патент
№ RU 2637269
МПК H01F1/10

ФЕРРИТОВЫЙ МАТЕРИАЛ

Авторы:
Иванова Валентина Ивановна Потешкина Анастасия Андреевна Уваренкова Юлия Александровна
Все (9)
Номер заявки
2016145989
Дата подачи заявки
23.11.2016
Опубликовано
01.12.2017
Страна
RU
Дата приоритета
27.05.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к созданию анизотропных гексаферритов для миллиметрового диапазона. Техническим результатом является получение гексаферритового материала с полями анизотропии Н~7-13 кЭ. Ферритовый материал содержит 6,75÷6,85 вес.% (SrO) оксида стронция, 9,75÷9,90 вес.% (NiO) оксида никеля, 0,45÷10,00 вес.% (CrO) оксида хрома. При этом материал дополнительно содержит 0,10÷2,10 вес.% (MnO) оксида марганца, 0,10÷4,60 вес.% (ScO) оксида скандия, остальное вес.% (FeO) оксида железа. 1 табл., 9 пр.

Формула изобретения

Ферритовый материал, содержащий оксиды стронция, никеля, хрома и железа, отличающийся тем, что он дополнительно содержит оксид скандия и оксид марганца при следующих соотношениях компонентов, вес.%:
Оксид стронция (SrO) 6,75÷6,85
Оксид никеля (NiO) 9,75÷9,90
Оксид хрома (Cr2O3) 0,45÷10,00
Оксид марганца (Mn2O3) 0,10÷2,10
Оксид скандия (Sc2O3) 0,10÷4,60
Оксид железа (Fe2O3) Остальное

Описание

Изобретение относится к радиоэлектронной технике и касается создания анизотропных ферритовых СВЧ материалов для создания невзаимных устройств в миллиметровом диапазоне длин волн в современной и перспективной радиолокации и связи. Для развития этого направления необходимы улучшенные гексаферриты с пониженными СВЧ потерями, улучшенной термостабильностью и с повышенной коэрцитивной силой. Последнее качество позволит уменьшить величину внешнего подмагничивания устройства или совсем отказаться от него, что положительно скажется на массогабаритных характеристиках приборов, способствуя их миниатюризации.

К настоящему времени накоплен значительный опыт по производству высокоплотных ферритов с гексагональной кристаллической структурой с полями анизотропии На от 6 кЭ до 35 кЭ для миллиметрового диапазона длин волн - 18-94 ГГц (каталог фирмы АО «НИИ «Феррит-Домен»). При уменьшении значения На ниже 12-13 кЭ величина коэрцитивной силы падает, особенно при повышении плотности гексаферритов.

Ряд термостабильных марок с На от 6 до 13 кЭ и коэрцитивной силой Нс=0,07÷0,5 кЭ при низкой плотности материала (≤4,2) разработан на основе известного ферритового материала (авторское свидетельство №623239, 05.09.1978 г.), содержащего следующее соотношение компонентов, вес %:

Оксид бария (ВаО) 9,6÷10,0
Оксид никеля (NiO) 0,4÷4,8
Оксид скандия (Sc2O3) 0,1÷13,4
Оксид цинка (ZnO) 5,4÷9,8
Оксид железа (Fe2O3) Остальное.

Известен термостабильный ферритовый материал (авторское свидетельство №387442, 21.06.1973 г.) содержащий, вес %:

Оксид стронция (SrO) 6,7÷6,9
Оксид цинка (ZnO) 5,2÷5,4
Оксид никеля (NiO) 4,8÷5,0
Оксид железа (Fe2O3) Остальное

который характеризуется стабильной величиной поля анизотропии (На=10÷12 кЭ), но имеет узкий диапазон На.

Известен также ферритовый материал (авторское свидетельство №441598, 30.08.1974 г.), содержащий, вес %:

Оксид стронция (SrO) 6,8÷7,0
Оксид никеля (NiO) 9,7÷10,1
Оксид хрома (Cr2O3) 0,3÷15,3
Оксид железа (Fe2O3) Остальное

обладающий большой Нс до 1,5 кЭ.

При повышении плотности этих ферритовых материалов, необходимой при изготовлении полированных подложек для микрополосковых приборов в интегральном исполнении, возникают проблемы, связанные с ухудшением электромагнитных свойств. С ростом плотности происходит снижение коэрцитивной силы, увеличивается проводимость, растут диэлектрические потери.

Наиболее близким аналогом заявляемого изобретения является ферритовый материал по авторскому свидетельству №441598, взятый в качестве прототипа.

Технический результат заявляемого изобретения заключается в получении гексаферритового материала с полями анизотропии На=7÷13 кЭ, более низкими по сравнению с прототипом, с повышенным значением плотности ≥4,8 г/см3 (до 0,9ρтеор) при значения коэрцитивной силы Hc≥1 кЭ и уменьшенных диэлектрических потерях tgδε≤8⋅10-4.

Для достижения технического результата предлагается ферритовый материал, который содержит в качестве базового состава оксиды Sr, Ni, Cr и Fe, отличающийся тем, что он дополнительно содержит оксид скандия и оксид марганца при следующем соотношении компонентов, вес %:

Оксид стронция (SrO) 6,75÷6,85
Оксид никеля (NiO) 9,75÷9,90
Оксид хрома (Cr2O3) 0,45÷10,00
Оксид марганца (Mn2O3) 0,10÷2,10
Оксид скандия (Sc2O3) 0,10÷4,60
Оксид железа (Fe2O3) Остальное

Предлагаемый ферритовый материал получают по следующей технологии.

Исходные компоненты, взятые в необходимых соотношениях, перемешиваются в вибромельнице до получения однородной по составу смеси. Смесь синтезируют при температуре 1220-1280°C в течение 4-6 часов на воздухе. Полученный ферритовый порошок подвергают мокрому помолу в этиловом спирте в течение 20÷24 часов. Из полученной пасты прессуют образцы в постоянном магнитном поле величиной, примерно 0,7 На при удельном давлении 0,3÷0,5 т/см2. После сушки образцы обжигают при температуре 1250-1350°C в атмосфере кислорода.

На спеченных образцах определялись следующие параметры: плотность - ρ, поле анизотропии - На, диэлектрические потери - tgδε и коэрцитивная сила - Нс - по стандартным методикам в соответствии с МЭК. Плотность определялась методом гидростатического взвешивания, поле анизотропии измерялось резонансным методом на сферических образцах. Тангенс угла диэлектрических потерь измерялся резонансным методом на частоте 10 ГГц на стержнях размером 1,12×1,12×18 мм. Коэрцитивная сила контролировалась на гестериографе в магнитном поле 10 кЭ на дисках ∅30×4 мм.

Примеры получения ферритовых материалов, их состав и свойства приведены в таблице 1.

В примерах №1, 2, 3, 4 даны химические составы в пределах заявленных процентных соотношений и соответствующие им параметры.

Пример №5. Увеличение содержания Sc2O3 и уменьшение Cr2O3 по сравнению с заявленными пределами приводили к снижению На и Нс.

Пример №6. Уменьшение содержания Sc2O3 и увеличение Cr2O3 по сравнению с заявленными пределами приводили к росту На.

Пример №7. Увеличение содержания Mn2O3 по сравнению с заявленными пределами приводит к увеличению диэлектрических потерь.

Пример №8. Уменьшение Mn2O3 по сравнению с заявленными пределами также приводит к росту диэлектрических потерь.

Пример №9. Увеличение или уменьшение содержания NiO и SrO по сравнению с заявленными пределами приводит к появлению фаз других соединений, таких как SrFe12O19, Sr5Fe4O11, NiFeO4 и α-Fe2O3, которые ухудшают основные электромагнитные свойства ферритов и затрудняют спекание, например, №9.

Предлагаемое изобретение было создано в процессе выполнения тематического плана предприятия «Исследование возможности повышения коэрцитивной силы у гексаферритов с низкими полями анизотропии».

Создание гексаферритов с полями анизотропии менее 12-13 кЭ с повышенным значением коэрцитивной силы расширит номенклатуру материалов, применяемых в миллиметровом диапазоне радиочастот, и позволит создавать СВЧ приборы без внешнего подмагничивания.

Как компенсировать расходы
на инновационную разработку
Похожие патенты