патент
№ RU 2704567
МПК G01R31/34

Способ диагностики двухполюсного ротора с постоянными магнитами

Авторы:
Исмагилов Флюр Рашитович Киселев Михаил Анатольевич Вавилов Вячеслав Евгеньевич
Все (21)
Номер заявки
2018136942
Дата подачи заявки
19.10.2018
Опубликовано
29.10.2019
Страна
RU
Дата приоритета
03.07.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Иллюстрации 
3
Реферат

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами. Сущность: в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы которой расположены относительно друг друга на 120°. Измеряют электродвижущую силу, наводимую в дополнительной обмотке при вращении ротора, по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности ротора с постоянными магнитами. Если кривая электродвижущей силы искажена относительно оси абсцисс, то ротор с постоянными магнитами неисправен. 3 ил.

Формула изобретения

Способ диагностики двухполюсного ротора с постоянными магнитами синхронной электрической машины, по которому определяют неисправность ротора по напряжению, отличающийся тем, что в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы расположены относительно друг друга на 120°, затем измеряют электродвижущую силу, наводимую в дополнительной обмотке при вращении ротора, и по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности ротора с постоянными магнитами, если кривая электродвижущей силы искажена по оси абсцисс, то ротор с постоянными магнитами неисправен.

Описание

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах (англ. synchronous electrical machines with permanent magnets, сокращенно - SEMPM).

Известен способ определения температуры постоянных магнитов в многофазных синхронных машинах переменного тока [патент US №8,222,844 В2 С2, Н02Р 6/00, опубл. 17.07.2012], по которому измеряют температуру постоянных магнитов в электрической машине и определяют их остаточную индукцию. Температуру магнита можно определить, если измерять фазное напряжение и скорость вращения электрической машины.

Недостатком данного способа является ограниченные функциональные возможности, обусловленные сложностью конструкции и невозможностью точного определения механических повреждений постоянных магнитов в роторе электрической машины.

Известен способ диагностики повреждений постоянных магнитов и управления электрической машиной [патент US №9,647,591 В2, Н02Н 7/08, Н02Р 21/14, опубл. 9.05.2017], по которому диагностику повреждений постоянных магнитов осуществляются по току и напряжению. По напряжению определяют форму кривой электродвижущей силы. Полученную информацию о форме используют для оценки состояния постоянных магнитов.

Недостатком данного способа являются ограниченные функциональные возможности, обусловленные сложностью конструкции и невозможностью точного определения расположения повреждений постоянных магнитов.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ диагностики для обнаружения неисправности ротора с постоянными магнитами в синхронных машинах [патент US №2016/0097814 A1, G01R 31/34, опубл. 7.04.2016], по которому диагностику постоянных магнитов осуществляют током q-оси, током d-оси, напряжением на оси q и/или оси d. Полученную информации используют для определения формы потока, в результате чего определяется состояние постоянных магнитов на роторе электрической машины. Оценка может быть использована для идентификации повреждений одного или нескольких магнитов, которые могут возникать в результате повышенных температурных условий, физического или химического разложения.

Недостатками ближайшего аналога являются большие массогабаритные показатели, низкая эффективность, ограниченные функциональные возможности, обусловленные сложностью конструкции, а также отсутствие возможности определения расположения повреждения.

Задачами изобретения являются диагностирование сколов и локальных повреждений двухполюсных роторов, а также своевременное выявление повреждения постоянных магнитов.

Техническим результатом является повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами.

Технический результат достигается за счет того, что по способу диагностики электрической машины с постоянными магнитами в синхронных машинах, по которому определяют неисправность ротора по напряжению, согласно изобретению, в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы расположены относительно друг друга на 120°, затем измеряют электромагнитную силу, наводящую в дополнительной обмотке при вращении ротора, и по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности электрической машины с постоянными магнитами, если кривая электродвижущей силы искажена в первом либо в четвертом квадранте, то ротор с постоянными магнитами не исправен.

Изобретение поясняется следующими чертежами.

На фиг. 1 показана осциллограмма экспериментальных исследований дефектного ротора.

На фиг. 2 показана осциллограмма экспериментальных исследований исправного ротора.

На фиг. 3 изображена схема распределения магнитного потока ротором SEMPM с дефектным ротором.

Пример конкретной реализации способа.

Для понимания физической сути данного процесса представляется целесообразным рассмотреть его математическое описание. Расчетная схема с распределением линий магнитной индукции постоянных магнитов ротора приведена на фиг. 3.

При математическом анализе процессов локального размагничивания постоянных магнитов используются следующие допущения:

- так как диагностическая ЭДС получается с дополнительной обмотки и является ЭДС холостого хода, то рассматривается магнитное поле холостого хода;

- рассматривается двухполюсная магнитная система ротора;

- магнитная проницаемость стали сердечника, а также стали вала равна бесконечности, магнитная проницаемость воздушного зазора равна магнитной проницаемости вакуума;

- аксиальная составляющая напряженности магнитного поля в торцевых поверхностях ротора равна 0, т.е. рассматривается SEMPM бесконечной длины.

- обмотка в исследуемом SEMPM представляется в виде тонкого медного слоя, вектор плотности токов содержит только аксиальную составляющую;

- вихревые токи, наводимые пространственными и временными гармониками статора в постоянных магнитах и бандажной оболочке ротора не учитываются. При этом важно отметить, что в ряде случае, поле создаваемое вихревыми токами в обмотки SEMPM, может также являться диагностическим критерием сколов и локального размагничивания. Вопросы исследования полей вихревых токов, наводимых в обмотке SEMPM, раскрыты в работе (Ismagilov, F.R., Vavilov, V.E., Karimov, R.D. Improving the efficiency of electrical high-rpm generators with permanent magnets and tooth winding Progress In Electromagnetics Research M 63, c. 93-105);

- магнитное поле на поверхности постоянного магнита задано в виде гармонического ряда нормальной составляющей магнитной индукции на поверхности постоянного магнита (Ismagilov, F.R., Vavilov, V.Y., Miniyarov, А.Н., Veselov, A.M., Ayguzina, V.V. Design, optimization and initial testing of a high-speed 5-kw permanent magnet generator for aerospace application Progress In Electromagnetics Research С vol. 79, c. 225-240):

при ; .

При анализе магнитного поля в SEMPM мы оперируем уравнениями Максвелла:

; ; ; ; ;

где - вектор магнитной индукции результирующего магнитного поля; - вектор напряженности электрического и магнитного полей;

- вектор скорости движения ротора; - электрическая проводимость обмотки статора; - вектор плотности индуцированных токов;

- вектор плотности сторонних токов.

Так как, локальное размагничивание постоянных магнитов должно проявляться и при режиме нагрузке SEMPM, и при режиме холостого хода, то для обобщенности математического описания целесообразно рассмотреть режим холостого хода SEMPM. Для решения данной задачи рассматривается уравнение Лапласа в цилиндрических координатах с учетом условий непрерывности линий магнитного поля:

, , ,

где Hr, Hϕ радиальная и тангенциальная составляющие напряженности магнитного поля в немагнитном зазоре SEMPM.

Локальное размагничивание полюса или скол полюса приведет к уменьшению величины индукции на поверхности постоянных магнитов и изменению амплитуды намагниченности постоянных магнитов.

Экспериментальные исследования выполнялись электрической машиной с тремя катушками, расположенными относительно друг друга на 120°. Все испытания производились в генераторном режиме SEMPM при работе на активную нагрузку.

Для минимизации потерь в магнитопроводе статора для всех исследуемых топологий используют аморфный магнитный материал 5БДСР с индукцией насыщения 1,35 Тл и толщиной листа 25 мкм. Статор имеет полную длину 45 мм и состоит из 9 стеков длиной по 5 мм. В качестве магнитов ротора использовались магниты Sm2Co17 остаточной индукцией 1,07 Тл и коэрцитивной силой 756 кА/м. Для минимизации потерь магниты выполнены шихтованными в осевом направлении. Ротор имеет активную длину 50 мм. Обмотка выполнена из провода ПНЭТ-имид с температурным индексом 220°С. Пазовая изоляция выполнена из полиамидной пленки.

Испытания выполнялись на пониженной частоте 2800 об/мин. Пониженная частота вращения ротора использовалась в связи с тем, что бандажные оболочки роторов SEMPM были удалены. При испытаниях использовались подшипники SKF 638/8-2Z, способные обеспечить частоту вращения до 90000 об/мин. Приводным двигателем стенда являлся асинхронный двигатель мощностью 4 кВт.

Главной задачей при испытаниях макетов была оценка их электродвижущей силы (ЭДС) в зависимости от дефекта ротора. ЭДС измерялась с помощью осциллографа Gwinstek GDS-73154, анализ гармонического спектра напряжения осуществлялся с помощью анализатора гармоник Призма-50. Результаты экспериментальных исследований для исправного и дефектного ротора приведены на фигуре 1 и 2.

Результаты экспериментальных исследований по измерению ЭДС SEMPM при холостом ходе в генераторном режиме. При установке дефектного ротора в SEMPM с зубцовой обмоткой типа alternate teeth wound выходная ЭДС становится ассиметричной относительно оси абцисс. Подобная форма ЭДС практически не встречается в электрических машинах. При этом установка исправного ротора в данный образец SEMPM привела к симметричности выходного ЭДС относительно оси абцисс. Таким образом, диагностическим критерим одностороннего скола или локального размагничивания постоянного магнита при данном типе обмотке, числе полюсов и числе пазов является несимметрчиность выходного напряжения по оси абцисс. Аналогичные результаты были получены и при полной нагрузке, что доказывает: ток в обмотках SEMPM практически не влияет на выявленные диагностические критерии (ассиметричность выходного ЭДС относительно оси абцисс).

Таким образом, обеспечивается повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами.

Как компенсировать расходы
на инновационную разработку
Похожие патенты