патент
№ RU 2569546
МПК C01G5/00

ФОТОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СТАБИЛИЗИРОВАННЫХ НАНОЧАСТИЦ СЕРЕБРА

Авторы:
Банникова Дарья Александровна Лобанов Антон Валерьевич Жунина Ольга Александровна
Все (9)
Номер заявки
2014142966/05
Дата подачи заявки
27.10.2014
Опубликовано
27.11.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
3
Реферат

Изобретение может быть использовано в производстве средств санитарной обработки для применения в медицине, ветеринарии, пищевой промышленности и в быту. Фотохимический способ получения стабилизированных наночастиц серебра включает взаимодействие ионов серебра со стабилизирующим агентом в водном растворе при комнатной температуре под действием света видимого диапазона. В качестве восстановителя и стабилизирующего агента используют додецилсульфат натрия или полимерный продукт, выбранный из группы: поливинилпирролидон, поливиниловый спирт, крахмал. Стабилизатор-восстановитель берут в массовом избытке. В качестве источника ионов серебра берут нитрат серебра. В качестве источника света видимого диапазона используют источник искусственного освещения. Изобретение позволяет сократить время и энергозатраты при получении водных препаратов стабилизированных наночастиц серебра, сохраняющих стабильность и бактерицидную активность в течение, как минимум, 6 месяцев, без дополнительной очистки и вредных производственных и экологических факторов. 4 з.п. ф-лы, 3 ил., 2 табл.

Формула изобретения

1. Фотохимический способ получения стабилизированных наночастиц серебра, включающий взаимодействие ионов серебра со стабилизирующим агентом в водном растворе при комнатной температуре под действием света видимого диапазона, отличающийся тем, что в качестве восстановителя и стабилизирующего агента используют додецилсульфат натрия или полимерный продукт, выбранный из группы: поливинилпирролидон, поливиниловый спирт, крахмал, которые берут в избытке, в качестве источника ионов серебра используют нитрат серебра, а в качестве источника света видимого диапазона используют источник искусственного освещения.

2. Способ по п. 1, отличающийся тем, что полимерный стабилизирующий агент используют в композиции с поверхностно-активным веществом.

3. Способ по п. 2, отличающийся тем, что в качестве поверхностно-активного вещества используют додецилсульфат натрия, или олеиновую кислоту, или Тритон Х-100.

4. Способ по п. 1, отличающийся тем, что в качестве источника искусственного освещения используют галогенную лампу накаливания.

5. Способ по п. 1, отличающийся тем, что процесс ведут при перемешивании реакционной смеси.

Описание

[1]

Изобретение относится к области нанотехнологий, конкретно - к получению и применению препаратов на основе наночастиц серебра, и может быть использовано для производства бактерицидных средств, предназначенных для применения в медицине, ветеринарии, пищевой промышленности, в бытовых и других целях.

[2]

Коллоидные дисперсии наночастиц серебра применяют в электронной промышленности для получения проводящих клеев и чернил, защитных экранов графических дисплеев. Хорошо известны биоцидные свойства наночастиц серебра, и создание бактерицидных препаратов на их основе является важным достижением в области нанотехнологий. Препараты стабилизированного наносеребра используют для получения бактерицидных покрытий, дезинфицирующих, моющих, ранозаживляющих средств и других продуктов в качестве профилактических антимикробных средств защиты на предприятиях общественного питания, в детских, спортивных, медицинских учреждениях и других местах, где повышена вероятность развития бактериальных, грибковых и вирусных инфекций.

[3]

В качестве стабилизирующих агентов (стабилизаторов), способствующих сохранению наноразмерной структуры и высокой бактерицидной активности частиц восстановленного серебра, используют широкий круг соединений, таких как цитрат или додецилсульфат натрия, поливиниловый спирт, поливинилпирролидон, крахмал, желатин и другие низкомолекулярные и полимерные продукты природного и искусственного происхождения.

[4]

Известно большое количество химических, электрохимических, микробиологических, а также комбинированных, объединяющих различные подходы, способов получения стабилизированных препаратов наночастиц серебра, сохраняющих стабильную бактерицидную активность в течение сроков их хранения и использования.

[5]

В качестве химических восстановителей используют боргидриды, например [RU 2367512 С1, опубл. 20.09.2009], производные гидразина, например [US 20130029034 A1, опубл. 31.01.2013], танины [RU 2430169 С2, опубл. 27.09.2011], аскорбиновую кислоту [US 5389122, опубл. 14.02.1995], глюкозу, например [CN 101941075 А, опубл. 12.01.2011], кверцетин [RU 2333773 С1, опубл. 20.09.2008] и другие соединения. Применение химических восстановителей приводит к загрязнению конечных продуктов нежелательными, часто - токсичными примесями, и требует дополнительных затрат на их очистку. Электрохимическое восстановление ионов серебра с получением стабилизированных препаратов наносеребра [RU 2364470 С1, опубл. 20.08.2009, RU 2390344 С1, опубл. 27.05.2010, RU 2410471 С1, опубл. 27.01.2011, RU 2456356 С1, опубл. 20.07.2012 и др.] связано с высокими энергозатратами.

[6]

Описано применение обратномицеллярных технологий, позволяющих получить устойчивые препараты наночастиц серебра [RU 2322327 С2, опубл. 20.04.2008, RU 2341291 С1, опубл. 20.12 2008 и др.], однако многостадийность способа, необходимость использования большого числа реагентов ограничивают возможности масштабирования производства.

[7]

Все более широкое распространение получают микробиологические методы, например [СА 2656323 А1, опубл. 10.01.2008, RU 2460797 С2, опубл. 10.09.2012, US 20090239280 A1, опубл. 24.09.2009, US 20120108425 A1, опубл. 03.05.2012, RU 2477172 С1, опубл. 10.03.2013 и др.]. Препараты наносеребра, полученные с использованием микроорганизмов, могут содержать остатки биомассы и вредные продукты метаболизма, очистка от которых дополнительно повышает их стоимость.

[8]

Описаны способы получения наноструктур серебра и других металлов, основанные на восстановлении ионного серебра под действием различных видов электромагнитного излучения. Например, стабильные, высокоупорядоченные| покрытые лигандной оболочкой наночастицы серебра получают в полимерной матрице из поливинилового спирта или желатина под действием лазерного излучения на длине волны 510,6 нм или 578,2 нм в растворе, содержащем цитрат натрия, олеат натрия и боргидрид натрия [RU 2510210 С1, опубл. 27.03.2014]. Использование электромагнитного излучения позволяет получать наносеребро и без применения химических восстановителей. Так, способ получения коллоидного раствора наночастиц серебра [RU 2474471 С2, опубл. 10.02.2013] включает гамма-облучение в инертной атмосфере водного раствора нитрата серебра, содержащего в качестве стабилизатора карбоксиметилхитин без дополнительных восстанавливающих агентов. Процесс осложнен необходимостью использования инертного газа и вредного для персонала гамма-облучения.

[9]

В основе фотохимических способов получения наночастиц металлов лежит генерация сильных высокоактивных восстановителей - электронов, радикалов, возбужденных частиц под действием световой энергии. В работе Р.Ф. Аббасовой и др. «Получение наночастиц серебра в водных растворах полиакриловой кислоты и их агрегация при фотохимическом восстановлении», 2009 г. [1.pdf] описано образование наноструктурных агрегатов серебра при восстановлении ионов серебра под действием УФ-облучения в присутствии полиакриловой кислоты. Облучение проводят полным светом ртутной лампы высокого давления на воздухе при комнатной температуре без введения дополнительных восстановителей. При этом образуются наночастицы, не загрязненные примесями, сопутствующими процессам с использованием химических восстановителей. Под действием облучения в результате фотовосстановления идут не только процессы получения наночастиц определенного размера, но и формируются более крупные агрегаты. Авторы отмечают седиментационную неустойчивость полученных образцов, которая увеличивается с возрастанием времени УФ-облучения. Недостатком способа также является необходимость использования вредного для здоровья УФ-света.

[10]

С практической точки зрения более предпочтительными представляются технические решения, не связанные с использованием вредного для здоровья человека излучения. Согласно [US 8333822 В2, опубл. 18.10.2012], стабильные наночастицы серебра образуются при естественном освещении при введении в систему соединений, совмещающих в себе свойства стабилизатора и восстановителя (далее по тексту «стабилизатор-восстановитель»), в частности полимеров на основе полиоксиэтиленамина. Варьируя состав полимера и подбирая количественные соотношения реагентов, можно получать системы, содержащие наночастицы серебра различного размера. Однако синтез описанных полимеров представляет собой самостоятельную задачу, что затрудняет масштабирование и создание промышленного производства. Средство, обладающее антимикробной активностью по патенту [RU 2278669 С1, опубл. 27.06.2006], получают на свету при взаимодействии соли серебра с природным полисахаридом арабиногалактаном, также играющим одновременно роль стабилизатора и восстановителя. Недостатком способа является необходимость использования сильно щелочной среды и дополнительного нагрева.

[11]

В качестве прототипа выбран способ получения нанокомпозиций серебра на основе синтетических водорастворимых полимеров [RU 2485051 С1, опубл. 20.06.2013]. Согласно изобретению, в качестве стабилизатора-восстановителя используют сополимеры 2-диокси-2-метакриламидо-D-глюкозы с 2-диметиламиноэтилметакрилатом или 2-диэтиламиноэтилметакрилатом. Способ реализуют взаимодействием указанных сополимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл и концентрации AgNO3 0,001-0,01 г/мл. В зависимости от состава сополимера, на восстановление требуется от трех часов до нескольких суток.

[12]

Недостатком способа является необходимость использования в качестве стабилизатора-восстановителя не производящегося промышленностью полимерного продукта, синтез которого требует продолжительного нагрева в инертной атмосфере с последующей очисткой.

[13]

Таким образом, анализ уровня техники показывает, что, несмотря на большое количество известных способов получения нанодисперсного серебра, практически все они характеризуются недостатками, ограничивающими их применение для промышленного производства бактерицидных препаратов.

[14]

Задачей настоящего изобретения является разработка способа получения стабилизированных наночастиц серебра, который осуществляют с использованием доступных, выпускаемых промышленностью реагентов, в условиях, исключающих применение вредных производственных и экологических факторов и позволяющих быстро и с минимальными энергозатратами получать стабильные, не требующие дополнительной очистки конечные продукты, обладающие бактерицидной активностью.

[15]

Поставленная задача решена предлагаемым фотохимическим способом получения стабилизированных наночастиц серебра, включающим взаимодействие ионов серебра со стабилизирующим агентом в водном растворе при комнатной температуре под действием света видимого диапазона, отличающегося тем, что в качестве стабилизирующего агента используют додецилсульфат натрия или полимерный продукт, выбранный из группы: поливинилпирролидон, поливиниловый спирт, крахмал, а в качестве источника света видимого диапазона используют источник искусственного освещения.

[16]

Процесс осуществляют на воздухе при массовом избытке стабилизатора-восстановителя без дополнительного нагрева при интенсивном перемешивании и без введения в систему специальных восстанавливающих агентов. При этом реакционная система может включать, наряду с полимерными стабилизирующими агентами, поверхностно-активные вещества.

[17]

В основе предлагаемого способа лежит обнаруженный нами факт, состоящий в том, что в условиях облучения водных растворов солей серебра светом видимого диапазона, создаваемым источником искусственного освещения, в присутствии ряда полимерных и низкомолекулярных соединений, традиционно используемых в качестве стабилизаторов и поверхностно-активных веществ (ПАВ), процесс восстановления ионов серебра и образование стабильных коллоидных дисперсий может протекать с высокой скоростью на воздухе при комнатной температуре без введения в систему дополнительных восстанавливающих агентов. Так, нами показано, что под действием облучения водных растворов реагентов светом от галогенной лампы накаливания эффективное восстановление идет в присутствии додецилсульфата натрия, поливинилпирролидона (ПВП), поливинилового спирта (ПВС), крахмала. При этом полимерные продукты могут быть использованы в комбинации с поверхностно-активными веществами, например с додецилсульфатом натрия, олеиновой кислотой, Тритоном Х-100.

[18]

Из уровня техники известно применение этих веществ в качестве стабилизаторов нанодисперсий серебра, однако, при этом для осуществления процесса восстановления в реакционную систему дополнительно вводят специальные восстановители [см., например, RU 2445951 С1, опубл. 27.03.2012, RU 2012151096 А, опубл. 06.10,2014, RU 2011140012 А, опубл. 04.10.2013] или воздействуют на систему гамма-излучением, под действием которого в растворителе генерируются электроны, восстанавливающие ионы серебра [RU 2259871 С2, опубл. 10.09.2005]. Таким образом, неожиданный результат состоит в том, что получение стабилизированных наночастиц серебра возможно осуществить в гораздо более мягких условиях без использования специальных восстановителей и жесткого энергетического воздействия с применением доступных, традиционно применяемых в качестве стабилизирующих агентов соединений, которые играют в данном процессе роль стабилизаторов-восстановителей. Оксо- и гидроксогруппы этих соединений (карбоксильные, карбонильные, гидроксильные) способны образовывать комплексы с катионами серебра, обеспечивая оптимальные условия для их восстановления гидратированными электронами или атомами водорода [Ershov B.G., Henglein Α. // J. Phys. Chem. В 1998. 102. P. 10663], a также взаимодействовать с положительно заряженными кластерами и атомами поверхности наночастиц, обеспечивая их стабилизацию и контроль размера [Wang W., Chen X., Efrima S. // J. Phys. Chem. B. 1999. 103. P. 7238].

[19]

По-видимому, в качестве стабилизаторов-восстановителей могут быть использованы и другие синтетические или природные стабилизаторы, содержащие оксо- и гидроксогруппы, способные образовывать комплексы с катионами серебра.

[20]

Для осуществления изобретения в качестве соединения серебра может быть использовано любое водорастворимое соединение серебра, в частности нитрат серебра.

[21]

В отличие от прототипа, согласно которому процесс осуществляют при естественном освещении, применение искусственных источников света имеет несомненные преимущества. Они позволяют плавно регулировать интенсивность и дозу облучения и, таким образом, управлять процессом восстановления, что имеет большое значение при осуществлении способа в промышленных условиях. В качестве источника искусственного освещения можно использовать любые лампы, излучающие свет видимого диапазона. Однако использование ртутных ламп нежелательно, поскольку работа с ними требует водяного охлаждения и связана с опасностью попадания металлической ртути и ее паров в окружающую среду в случае повреждения лампы, а также требует дополнительных затрат на их утилизацию. Оптимальным с точки зрения экономики, экологии и техники безопасности является использование ламп накаливания, в частности галогенных ламп, излучающих видимый свет в диапазоне длин волн 325-1000 нм.

[22]

Скорость протекания процесса зависит от удельной мощности светового потока, которая, в частности, зависит от мощности источника излучения и его удаленности относительно облучаемого раствора. Важно обеспечить интенсивное перемешивание реакционной смеси, чтобы реализовать равномерное облучение всего объема. Эмпирически подбирая соответствующие параметры, можно обеспечить быстрое и эффективное восстановление ионного серебра с получением стабилизированных дисперсий наночастиц серебра.

[23]

На Фиг. 1 в качестве иллюстрации показаны УФ-спектры коллоидных растворов наночастиц серебра, полученных с использованием в качестве стабилизаторов-восстановителей ПВП (7), ПВС (2), крахмала (5), додецилсульфата натрия (4), ПВС в комбинации с додецилсульфатом натрия (5). Для регистрации УФ-спектров использован прибор HACH DR-4000V (США).

[24]

На Фиг. 2 (а-г) в качестве иллюстрации показаны электронные микрофотографии стабилизированных наночастиц серебра, полученных с использованием в качестве стабилизаторов-восстановителей ПВП (а), ПВС (б), крахмала (в), додецилсульфата натрия (г).

[25]

На Фиг. 3 (а-г) в качестве иллюстрации показаны диаграммы распределения по размерам стабилизированных наночастиц серебра, полученных с использованием в качестве стабилизаторов-восстановителей ПВС (а), ПВС в комбинации с додецилсульфатом натрия (б), ПВС в комбинации с олеиновой кислотой (в), ПВС в комбинации с Тритоном Х-100 (г).

[26]

Размер и статистическое распределение по размеру стабилизированных наночастиц серебра определяют методом просвечивающей электронной микроскопии с использованием прибора «Hitachi-11» (Япония).

[27]

Изобретение осуществляют следующим образом.

[28]

Готовят раствор стабилизатора-восстановителя или бинарной композиции стабилизатора-восстановителя с поверхностно-активным веществом в воде. В полученном растворе дополнительно растворяют соединение серебра, например нитрат серебра. Полученный раствор при интенсивном перемешивании облучают светом лампы накаливания без дополнительного нагрева в течение времени, достаточного для завершения процесса, о чем судят по изменению величины оптической плотности раствора при длине волны вблизи 400 нм (см. Фиг. 1). При этом в интервале 30-120 минут наблюдается нарастание интенсивности окраски, характерной для коллоидных растворов наносеребра. Дальнейшее облучение не приводит к заметному увеличению содержания наносеребра в реакционной смеси. В приведенных ниже примерах источником видимого света служит галогенная лампа мощностью 150 Вт в комплекте с линзами и конденсором. Удельная мощность светового потока, измеренная термоэлектрическим актинометром АТ-50, составляет 10 мВт/см2. Для реализации способа в промышленном масштабе потребуется переход к многоламповой осветительной установке, при этом время воздействия светового потока должно быть оптимизировано с учетом реальных производственных условий.

[29]

Количественное соотношение стабилизатора-восстановителя и соединения серебра выбирают таким образом, чтобы получить максимально концентрированные, не седиментирующие в течение длительного времени, коллоидные растворы стабилизированных наночастиц серебра. С этой целью используют массовый избыток стабилизатора-восстановителя, обеспечивающий возможность стабилизации всего количества образующихся наночастиц. Присутствие стабилизатора-восстановителя в конечном продукте не сказывается отрицательно на возможности его применения в качестве бактерицидного средства.

[30]

Для получения устойчивых защитных бактерицидных покрытий к стабилизирующему агенту добавляют низкомолекулярные мицеллообразующие поверхностно-активные вещества, например додецилсульфат натрия, олеиновую кислоту, Тритон Х-100, которые не оказывают отрицательного влияния ни на скорость восстановления, ни на распределение полученных наночастиц по размерам (см. Фиг. 3). В приведенных ниже примерах 5-7 показана возможность использования в качестве стабилизатора-восстановителя ПВС в сочетании с различными ПАВ, однако очевидно, что вместо ПВС могут быть использованы и другие полимерные стабилизаторы в сочетании с другими поверхностно-активными веществами.

[31]

Установлено, что полученные в соответствии с изобретением препараты при хранении в стандартных условиях (в закрытой таре без доступа света при комнатной температуре), как минимум, в течение 6 месяцев, седиментационно устойчивы и сохраняют близкий к первоначальному характер распределения по размерам стабилизированных наночастиц серебра и близкий к исходному уровень бактерицидной активности.

[32]

Приведенные ниже примеры иллюстрируют возможности осуществления заявляемого способа, однако не исчерпывают всех возможностей его реализации.

[33]

В стандартном эксперименте в 50 мл дистиллированной воды растворяют 40 мг стабилизатора-восстановителя или 80 мг смеси (1:1) стабилизатора-восстановителя с ПАВ, после чего к раствору прибавляют 30 мг нитрата серебра и полученный прозрачный раствор облучают светом галогенной лампы мощностью 150 Вт при интенсивном перемешивании раствора на магнитной мешалке. Расстояние между раствором и источником света - 30 см, что соответствует удельной мощности светового потока - 10 мВт/см2. Минимальное время облучения в описанных условиях составляет 30 мин. При этом наблюдается появление окраски, характерной для коллоидных растворов наносеребра. В течение 120 минут происходит нарастание интенсивности окрашивания и соответствующее изменение УФ-спектра реакционной смеси, свидетельствующее об увеличении содержания коллоидного наносеребра в системе. Дальнейшее облучение не приводит к изменению концентрации наносеребра.

[34]

Полученный коллоидный раствор может быть непосредственно использован после необходимого разведения в качестве бактерицидного средства или высушен любым известным способом с получением сухого продукта, пригодного для хранения и получения в дальнейшем жидких препаратов для практического использования в качестве дезинфицирующих средств.

[35]

По примеру 1 в качестве стабилизатора-восстановителя используют поливинилпирролидон (М.в.=26400).

[36]

По примеру 2 в качестве стабилизатора-восстановителя используют поливиниловый спирт (М.в.=10000).

[37]

По примеру 3 в качестве стабилизатора-восстановителя используют крахмал (М.в.=50000).

[38]

По примеру 4 в качестве стабилизатора-восстановителя используют додецилсульфат натрия.

[39]

По примеру 5 в качестве стабилизатора-восстановителя используют ПВС, к которому добавлен додецилсульфат натрия (массовое соотношение 1:1).

[40]

По примеру 6 в качестве стабилизатора-восстановителя используют ПВС, к которому добавлен Тритон Х-100 (массовое соотношение 1:1).

[41]

По примеру 7 в качестве стабилизатора-восстановителя используют ПВС, к которому добавлена олеиновая кислота (массовое соотношение 1:1).

[42]

Как видно из Фиг. 2 и 3, на которых в качестве иллюстрации показаны электронные микрофотографии и распределение по размерам частиц, полученных с использованием различных стабилизирующих агентов, около 70% восстановленного серебра находится в составе кластеров атомарного серебра размером 20-30 нм. Остальное серебро представлено частицами с размерами от 2 до 200 нм. При использовании в качестве стабилизатора додецилсульфата натрия (пример 4) образуются, в основном, частицы с размером около 60 нм.

[43]

Результаты исследования бактерицидной активности препаратов стабилизированных наночастиц серебра, полученных заявляемым способом.

[44]

Для исследования бактерицидной активности полученный, как описано выше, коллоидный раствор высушивают на воздухе, и сухой продукт используют для приготовления точных разведений.

[45]

Методом диффузии в агар определена бактерицидная активность препаратов, полученных по примерам 1-4. В качестве тест-культур взяты Е. coli, S. aureus, S. enteritidis, S. dublin, S. cholerasuis, S. typhimurium. С целью изучения спектра действия активность препаратов была также изучена в отношении бактерий родов Citrobacter, Providencia, Hafnia, Proteus, Morganella и Listeria.

[46]

В толще мясо-пептонного агара, содержащего суточную культуру микроорганизмов в дозе 107 м.к./мл, стерильно делают лунки диаметром 4 мм. В лунки вносят рабочие разведения препарата (35, 17, 8, и 4 мг/л) и помещают в термостат при 37ºС на 18-20 ч. Результаты оценивают по величине зоны задержки роста тест-культур вокруг лунки. Полученные результаты на примере образца наночастиц серебра, стабилизированных поливинилпирролидоном, представлены в Таблице 1.

[47]

[48]

Как видно из таблицы, в концентрации, как минимум, до 4 мг/л препарат проявляет бактерицидное действие по отношению ко всем изученным микроорганизмам, которое усиливается с увеличением концентрации серебра. Близкие результаты получены и для препаратов, полученных по примерам 2-4.

[49]

Исследование стабильности полученных образцов при хранении в течение 6 месяцев в закрытых емкостях в темноте при комнатной температуре показывает, что количество наночастиц, измеренное относительным методом по величине оптической плотности, снижается не более чем на 10%. Распределение по размеру при хранении существенно не изменяется, и при этом препараты сохраняют близкий к исходному уровень бактерицидной активности по отношению к тест-культурам Е. coli и Salmonella s.p.p. В зонах задержки роста S. aureus отмечалось слабое помутнение агара, что свидетельствует о бактериостатическом действии препарата.

[50]

В таблице 2 показаны результаты тестирования бактерицидной активности препаратов, полученных по примерам 2, 5-7, содержащих в качестве стабилизаторов и пленкообразующих компонентов ПВС и смеси ПВС с додецилсульфатом натрия, Тритоном Х-100, олеиновой кислотой при массовом соотношении 1:1.

[51]

[52]

[53]

Из представленных данных следует, что все препараты обладают бактерицидной активностью в отношении тест-культур в концентрации до 4 мг/л.

[54]

Дезинфицирующая активность препаратов наносеребра, полученных по примерам 5-7, изучена на гладких поверхностях (кафельная и метлахская плитка), контаминированных взвесью суточной культуры тест-микроорганизма с использованием белковой защиты. Препараты наносят из расчета 500 мл/м2. Нейтрализацию действия препаратов осуществляют путем десятикратного разведения смывов с обработанного объекта. Контролем служат объекты, обработанные водой. Дезинфицирующая активность в отношении Е. coli и Salmonella s.p.p. установлена у препаратов с концентрацией наночастиц серебра не менее 17 мг/л и времени воздействия 3 ч. В случае S. aureus полное обеззараживание тест-объектов достигнуто при воздействии препаратов с концентрацией серебра не менее 35 мг/л при времени воздействия 3 ч.

[55]

Препараты, полученные по примерам 5-7, были испытаны в модельных опытах с целью снижения уровня контаминации объектов ветеринарного надзора в птицеводческих хозяйствах (поверхности оборудования и инструментов для разделки тушки птицы). Для этого перечисленные объекты искусственно контаминировали взвесью суточных культур Е. coli и Salmonella s.p.p. Концентрация наночастиц серебра в препаратах - 35 мг/л. Поверхности обрабатывают из расчета 500 мл/м2 при времени воздействия 3 ч, инструменты (ножницы, пинцеты) погружают в раствор препарата на 30 мин, тушки птицы помещают в емкость, содержащую препарат серебра, на 30 мин. По истечении этого времени производят смывы стерильными ватными тампонами в пробирки с физраствором и проводят бактериологические исследования на наличие использованных в опыте тест-культур. Контролем служат тест-объекты, обработанные водой.

[56]

В то время как в посевах смывов с поверхностей в контроле обнаруживается сплошной рост тест-культур, в смывах с поверхностей, обработанных препаратами наносеребра, рост тест-культур отсутствует. Рост микроорганизмов в посевах смывов с инструментов, обработанных препаратами наносеребра, представлен единичными колониями, в то время как в контроле доходил до сотни колоний в отдельных пробах. В смывах с тушек птиц, обработанных препаратом стабилизированных наночастиц серебра, рост энтеробактерий отмечается в количестве 20-40 колоний в единичных пробах, в то время как в контроле получен обильный рост тест-культур в посевах во всех пробах смывов.

[57]

Приведенные данные показывают, что заявляемый способ позволяет получить водные препараты стабилизированных наночастиц серебра, обладающих высокой бактерицидной активностью относительно широкого круга микроорганизмов. Препараты сохраняют стабильность и бактерицидное действие в течение, как минимум, 6 месяцев (срок наблюдения) и могут быть использованы для обеззараживания различных объектов в промышленности и в быту.

[58]

Таким образом, заявляемый фотохимический способ получения стабилизированных наночастиц серебра предполагает использование доступных, выпускаемых промышленностью реагентов, осуществляется в условиях, исключающих применение вредных производственных и экологических факторов, и позволяет с минимальными энергозатратами получать конечные продукты, не требующие дополнительной очистки и пригодные после необходимого разведения для непосредственного использования в качестве дезинфицирующих агентов или для получения сухих препаратов, предназначенных для получения необходимых разведений.

Как компенсировать расходы
на инновационную разработку
Похожие патенты