патент
№ RU 2447104
МПК B29B15/10

ЭПОКСИДНАЯ КОМПОЗИЦИЯ

Авторы:
Каблов Евгений Николаевич Хрульков Александр Владимирович Чурсова Лариса Владимировна
Все (6)
Номер заявки
2010140692/05
Дата подачи заявки
05.10.2010
Опубликовано
10.04.2012
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области создания эпоксидных композиций и может использоваться в качестве связующих при изготовлении полимерных композиционных материалов в качестве основы для клеев, герметиков, покрытий. Изобретение может быть использовано в авиационной, аэрокосмической, судостроительной, автомобильной и других отраслях промышленности. Эпоксидная композиция включает, мас.ч.: азотсодержащую эпоксидную смолу 62,7-68,0, отвердитель - продукт конденсации анилина и формальдегида 30,0-32,5, олигоэфиракрилат 6,3-6,4 и перекись бензоила 0,05-0,07. Изобретение позволяет получить эпоксидную композицию и изделия из нее с высокими удельными прочностными характеристиками, низким влагопоглощением. 1 з.п. ф-лы., 3 табл, 3 пр.

Формула изобретения

1. Эпоксидная композиция, включающая эпоксидную смолу и отвердитель - продукт конденсации анилина и формальдегида, отличающаяся тем, что в качестве эпоксидной смолы она содержит азотсодержащую эпоксидную смолу и дополнительно содержит олигоэфиракрилат и перекись бензоила при следующем соотношении компонентов, мас.ч.:

азотсодержащая эпоксидная смола62,7-68,0
отвердитель30,0-32,5
олигоэфиракрилат6,3-6,4
перекись бензоила0,05-0,07

2. Эпоксидная композиция по п.1, отличающаяся тем, что в качестве олигоэфиракрилата она содержит α,ω-диметакрил-бис-(триэтиленгликоль)фталат или триоксиэтилен-α,ω-диметакрилат.

Описание

[1]

Изобретение относится к области создания эпоксидных композиций, предназначенных для использования в качестве связующих при изготовлении полимерных композиционных материалов, в частности, методами пропитки под давлением и мокрой намотки, а также в качестве основы для клеев, герметиков, покрытий. Изобретение может быть использовано в авиационной, аэрокосмической, судостроительной, автомобильной и других отраслях промышленности.

[2]

Известна полимерная композиция для изготовления конструкционных стеклопластиков методом мокрой намотки, включающая эпоксидно-диановую смолу, диглицидиловый эфир диэтиленгликоля, отвердитель - эвтектическую смесь ароматических аминов - мета-фенилендиамина и 4,4'-диаминодифенилметана и смесь диоксановых спиртов и их высококипящих эфиров со стабилизатором ионолом (пластификатор ЭДОС) (патент РФ №2161169).

[3]

Недостатками указанной композиции являются длительный цикл отверждения стеклопластиковых изделий (при температуре 60-70°C в течение 12-17 ч), невысокая температура эксплуатации стеклопластиков (не более 120°C).

[4]

Известна эпоксидная композиция для армированных пластиков, включающая эпоксидно-диановую смолу или ее смесь с эпоксидной смолой, содержащую две и более эпоксигрупп, ангидридный отвердитель и основный катализатор отверждения - третичный амин или смесь третичных аминов (патент РФ №2189997).

[5]

Недостатками данной композиции являются низкая температура стеклования (не более 127°C), низкая трещиностойкость, характерная при отверждении эпоксидов ангидридами кислот, а также энергоемкий режим отверждения при температурах до 200°C.

[6]

Известна одноупаковочная эпоксидная композиция, включающая эпоксиноволачную смолу, циклоалифатическую эпоксидную смолу или их смесь, эпоксидный разбавитель, латентный отвердитель на основе трихлорида бора с амином (патент США №5942182).

[7]

Недостатками известной композиции являются длительный цикл отверждения (14 часов), а также низкие показатели прочностных свойств, таких как прочность при растяжении, модуль упругости при растяжении и относительное удлинение при растяжении.

[8]

Наиболее близким аналогом, принятым за прототип, является термоотверждаемое связующее для композиционных материалов, включающее, мас.%:

[9]

Эпоксидная диановая смола60-70
Алифатическая эпоксидная смола ДЭГ-15-15
Фенилглицидиловый эфир1-5

[10]

Отвердитель - Бензам АБА, представляющий собой продукт конденсации анилина и формальдегида в присутствии кислотного катализатора и содержащий аминобензиланилин в качестве основного вещества - остальное (патент РФ №2250241).

[11]

Недостатками связующего-прототипа являются недостаточно высокие физико-механические характеристики, низкая влагостойкость и низкая теплостойкость после кипячения (<120°C).

[12]

Технической задачей предлагаемого изобретения является создание эпоксидной композиции и изделий из нее с высокими удельными прочностными характеристиками, низким влагопоглощением, способной перерабатываться в композиционные материалы методами пропитки под давлением и мокрой намотки.

[13]

Для решения поставленной технической задачи предложена эпоксидная композиция, включающая эпоксидную смолу и отвердитель - продукт конденсации анилина и формальдегида, которая в качестве эпоксидной смолы содержит азотсодержащую эпоксидную смолу и дополнительно содержит олигоэфиракрилат и перекись бензоила при следующем соотношении компонентов, мас.ч.:

[14]

азотсодержащая эпоксидная смола62,7-68,0
отвердитель30,0-32,5
олигоэфиракрилат6,3-6,4
перекись бензоила0,05-0,07

[15]

В качестве олигоэфиракрилата композиция содержит α,ω-диметакрил-бис-(триэтиленгликоль)фталат или триоксиэтилен- α,ω-диметакрилат.

[16]

Установлено, что повышение физико-механических свойств связующего достигается за счет модификации химической структуры полимера по типу взаимопроникающих полимерных сеток (ВПС). В предлагаемом изобретении первая сетка образуется по реакции радикальной полимеризации олигоэфиракрилатов, например α,ω-диметакрил-бис-(триэтиленгликоль)фталата (МГФ-9) или триоксиэтилен-α,ω-диметакрилата (ТГМ-3), под действием перекиси бензоила, вторая сетка образуется по реакции полиприсоединения азотсодержащей эпоксидной смолы с ароматическим диамином, например марок Бензам АБА или Бензамин Н. Полимерные материалы типа «взаимопроникающих сеток» и «полувзаимопроникающих сеток» (полу-ВПС) отличаются более высокими прочностными свойствами. Причина повышения деформационно-прочностных свойств ВПС заключается в более тонкой надмолекулярной организации полимеров, полученных методом одновременного отверждения. При этом наиболее совершенные фрагменты одной сетки локализуются в дефектных областях другой сетки и наоборот, что приводит к их взаимному упрочнению, поскольку разрушение полимеров происходит по дефектным межглобулярным зонам. Таким образом, ВПС образуют более однородную фазовую систему, в которой происходит «вынужденное» совмещение разнородных макромолекул и которая обладает широкой температурной областью демпфирования, охватывающей интервал между двумя переходами, соответствующими температуре стеклования отдельных компонентов. Использование олигоэфиракрилатов позволило получить композицию с реологическими свойствами, удовлетворяющую технологическим требованиям, в частности, для получения изделий методами пропитки под давлением и мокрой намотки. В то же время введение глицидиловых эфиров по прототипу приводит к снижению прочностных свойств и температуры стеклования. Повышение теплостойкости по сравнению с прототипом достигается за счет использования в составе композиции полифункциональной азотсодержащей эпоксидной смолы и ароматического диамина. Благодаря наличию большого числа ароматических ядер в цепи, а также высокой функциональности эпоксидно-аминных олигомеров повышается стабильность механических показателей сетчатых полимеров на их основе при повышенных температурах.

[17]

Предлагаемая эпоксидная композиция в виде связующего может использоваться как для метода пропитки под давлением с использованием жестких пуансонов пресс-формы, так и для ее разновидности - метода вакуумной пропитки, когда для одной поверхности пресс-формы используется вакуумный мешок, и смола пропитывает армирующий наполнитель только за счет перепада давлений, а также метода мокрой намотки.

[18]

Заявляемая композиция обладает сравнительно низкой вязкостью и гомогенностью, которые способствуют ее равномерному распределению между волокнами наполнителей, требуемой жизнеспособностью при температуре переработки, высокой теплостойкостью и деформационно-прочностными свойствами.

[19]

В качестве азотсодержащей эпоксидной смолы могут быть использованы смолы марок УП-610 (ТУ 2225-606-11131395), ЭПАФ (ТУ 2225-019-33452160), в качестве отвердителя - продукты конденсации анилина и формальдегида в присутствии кислотного катализатора марок Бензам-АБА (ТУ 2225-415-04872688) или Бензамин Н (ТУ 2494-444-05763441). В предлагаемом изобретении могут быть использованы различные олигоэфиракрилаты, но наилучший технический результат достигается при использовании триоксиэтилен- α, ω-диметакрилата марки ТГМ-3 (ТУ 113-00-057-6166-43-27) и α, ω-диметакрил-бис-(триэтиленгликоль)фталата марки МГФ-9 (ТУ 2226-065-05761643). В качестве инициатора использована перекись бензоила (ГОСТ 14888).

[20]

Примеры осуществления

[21]

Пример 1

[22]

В реактор, снабженный механической мешалкой, обогревом и охлаждением, загружали 63,0 мас.ч. эпоксидной смолы УП-610, затем загружали 6,4 мас.ч. ТГМ-3 и гомогенизировали смесь при температуре 40-50°C в течение 1 часа с получением первой композиции.

[23]

В реактор, снабженный механической мешалкой, обогревом и охлаждением, загружали 30,0 мас.ч Бензам АБА, затем загружали 0,05 мас.ч. перекиси бензоила и гомогенизировали смесь при температуре 90-100°C в течение 1 часа с получением второй композиции.

[24]

Непосредственно перед использованием смешивали две полученные композиции при температуре до 40°C в течение 1 часа с получением расплава связующего.

[25]

Пример 2.

[26]

Технология изготовления связующего аналогична примеру 1 с тем отличием, что вместо смолы УП-610 использовали смолу ЭПАФ, а вместо олигоэфиракрилата ТГМ-3 - олигоэфиракрилат марки МГФ-9.

[27]

Пример 3.

[28]

Технология изготовления связующего аналогична примеру 1 с тем отличием, что вместо олигоэфиракрилата ТГМ-3 использовали олигоэфиракрилат марки МГФ-9, а в качестве эпоксидной смолы - смолу УП-610.

[29]

В таблице 1 приведены составы предлагаемых связующих и прототипа, в таблице 2 - физико-механические свойства заявляемого эпоксидного связующего и прототипа, в таблице 3 - свойства углепластика по изобретению и прототипу.

[30]

Определение температуры стеклования отвержденных связующих осуществляли методом термомеханического анализа по ASTM-E1545-00 на термоаналитической установке Mettler Toledo. Прочность при растяжении отвержденных образцов связующего определяли в соответствии с ГОСТ 11262-80. Вязкость связующих определяли по ГОСТ 25271 на вискозиметре Брукфильда с системой конус-плита.

[31]

Определение прочностных характеристик полученных композиционных материалов: прочность при сжатии - по ГОСТ 25.602-80, прочность при растяжении - по ГОСТ 25.601-80, прочность при статическом изгибе - по ГОСТ 25.604.

[32]

Таблица 1
Наименование компонентовСостав по примерам, мас.ч.Прототип
123
Азотсодержащая эпоксидная смола
УП-61063,0-68,0-
ЭПАФ-62,7--
Бензам АБА30,030,932,528,0
Олигоэфиракрилат-
ТГМ-36,4--
МГФ-9-6,36,4-
Перекись бензоила0,050,060,07-
Эпоксидно-диановая смола ЭД-20---60,0
Фенилглицидиловый эфир ФГЭ---2,0
Диглицидиловый эфир диэтиленгликоля ДЭГ-1---10,0

[33]

Таблица 2
№ п/пНаименование показателейСостав по примерам, мас.ч.Прототип
123
1Температура стеклования Tg dry,°C195192195150
2Температура стеклования после кипячения в воде в течение 7 ч Tg wet, °C190188190<120
3Вязкость при температуре 70°C, Па·с0,170,230,280,2
4Прочность при растяжении σ+, МПа75707233,1
5Модуль упругости при растяжении Е+, ГПа3,93,83,92,3

[34]

Как видно из таблицы 2, предлагаемая композиция обладает более высокими физико-механическими свойствами в сравнении с прототипом, например прочность при растяжении увеличилась в два и более раз, модуль упругости при растяжении увеличился с 2,3 до 4,1 ГПа, температура стеклования после кипячения в воде осталась на прежнем уровне, в то время как у прототипа этот показатель снизился на 60-70°C.

[35]

Были исследованы прочностные свойства композиционного материала на основе угленаполнителя и заявляемой композиции по примеру 1 в качестве связующего и по прототипу. Композиционный материал получали методом инфузии под вакуумным давлением. В качестве наполнителя была использована однонаправленная углеродная ткань фирмы «Porcher» арт.3673 в 8 слоев. Свойства полученного композиционного материала приведены в таблице 3.

[36]

Таблица 3
Наименование свойствУглепластик
по изобретениюпрототип
Прочность при растяжении, МПа17131580
Прочность при изгибе, МПа20301614
Прочность при сжатии, МПа11801000

[37]

Сравнительные данные таблицы 3 показывают, что композиционные материалы на основе заявляемой эпоксидной композиции имеют повышенную на 15% прочность при растяжении, на 25% прочность при изгибе и на 20% - прочность при сжатии по сравнению с прототипом.

[38]

Таким образом, сочетание высокой теплостойкости и прочности эпоксидной композиции, получение на ее основе композиционных материалов и изделий из них с физико-механическими характеристиками, превышающими свойства прототипа, позволяют использовать предлагаемую эпоксидную композицию в качестве связующего для изготовления конструкционных композиционных материалов с применением энергосберегающих высокопроизводительных безавтоклавных методов.

Как компенсировать расходы
на инновационную разработку
Похожие патенты