патент
№ RU 2527073
МПК C12N15/12

КОДОН-ОПТИМИЗИРОВАННАЯ КДНК, КОДИРУЮЩАЯ ДИСФЕРЛИН ЧЕЛОВЕКА, ГЕННО-ИНЖЕНЕРНАЯ КОНСТРУКЦИЯ, РЕКОМБИНАНТНЫЙ АДЕНОВИРУС И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ЛЕЧЕНИЯ ДИСФЕРЛИНОПАТИЙ

Авторы:
Исаев Артур Александрович Старостина Ирина Георгиевна Соловьева Валерия Владимировна
Все (6)
Номер заявки
2012155954/10
Дата подачи заявки
24.12.2012
Опубликовано
27.08.2014
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
6
Реферат

[65]

Изобретение относится к области биотехнологии и касается кДНК, кодирующей дисферлин человека, генно-инженерной конструкции, в которую клонирована такая кДНК, рекомбинантного аденовируса и фармацевтической композиции. Описанная генно-инженерная конструкция содержит экспрессионный плазмидный аденовирусный вектор pAd/CMV/V5-DEST, в который клонирована по сайтам для рекомбинации attB1 и attB2 кодон-оптимизированная кДНК, имеющая последовательность, представленную в SEQ ID NO: 1 и кодирующая дисферлин человека. Рекомбинатный репликационно дефектный аденовирус серотипа 5 получают с применением такой генно-инженерной конструкции и включают в фармацевтическую композицию в эффективном количестве. Изобретения позволяют восстановить нарушенную экспрессию и/или функцию белка дисферлина в скелетной поперечно-полосатой мышечной ткани и вызывать стабильный положительный эффект. 4 н.п. ф-лы, 2 ил.

Формула изобретения

1. Кодон-оптимизированная кДНК, представленная в SEQ ID NO: 1, кодирующая дисферлин человека.

2. Генно-инженерная конструкция для получения рекомбинантного репликационно дефектного аденовируса серотипа 5, представляющая собой экспрессионный плазмидный аденовирусный вектор pAd/CMV/V5-DEST, в который клонирована по сайтам для рекомбинации attB1 и attB2 кодон-оптимизированная кДНК, кодирующая дисферлин человека SEQ ID NO: 1.

3. Рекомбинантный репликационно дефектный аденовирус серотипа 5, полученный с применением генно-инженерной конструкции по п.2 для получения фармацевтической композиции.

4. Фармацевтическая композиция для восстановления нарушенной экспрессии и/или функции белка дисферлина в скелетной мышце, содержащая аденовирус по п.3 в эффективном количестве и фармацевтически допустимые вспомогательные вещества.

Описание

[1]

Изобретение относится к генетической конструкции, включающей кодон-оптимизированную нуклеотидную последовательность гена дисферлина человека, которая может быть использована в лекарственных средствах.

[2]

Известен способ [1] терапии мышечной дистрофии Дюшенна. Авторами были созданы генно-инженерные плазмидные конструкции, содержащие в качестве вставки нуклеотидную последовательность гена дистрофина человека, кодирующего мышечный белок, вовлеченный в развитие патогенеза мышечных дистрофий Дюшенна и Беккера. Полученными конструкциями были генетически модифицированы мышечные волокна пациента с миодистрофией Дюшенна. При этом было показано, что для достижения клинического эффекта требуется большое количество генетически модифицированных мышечных волокон. Таким образом, основным недостатком способа [1] является низкая эффективность генетической модификации мышечных волокон плазмидными векторами, а также низкий уровень экспрессии рекомбинантного белка по сравнению с гентерапевтическими векторами на основе вирусов. Кроме того, вставка нуклеотидной последовательности гена дистрофина позволяет эффективно лечить только миодистрофию Дюшенна, но не другие типы мышечных дистрофий, в том числе связанных с мутациями в гене дисферлина.

[3]

Дисферлин (англ. dystrophy-associated fer-1-like, DYSF) - трансмембранный белок, содержащий семь С2 доменов и состоящий из 2080 аминокислот (231 кДа). Мутация в любом из пяти С2 доменах дисферлина (С2А, В, D, Е и G) может привести к формированию аномальной трехмерной структуры белка или к его деградации, что служит причиной развития поясно-конечностной мышечной дистрофии 2В и миопатии Миоши (совместно обозначаемые как дисферлинопатии). Дисферлинопатии относят к нейромышечным заболеваниям человека аутосомно-рецессивного типа наследования, при которых происходит нарушение экспрессии и/или функции белка дисферлина в скелетной поперчно-полосатой мышечной ткани. С2А области дисферлина связывают фосфолипиды Са2+-зависимым способом, что, по-видимому, связано с ролью белка в восстановлении мембран скелетных мышц. Ген DYSF, кодирующий белок дисферлин, охватывает более 150 тысяч пар нуклеотидов (т.п.н.) геномной ДНК и состоит из 55 экзонов. На интронном уровне обнаружено более 300 различных мутаций, большинство из которых представляют собой однонуклеотидные полиморфизмы.

[4]

Наиболее близким по существу предлагаемого изобретения (прототипом) является способ [2] для терапии дисферлинопатий. Авторы клонировали кДНК дисферлина в вектор на основе адено-ассоциированного вируса (англ. adeno-associated vector, AAV). Так как кДНК дисферлина превышает размер трансгенной вставки, которую способен нести геном адено-ассоциированного вируса, ученые клонировали кДНК гена dysf в виде 2 частей в два независимых AAV вектора: один рекомбинантный AAV вирус несет 5′ конец кДНК вместе с донорным сайтом сплайсинга интрона, другой рекомбинантный AAV вирус несет акцепторный сайт сплайсинга и следующий за ним 3′ концевую последовательность кДНК. В результате естественной способности AAV вирусов к конкатемеризации происходило объединение двух частей кДНК и экспрессия полноразмерного белка дисферлина.

[5]

Внутримышечная инъекция двух рекомбинантных AAV в мышиную модель дисферлинопатии приводила к экспрессии полноразмерного дисферлина, продолжавшейся по крайней мере в течение одного года. Важно, что системная инъекция в хвостовую вену мышей этих двух векторов приводила к системной, хотя и слабой, экспрессии белка. Инъекции приводили к улучшению гистологической картины мышечной ткани, сокращению числа некротических волокон, восстановлению репарации мембраны и глобальному улучшению двигательных функций. В целом эти данные свидетельствуют о перспективности использованной стратегии для лечения дисферлинопатий. Недостатком способа [2] является необходимость одновременного введения двух генетических конструкций, обусловленная ограниченной способностью векторов на основе адено-ассоциированных вирусов нести большие вставки трансгенной ДНК.

[6]

Задачей настоящего изобретения является создание эффективной и безопасной генно-инженерной конструкции на основе аденовирусного вектора, экспрессирующей дисферлин человека, а также включение новой генетической конструкции в фармацевтическую композицю. Предлагаемая группа изобретений позволит расширить арсенал лекарственных средст для эффективного лечения дисферлинопатий.

[7]

Краткое описание рисунков.

[8]

Рис.1. Вестерн-блот анализ экспресии белка DYSF в генетически модифицированных клетках НЕК-293Т. Электрофорез в 8% SDS-PAGE геле по системе Лаэмли. Антитела к дисферлину (Abcam; ab15108) использовались в разведении 1:200. Ожидаемый размер белка DYSF - 231 кДа. Лунка 1 - клетки НЕК293Т, трансфицированные кольцевой плазмидой pAd-Dysf, лунка 2 - нетрансфицированные клетки НЕК-293Т. М - маркер Prestained Protein Molecular Weight Marker (Fermentas International Inc., Канада).

[9]

Рис. 2. Иммунофлуоресцентный анализ клеток линии НЕК-293Т, трансдуцированных аденовирусом Ad5-Dysf. 48 часов инкубации после трансдукции. А, Б, В, Г - клетки НЕК-293Т, трансдуцированные аденовирусом Ad5-Dysf. Д, Е, Ж, З - нетрансдуцированный контроль. А, Д - фазово-контрастная микроскопия. Б, Е - окрашивание с помощью первичных антител кролика к дисферлину и вторичных антител осла к иммуноглобулину G кролика, конъюгированных с флуоресцентной меткой Alexa-555. В, Ж - окрашивание флуоресцентным красителем DAPI. Г, З - совмещение синего и красного спектров флуоресценции.

[10]

В настоящее время генную терапию на основе аденовирусов (с использованием аденовирусных векторов) считают перспективным методом лечения различных заболеваний человека, в том числе мышечных дистрофий. Аденовирусные векторы способны инфицировать широкий спектр клеток человека, обеспечивая высокий уровень экспрессии трансгена, не интегрируются в геном клетки хозяина (онкологическая безопасность) и могут переносить большие фрагменты рекомбинантной ДНК - до 7,5 т.п.н.

[11]

Для решения поставленной задачи предложена генно-инженерная конструкция pAd-Dysf, представляющая собой экспрессионный плазмидный аденовирусный вектор, в который клонирована вставка ДНК (кодон-оптимизированная нуклеотидная последовательность гена дисферлина человека DYSF длиной 6243 п.н.), кодирующая белок дисферлин человека. Генно-инженерная конструкция названа pAd-Dysf.

[12]

Необходимость использования генно-инженерной конструкции pAd-Dysf связана с тем, что при дисферлинопатии введение кодон-оптимизированной нуклеотидной последовательности гена дисферлина человека DYSF в составе генетической конструкции способно восстановить нарушенную экспрессию и/или функцию белка дисферлина в скелетной поперечно-полосатой мышечной ткани и вызывать стабильный положительный эффект.

[13]

Принцип действия генно-инженерной конструкции pAd-Dysf основан на том, что путем рестрикционного расщепления плазмидной конструкции pAd-Dysf в клетках линии НЕК-293А получают рекомбинантный репликационно дефектный аденовирус серотипа 5, Ad5-Dysf, который впоследствии вводится в мышцу пациента, страдающего дисферлинопатией. За этим следует трансдукция мышечных клеток рекомбинантным аденовирусом и экспрессия гена DYSF. Далее мРНК подвергается процессингу и на ней происходит синтез белка дисферлина.

[14]

Основные элементы конструкции pAd-Dysf:

[15]

- Кодон-оптимизированная нуклеотидная последовательность гена дисферлина человека (SEQ ID NO:1), 6243 п.н.

[16]

- Консенсусная последовательность Козак, находящаяся перед старт-кодоном гена dysf и играющая важную роль для инициации трансляции, 6 п.н.

[17]

- Последовательности аденовируса человека Ad5 (включает 5′ левый инвертированный концевой повтор L-ITR и сигнал упаковки), 458 п.н.

[18]

- Сайт прямого праймера pAd, 24 п.н.

[19]

- Промотор CMV, 588 п.н.

[20]

- Сайт праймера промоторного участка Т7, 20 п.н.

[21]

- Сайт attB1, 25 п.н.

[22]

- Сайт attB1, 25 п.н.

[23]

- Эпитоп V5, 42 п.н.

[24]

- Сигнал полиаденилирования гена тимидинкиназы, 272 п.н.

[25]

- Последовательности аденовируса человека Ad5 (участок Е3 удален, включает 3′ правый инвертированный терминальный повтор R-ITR), 30549 п.н.

[26]

- Сайт обратного праймера pAd, 24 п.н.

[27]

- Участок начала репликации из плазмиды pUC (ori-pUC), 662 п.н.

[28]

- Ген устойчивости к ампициллину (bla), 861 п.н.

[29]

- Промотор гена bla, 99 п.н.

[30]

- Сайты рестрикции PacI, 2075 п.н.

[31]

Для создания конструкции использован экспрессионный вектор pAd/CMV/V5-DEST (Invitrogen, Catalog #V493-20, США), который позволяет получить аденовирус, содержащий необходимый рекомбинантный ген, что обеспечивает его доставку в делящиеся и неделящиеся клетки in vitro или in vivo. Плазмидный вектор содержит промотор цитомегаловируса CMV для эффективной экспрессии трансгена, геном аденовируса, рекомбинационные последовательности, участок начала репликации из pUC плазмиды, гены устойчивости к ампициллину и хлорамфениколу и сайты рестрикции PacI.

[32]

Вставка представляет собой кодон-оптимизированную нуклеотидную последовательность гена дисферлина человека. Кодонная оптимизация основана на вырожденности генетического кода, при этом в качестве оптимальных кодонов используют наиболее часто встречающиеся синонимические кодоны вырожденного генетического кода. Чем выше частота встречаемости того или иного кодона, используемого для кодирования аминокислоты в организме, тем с большей скоростью он будет транслироваться рибосомами вследствие высокой внутриклеточной концентрации тРНК, узнающей такой кодон.

[33]

Согласно литературным данным кодонная оптимизация активно используется для повышения экспрессии рекомбинантного белка путем увеличения эффективности трансляции кДНК и, тем самым, функциональности интересующего гена [3-5]. Дикий тип нуклеотидной последовательности кодирующей части гена DYSF состоит из 6243 п.н. и содержит тандем редких кодонов, которые могут остановить трансляцию или снизить ее эффективность. Таким образом, кодонная оптимизация позволит увеличить функциональность гена DYSF и экспрессию рекомбинантного белка.

[34]

Для оптимизации кодонного состава гена дисферлина DYSF использовали алгоритм OptimumGene, который учитывает различные факторы, влияющие на уровни экспрессии генов, такие как смещение кодонов, GC-состав, содержание CpG-динуклеотидов, вторичную структуру мРНК, тандемные повторы, сайты рестрикции, которые могут помешать клонированию, преждевременные сайты полиаденилирования, дополнительные минорные сайты связывания с рибосомой. В качестве матрицы для кодонной оптимизации была взята нуклеотидная последовательность мРНК гена DYSF (GeneBank #NM_003494). Синтез de novo оптимизированной нуклеотидной последовательности гена dysf был осуществлен компанией GenScript (США).

[35]

При оптимизации кодонного состава дикого типа гена DYSF был улучшен индекс адаптации кодонов CAI (англ. Codon Adaptation Index) с 0,83 до 0,88. Для увеличения стабильности мРНК был оптимизирован GC-состав и удалены протяженные участки с высоким сожержанием GC-nap. Кроме того, процесс оптимизации удалил потенциальные цис-действующие сайты.

[36]

Таким образом, получена плазмида (pDONR221-Dysf), кодирующая оптимизированную по кодонам последовательность гена DYSF. В результате кодонной оптимизации аминокислотная последовательность дисферлина не изменилась и составила 2080 аминокислотных остатков. pDONR221 (Invitrogen, Catalog #12536-017, США) - вектор-донор (4762 п.н.), предназначен для рекомбинационного клонирования генов в аденовирусный плазмидный вектор pAd/CMV/V5-DEST по технологии Gateway®.

[37]

Генетическая конструкция pAd-Dysf получена субклонированием гена DYSF из плазмиды pDONR221-Dysf в аденовирусный плазмидный вектор pAd/CMV/V5-DEST по технологии Gateway® (Invitrogen, США) с помощью реакции LR-рекомбинации. LR-рекомбинация происходит между attL-содержащим вектором-донором и attR-содержащим вектором-реципиентом. После рекомбинации между сайтами attL (L1 и L2)и attR (R1 и R2) образуются сайты для рекомбинации attB (B1 и B2).

[38]

Технология Gateway™ основана на сайт-специфической рекомбинационной системе фага λ, которая используется фагом для интеграции в геном Е. coli и перехода между литическим и лизогенным путями.

[39]

Полученная таким образом рекомбинантная плазмида, кодирующая аденовирусный геном со вставкой гена DYSF (pAd-DYSF), позволяет получить рекомбинантный аденовирус, содержащий необходимый трансген.

[40]

Правильность сборки генетической конструкции проверяли ДНК-секвенированием. Было определено 23 фрагмента, получено полное покрытие открытой рамки считывания гена DYSF. Анализ нуклеотидных последовательностей показал отсутствие мутаций на протяжении всей нуклеотидной последовательности гена дисферлина.

[41]

Функциональная активность генетической контрукции подтверждалась анализом экспресси трансгена in vitro. После трансфекции клеток линии НЕК-293Т (АТСС, CRL-11268) полученной генетической конструкцией с использованием трансфекционного агента TurboFect (Fermentas Inc., Канада), анализ экспрессии рекомбинантного белка проводили с помощью иммунофлуоресцентного и вестерн-блот анализов. Иммунофлуоресцентный анализ выявил положительную реакцию с поликлональными антителами кролика к дисферлину. Вестерн-блот анализ белковых лизатов клеток НЕК-293Т показал наличие выраженной специфичной полосы иммунопреципитата, соответствующей ожидаемой молекулярной массе белка дисферлина (231 кДа) (Рис. 1). Таким образом, показана экспрессия белка дисферлина полученной генетической конструкцией pAd-Dysf.

[42]

С помощью рестрикции ферментом PacI была получена линейная плазмида pAd-Dysf, которой трансфицировали клетки НЕК-293А (Invitrogen, Catalog #R705-07, США) для сборки и репликации аденовируса. Расщепление вектора способствует взаимодействию левого и правого инвертированных концевых повторов и удалению бактериальных последовательностей (а именно участка начала репликации pUC и гена устойчивости к ампициллину).

[43]

Сборка и репликация рекомбинантного аденовируса происходит в клетках линии НЕК-293А - иммортализированная линия первичных человеческих эмбриональных клеток почки, трансформированные фрагментами ДНК аденовируса серотипа 5. Клеточная линия содержит стабильно интегрированную в геном копию гена e1, который экспрессирует белки E1 (Е1а и E1b), необходимые для получения рекомбинантного аденовируса.

[44]

После получения неочищенного вирусного лизата путем проведения нескольких циклов замораживания/оттаивания с последующим центрифугированием, для повышения вирусного титра проводили амплификацию аденовируса Ad5-Dysf в клетках НЕК-293А. Через 2 дня после заражения в культуре клеток наблюдался цитопатический эффект, что указывает на то, что клетки продуцируют вирусные частицы.

[45]

Рекомбинантный репликационно дефектный аденовирус серотипа 5 Ad5-Dysf, полученный с применением генно-инженерной конструкции pAd-Dysf, содержащей кодон-оптимизированную кДНК, которая кодирует дисферлин человека SEQ ID NO:1, использовали для демонстрации достижения технического результата на модели инфекции культуры клеток НЕК-293Т in vitro. Для этого клетки НЕК-293Т инфицировали полученным рекомбинантным аденовирусом Ad5-Dysf и через 48 часов после вирусной трансдукции проводили анализ экспрессии белка дисферлина с помощью иммунофлуоресцентного анализа (Рис. 2).

[46]

Наличие флуоресцентного сигнала в инфицированных клетках НЕК-293Т свидетельствует об экспрессии рекомбинантного белка дисферлина и, следовательно, является подтверждением достижения технического результата.

[47]

Полученный аденовирус Ad5-Dysf может быть использован в составе фармацевтической композиции для получения готовой лекарственной формы.

[48]

Фармацевтическая композиция для восстановления нарушенной экспрессии и/или функции белка дисферлина в скелетной мышце содержит аденовирус Ad5-Dysf в эффективном количестве и фармацевтически допустимые вспомогательные вещества.

[49]

В одном из вариантов фармацевтическая композиция может содержать, в том числе, добавку для трансдукции аутологичных клеток в случае реализации генно-клеточного подхода и трансплантации ген-оптимизированных клеток.

[50]

Раствор аденовируса Ad5-Dysf, пригодный для последующего получения фармацевтической композиции и готовой лекарственной формы, может быть получен при помощи стандартных методов выделения и очистки вирусов, известных специалисту в данной области техники.

[51]

Готовая лекарственная форма должна быть пригодна для проведения геннотерапии и не должна приводить к существенному изменению свойств основного вещества при продолжительном хранении. Возможная готовая лекарственная форма аденовируса Ad5-Dysf может быть выбрана из группы замороженного раствора, жидкого раствора, лиофилизата, то есть лиофильно высушенного раствора, аморфной пленки, но не ограничивается ими.

[52]

Предпочтительными вариантами готовой лекарственной формы являются жидкий раствор или лиофилизат, поскольку они могут храниться при положительной температуре, то есть в стандартных фармацевтических холодильниках, и не требуют значительного времени для подготовки к инъекции.

[53]

Наиболее предпочтительным вариантом готовой лекарственной формы является лиофилизат, поскольку отсутствие воды потенциально замедляет химические реакции распада цепей ДНК.

[54]

Получение лиофилизата, то есть аморфной или микрокристаллической пористой массы, требует присутствия в лиофилизуемом растворе вспомогательных веществ, выполняющих функции криопротектанта, стабилизатора pH, хелатирующего агента, антиоксиданта, наполнителя и т.д. Минимально возможный набор вспомогательных веществ может включать в себя по меньшей мере один криопротектант, обладающий свойствами наполнителя и стабилизатор pH. Вспомогательное вещество, являющееся криопротектантом и наполнителем, может быть выбрано из группы, включающей моно- и дисахариды, полиолы и полимеры, такие как: сахароза, лактоза, трегалоза, маннитол, сорбитол, глюкоза, раффиноза, поливинилпирролидон или их сочетания. Стабилизатор pH может быть выбран из группы, включающей цитрат натрия, фосфат натрия, Трис-HCl, Трис-ацетат, глицин и другие аминокислоты.

[55]

Способ получения лиофилизата может предусматривать добавление к аденовирусу Ad5-Dysf растворов, по меньшей мере, одного криопротектанта, обладающего свойствами наполнителя, и стабилизатора pH с получением изотонического раствора с концентрацией полученного аденовируса от 1×109 до 1×1011 БОЕ/мл (Бляшкообразующих единиц в 1 мл) и pH от 7,0 до 9,0 и последующую лиофилизацию и хранение при температуре от +2°C до +8°C.

[56]

Способ применения фармацевтической композиции заключается во введении ее человеку (или животным) таким способом и в таком количестве, которые обеспечат лечебный эффект в зависимости от нозологической формы и медицинских показаний.

[57]

Фармацевтическая композиция может вводиться внутримышечно - местно, системно - внутривенно, аэрозольно, в виде генно-клеточной трансплантации или трансфузии после in vitro обработки различных аутологичных клеток, например гемопоэтических и их более дифференцированных производных, мезенхимальных, сосудисто-стромальной фракции, мезангиобластов, миобластов, миосателлитоцитов и др.

[58]

Хотя указанные изобретения описаны в деталях, для специалиста в данной области техники очевидно, что могут быть совершены различные изменения и произведены эквивалентные замены, и такие изменения и замены не выходят за рамки настоящего изобретения.

[59]

Использованные источники

[60]

1. Acsadi, G., et al., Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature, 1991. 352(6338): p.815-8.

[61]

2. Lostal, W., et al., Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet, 2010. 19(10): p.1897-907.

[62]

3. Deml, L., et al., Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type l Gag protein. J Virol, 2001. 75(22): p.10991-1001.

[63]

4. Kim, C.H., Y. Oh, and Т.Н. Lee, Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene, 1997. 199(1-2): p.293-301.

[64]

5. Takenaka, Y., et al., Transformation of Paramecium caudatum with a novel expression vector harboring codon-optimized GFP gene. Gene, 2002. 284(1-2): p.233-40.

Как компенсировать расходы
на инновационную разработку
Похожие патенты