патент
№ RU 2353713
МПК C25D3/26

ЭЛЕКТРОЛИТ КАДМИРОВАНИЯ И СПОСОБ НАНЕСЕНИЯ КАДМИЕВЫХ ПОКРЫТИЙ НА МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ

Авторы:
Налетов Борис Павлович Семенычев Валентин Владимирович Ильин Вячеслав Александрович
Все (5)
Номер заявки
2008106451/02
Дата подачи заявки
21.02.2008
Опубликовано
27.04.2009
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области гальванотехники и может быть использовано для восстановления или ремонта кадмиевых покрытий без демонтажа деталей и использования гальванических ванн. Электролит содержит, г/л: кадмий сернокислый 350-400; ПАВ 0,5-5,0; костный клей 0,1-1,5; KA1(SO4)·12H2O 10-20; нанопорошок оксида алюминия 5-15. Способ включает электронатирание поверхности изделий анодом из кадмия в пористой оболочке, заполняемой электролитом, при этом в качестве электролита используют электролит, приведенный выше, а нанесение покрытия осуществляют при плотности тока 10-30 А/дм2 и скорости подачи электролита 0,4-0,7 л/мин. Технический результат: повышение рассеивающей способности электролита, прочности сцепления покрытия с основой, микротвердости покрытия и скорости осаждения. 2 н. и 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Электролит кадмирования, содержащий кадмий серно-кислый, поверхностно-активное вещество, костный клей, отличающийся тем, что он дополнительно содержит KA1(SO4)·12H2O и нанопорошок оксида алюминия при следующем соотношении компонентов, г/л:

кадмий серно-кислый350-400
ПАВ0,5-5,0
костный клей0,1-1,5
KA1(SO4)·12H2O10-20
нанопорошок оксида алюминия5-15

2. Электролит по п.1, отличающийся тем, что в качестве ПАВ он содержит полиоксиэтиленалкиловые эфиры CnH2n+1O(C2H4O)mH, где n=8-18, m≈20.

3. Электролит по п.1, отличающийся тем, что нанопорошок оксида алюминия имеет дисперсность (1-200) нм и удельную поверхность (20-390) м2/г.

4. Способ нанесения кадмиевого покрытия на металлические изделия путем электронатирания поверхности изделий анодом из кадмия в пористой оболочке, заполняемой электролитом, отличающийся тем, что в качестве электролита используют электролит по любому из пп.1-3, а нанесение покрытия осуществляют при плотности тока 10-30 А/дм2 и скорости подачи электролита 0,4-0,7 л/мин.

Описание

[1]

Изобретение относится к области электролитического нанесения защитных покрытий на поверхность металлических изделий и, в частности, к локальному кадмированию и может найти применение в различных областях промышленности, в том числе эффективно может быть использовано для восстановления кадмиевого покрытия на металлических изделиях при ремонте без демонтажа деталей и использования гальванических ванн.

[2]

Известны кислые электролиты кадмирования, использующие в качестве основных компонентов кадмий сернокислый и/или соли борфтористоводородной кислоты. Нанесение кадмиевых покрытий осуществляют путем электролитического осаждения известных электролитов при высоких плотностях тока и рН<5. Для интенсификации процесса осаждения температуру и плотность тока повышают одновременно с перемешиванием электролита (Дасоян М.А. и др. «Технология электрохимических покрытий» - Л.: Машиностроение, 1989 г., с.130-139).

[3]

Основным недостатком использования кислых электролитов кадмирования является защелачивание их в прикатодной зоне, и как результат, образование рыхлых, губчатых и шероховатых покрытий. Эти электролиты и способ их нанесения на поверхность изделия не могут быть использованы в ремонтной технологии из-за малой концентрации основных компонентов и высокого сопротивления электролитов в условиях малых межэлектродных расстояний.

[4]

Известен сернокислый электролит кадмирования, который содержит следующие компоненты:

[5]

кадмий сернокислый50-60 г/л
аммоний сернокислый100-150 г/л
кислота борная20-30 г/л
блескообразующие добавки:
добавка AC-55A30-60 мл/л
добавка AC-55B2-6 мл/л

[6]

Нанесение кадмиевых покрытий осуществляли в электролитической ванне стационарным способом при рН 3, температуре 27°С и плотности тока 1,6 А/дм2 (патент РФ №2302483).

[7]

Недостатком вышеуказанного электролита кадмирования и способа его нанесения является невозможность его использования при локальном осаждении кадмия из-за возникновения пригаров при высоких плотностях тока, необходимых для локального нанесения покрытий, что связано с высокими концентрациями блескообразующих комплексных добавок АС-55А и АС-55 В, которые представляют собой поверхностно-активные вещества и агенты, модифицирующие покрытия.

[8]

Известен электролит кадмирования для получения прочных кадмиевых покрытий с рыхлой пористой структурой толщиной до 20 мкм («макрогубка»), содержащий, г/л:

[9]

окись кадмия30-70
сульфат аммония200-260
борная кислота17-25
декстрин9-11
тиомочевина4-6

[10]

Процесс осаждения ведут при следующих условиях: катодная плотность тока 0,8-1,6 А/дм2, рабочая температура 20-30°С, рН электролита 6,5-7,5 (патент РФ №2153029).

[11]

Пористые кадмиевые покрытия, получаемые в этом электролите, могут быть использованы только в качестве подслоя для проведения дальнейших технологических операций ввиду низкой коррозионной стойкости.

[12]

Наиболее близким по технической сущности и принятым за прототип является электролит, содержащий следующие соотношения компонентов, г/л:

[13]

кадмий сернокислый60-120
аммоний сернокислый200-350
кислота борная15-30
пенообразователь ПО-1 (ПАВ)0,5-3

[14]

Предлагаемый электролит содержит также, вес.%:

[15]

костный клей4-5
Этиловый спирт-сырец и
этилен-гликоль10-12
Керосиновый контактостальное

[16]

Процесс осаждения ведут при плотности тока от 0,3 до 3,0 А/дм2, рН 3,5-5,5 и температуре 20-40°С (авторское свидетельство СССР №603708).

[17]

Существенными недостатками электролита кадмирования, представленного в выбранном прототипе, являются низкие значения прочности, микротвердости, а также низкое допустимое значение плотности тока при осаждении (imax=3 А/дм2), что не может обеспечить высокую скорость осаждения кадмиевого покрытия и эффективность процесса электролиза. Даже при перемешивании электролита скорость осаждения кадмиевого покрытия в вышеуказанном электролите не превышает 1,2 мкм/мин. Недостатком является также необходимость корректировки электролита по кислотности и по добавке ПО-1 через каждые 60-70 А·ч/л.

[18]

По способу нанесения кадмиевого покрытия на металлические изделия наиболее близким по технической сущности и достигаемому результату является способ местной гальванической обработки изделий методом натирания их пористым материалом, пропитанным твердообразным тиксотронным электролитом путем введения в него 100-250 г/л коллоидных частиц двуокиси кремния (аэросила). Натирание осуществляют перемещением пористого материала со скоростью 0,2-5 м/мин при давлении 0,01-0,05 кгс/см2 (авторское свидетельство СССР №1164318).

[19]

Недостаток данного способа местной электрохимической обработки - длительность приготовления пропитывающего твердообразного электролита, включающего процесс затвердения (2-2,5) ч при добавлении коллоидных частиц двуокиси кремния и структурирования электролита в течение (5-10) ч после сбора ячейки, а также использование низких концентраций кадмия сернокислого, не позволяющих получать высокую скорость осаждения осадка.

[20]

Технической задачей предлагаемого изобретения является получение кадмиевого покрытия на металлических изделиях со служебными характеристиками (скорость осаждения, микротвердость, прочность сцепления), обеспечивающими повышенную защитную способность и возможность использования электролита для ремонтной технологии.

[21]

Для решения поставленной задачи предложен электролит кадмирования, содержащий кадмий сернокислый, ПАВ, костный клей, отличающийся тем, что он дополнительно содержит KAl(SO4)·12H2O и нанопорошок оксида алюминия при следующем соотношении компонентов, г/л:

[22]

кадмий сернокислый350-400
KAl(SO4)·12H2O10-20
нанопорошок оксида алюминия5-15
костный клей0,1-1,5
ПАВ0,5-5,0

[23]

В качестве ПАВ используют полиоксиэтиленалкиловые эфиры CnH2n+1O(C2H4O)mH, где n=8÷18, m≈20. Предпочтительно использовать нанопорошок с дисперсностью частиц (1-200) нм и удельной поверхностью (20-390) м2/г.

[24]

Способ нанесения кадмиевого покрытия на металлические изделия осуществляют методом электронатирания поверхности изделий анодом из кадмия в пористой оболочке, заполняемой электролитом, отличающийся тем, что в качестве электролита используют заявляемый электролит и нанесение покрытия осуществляют при плотности тока 10-30 А/дм2 и скорости подачи электролита 0,4-0,7 л/мин.

[25]

Увеличение концентрации сернокислого кадмия в электролите позволяет получить равномерные плотные осадки со скоростью осаждения 4-9 мкм/мин. Введение в электролит нанопорошка оксида алюминия направлено на изменение механизма осаждения электролитического осадка. Этот механизм заключается в том, что на поверхности наночастиц адсорбируются ионы, в том числе и гидратированные катионы молекул диссоциированных в электролите веществ. Соударение наночастиц с поверхностью катода локально разрушает двойной электрический слой и осуществляет перенос адсорбированных катионов к поверхности осаждения, что повышает прочность сцепления кадмиевого покрытия с основой. Таким образом, наночастицы оксида алюминия являются адсорбентами и основным транспортным средством по доставке катионов кадмия в прикатодный слой. Использование нанопорошка оксида алюминия в составе электролита кадмирования увеличивает рассеивающую способность электролита и обеспечивает формирование мелкокристаллической структуры покрытия, что приводит к повышению микротвердости кадмиевого покрытия на 20%.

[26]

Добавление KAl (SO4)·12H2O (алюмокалиевые квасцы) в электролит кадмирования связано с сильно выраженными комплексообразующими и адсорбционными свойствами двойных солей алюминия. При этом катионные комплексы кадмия, образовавшиеся в результате гидролиза и ионно-обменных реакций, активируют поверхность подложки и увеличивают скорость разряда кадмия на катоде.

[27]

Использование высоких плотностей тока в условиях малых межэлектродных зазоров при непрерывной прокачке электролита и значительное увеличение концентрации основного компонента (кадмия сернокислого) обеспечивают высокую скорость осаждения и равномерность получаемых осадков.

[28]

Примеры осуществления.

[29]

Примеры способов осаждения кадмия из сернокислых электролитов кадмирования и результаты исследования служебных свойств кадмиевого покрытия представлены в таблице 1.

[30]

Пример 1.

[31]

На образцы из стали 30ХГСА методом натирания нанесено кадмиевое покрытие толщиной (6-9) мкм из предлагаемого сернокислого электролита кадмирования при максимальных концентрациях компонентов (верхние пределы) и следующих режимах осаждения: температура электролита (22-27)°С, плотность тока 10 А/дм2, скорость подачи электролита 0,4 л/мин.

[32]

Примеры 2 и 3 аналогичны примеру 1, но с изменением концентраций компонентов электролита и режимов осаждения (плотность тока, скорость подачи электролита).

[33]

Пример 4.

[34]

Кадмиевое покрытие (6-9) мкм нанесено на стальные образцы из сернокислого электролита кадмирования, представленного в прототипе при следующих режимах осаждения: температура электролита (20-40)°С, плотность тока (0,3-3) А/дм2, рН 3,5-5,5.

[35]

Проведены сравнительные испытания кадмиевого покрытия, полученного по примерам 1-4, на коррозионную стойкость (защитные свойства), определена скорость осаждения, прочность сцепления, микротвердость покрытия и рассеивающая способность электролита.

[36]

Прочность сцепления покрытия (адгезия) оценивалась согласно ГОСТ 9.302-88 методом нагрева и нанесения сетки царапин, защитные свойства кадмиевого покрытия исследовали методом ускоренных коррозионных испытаний в камере солевого тумана КСТ-35 по ГОСТ 9.308-85. Рассеивающая способность электролита определена в соответствии с ГОСТ 9.309-86.

[37]

Как видно из данных таблицы предлагаемый способ электролитического нанесения кадмиевых покрытий методом натирания обеспечивает высокую скорость осаждения (до 9 мкм/мин), прочность сцепления покрытия, повышает защитные свойства кадмиевых покрытий на (15-25)%, микротвердость покрытий на 20% и рассеивающую способность электролита кадмирования ~ на 15%.

[38]

Таким образом, предлагаемый электролит и электролитический способ нанесения кадмиевых покрытий на металлические изделия методом натирания позволяет повысить прочность сцепления, микротвердость и скорость осаждения кадмиевых покрытий (приблизительно в 3-4 раза), а также рассеивающую способность электролита, что приведет к снижению материальных и энергетических затрат при ремонте кадмиевых покрытий до 15%, расширит область применения представленной ремонтной технологии кадмирования и уменьшит загрязнения окружающей среды.

[39]

Как компенсировать расходы
на инновационную разработку
Похожие патенты