает на крыльчатку ротора 6 и поступает далее в виде вращающихся струй на кавитаторы 9. При этом при вращении ротора 6 вокруг центральной оси создается пульсация гидродинамического давления в потоке жидкости, поступающей на входы кавитаторов 9. Пульсация сохраняется и в струях жидкости, истекающих из кавитаторов 9.

[26]

Сопла кавитаторов 9 направлены на обрабатываемую поверхность скважин.

[27]

Рабочая жидкость, истекающая из кавитаторов 9 в окружающую среду 11 (фиг. 2 и фиг. 3), образует суперкавитационные пульсирующие отрывные от кавитаторов 9 полости 12, заполненные газопаровыми пузырьками, которые всхлопывая производят эрозионное разрушение наслоений на обрабатываемой поверхности и в отверстиях фильтра обсадной водозаборной трубы.

[28]

Масса схлопывающихся и истекающих из кавитаторов 9 пузырьков, находящихся в суперкавитационной каверне 12 (фиг. 4), переносится потоком на очищаемую поверхность 13, разрушая имеющиеся на ней наслоения и наслоения в отверстиях фильтра 14.

[29]

Пульсации динамического давления в струйных кавитационных потоках, истекающих из кавитаторов 9, приводят к гидравлическим ударам в микрообъемах, в результате чего происходит эрозионное разрушение наслоений, на которые производится воздействие.

[30]

Кавитация осуществляется на значительном протяжении потока рабочей жидкости. Струйные вращающиеся потоки жидкости, истекающие из каналов ротора 6, при совпадении с входным отверстием кавитаторов 9 на определенные доли секунды увеличивают динамическое давление и скорость истекающего из кавитаторов струй, а затем на доли секунды снижают гидродинамическое давление и скорость потока в кавитаторе, что приводит к высокочастотной пульсации кавитационной каверны 12 и гидродинамического давления в струйных потоках, истекающих из кавитаторов. Это приводит к еще большей интенсивности эрозионного воздействия струйных кавитационных потоков, истекающих из кавитаторов 9, на наслоения и окружающую затрубное пространство породу 15 (фиг 4). Наслоения активно разрушаются и уносятся потоком, а за счет высокочастотной пульсации потока жидкости, передающейся в затрубное пространство через отверстия 14 в фильтре обсадной трубы 13, увеличивается дебит скважины.

[31]

Регулировка частоты и амплитуды пульсации струйных потоков, истекающих из кавитаторов 9, осуществляется путем перемещения штуцера 3 и изменением расстояния между первым 5 и вторым 10 шнеками. Изменение расстояние между шнеком 5 и шнеком 10 приводит к изменению скорости вращения ротора 6 вокруг центральной оси 7 и тем самым к изменению частоты и амплитуды пульсации гидродинамического давления в струйных потоках.

[32]

Предлагаемое устройство позволяет использовать его как при незатопленных, так и в затопленных условиях.

[33]

Проведенные опытные испытания устройства показали высокую производительность и эффективность при очистке и восстановлении работоспособности водоносных и нефтегазовых скважин и оно может изготавливаться в промышленном масштабе.

Как компенсировать расходы
на инновационную разработку
Похожие патенты