патент
№ RU 2667241
МПК E21B33/138

СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКОВ В СКВАЖИНЕ (ВАРИАНТЫ)

Авторы:
Жиркеев Александр Сергеевич Сахапова Альфия Камилевна Вашетина Елена Юрьевна
Все (4)
Номер заявки
2017136229
Дата подачи заявки
12.10.2017
Опубликовано
18.09.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к способам проведения водоизоляционных работ в добывающих скважинах, а также к способам выравнивания профиля приемистости в нагнетательных скважинах. Способ изоляции водопритоков в скважину по первому варианту включает приготовление и закачку в зону изоляции водоизоляционной композиции, состоящей из 25 об.ч. высокомодульного жидкого стекла с силикатным модулем 3,5-6 и 25-250 насыщенного кремнефтористого натрия. По второму варианту водоизоляционную композицию готовят на 25 об. ч. 0,3-0,5%-ного раствора кремнефтористого натрия и дополнительно вводят 1-5 об. ч. этилацетата и 0,1 об. ч. моющего препарата с массовой долей поверхностно-активных веществ 30-38%. Техническим результатом является повышение эффективности способа за счет расширения диапазона времени гелеобразования водоизоляционной композиции и повышения устойчивости образующегося геля в пресных и слабоминерализованных водах. 2 н.п. ф-лы, 2 табл., 2 пр.

Формула изобретения

1. Способ изоляции водопритоков в скважину, включающий приготовление и закачку в зону изоляции водоизоляционной композиции, состоящей из высокомодульного жидкого стекла с силикатным модулем 3,5-6 и кремнефтористого натрия, отличающийся тем, что водоизоляционную композицию готовят на насыщенном растворе кремнефтористого натрия при следующих соотношениях компонентов, об. ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-625
насыщенный раствор кремнефтористого натрия25-250

2. Способ изоляции водопритоков в скважину, включающий приготовление и закачку в зону изоляции водоизоляционной композиции, состоящей из высокомодульного жидкого стекла с силикатным модулем 3,5-6 и кремнефтористого натрия, отличающийся тем, что водоизоляционную композицию готовят на 0,3-0,5%-ном растворе кремнефтористого натрия и дополнительно вводят этилацетат и моющий препарат при следующих соотношениях компонентов, об. ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-625
0,3-0,5%-ный раствор кремнефтористого натрия25-250
этилацетат1-5
моющий препарат с массовой долей поверхностно-активных
веществ 30-38%0,1

Описание

[1]

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проведения водоизоляционных работ в добывающих скважинах, а также к способам выравнивания профиля приемистости в нагнетательных скважинах.

[2]

Известен способ приготовления тампонажного раствора (патент RU №2270328, МПК Е21В 43/32, опубл. 20.02.2006 в бюл. №5), включающий растворение при нагревании в присутствии воды, натриевой силикат-глыбы и модифицирующей добавки, смешение полученного жидкого стекла - водного раствора силиката натрия с водой и органическим отвердителем. В качестве модифицирующей добавки используют кремнеземный наполнитель Росил-175, который вводят в процессе растворения силикат-глыбы при нагревании в соотношении 27-50 масс. ч. к 100 масс. ч. натриевой силикат-глыбы и 200-300 масс. ч. воды и перемешивают до достижения силикатного модуля 3,5-5,0. В качестве органического отвердителя используют этилацетат в присутствии неонола АФ 9-12 при следующем соотношении компонентов, масс. ч.:

[3]

модифицированное жидкое стекло100
вода100
этилацетат5-10
неонол АФ 9-121

[4]

Недостатком известного способа является короткое время гелеобразования состава в описанном способе, которое может привести к осложнениям в случае закачивания больших объемов.

[5]

Известен способ изоляции пластовых вод в газонефтяных скважинах (АС №834343, МПК Е21В 43/32, опубл. 30.05.1981 в бюл. №20), включающий закачку закупоривающего состава из силиката щелочного металла и кремнефтористого натрия при следующем соотношении компонентов, вес. %:

[6]

Силикат щелочного металла87-92
Кремнефтористый натрий8-13

[7]

Известен способ отключения пластов и изоляции водопритоков в скважину, включающий закачку водного раствора силиката натрия, натрия кремнефтористого, триацетина и древесной муки (патент RU №2244819, МПК Е21В 43/32, опубл. 20.01.2005 в бюл. №2) при следующем соотношении компонентов, масс. %:

[8]

водный раствор силиката натрия плотностью1,36 г/см3
и силикатным модулем М=3,090,0-95,0
кремнефтористый натрий3,0-8,0
древесная мука1,0-4,0
триацетин1,0-4,0

[9]

Недостатками известных способов является малая растворимость кремнефтористого натрия в воде - 7,62 г/л (Большой энциклопедический словарь, Химия, изд-во «Большая Российская энциклопедия», М., 2000, с. 362). Осаждение нерастворившейся части кремнефтористого натрия может привести к технологическим осложнениям - отверждению состава в насосе цементировочного агрегата и насосно-компрессорных трубах (НКТ).

[10]

Наиболее близким к предлагаемому способу является способ изоляции водопритоков в скважину (патент RU №2550617, МПК Е21В 33/138, С09K 8/504, опубл. 20.05.2015 в бюл. №13), включающий закачку в зону изоляции водоизоляционной композиции, состоящей из модифицированного жидкого стекла, этилацетата и поверхностно-активного вещества, в качестве модифицированного жидкого стекла при температурах выше 10°С используют высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3, а в качестве поверхностно-активного вещества применяют моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С при следующих соотношениях компонентов, об. ч.:

[11]

высокомодульное жидкое стекло с силикатным
модулем 3,5-6 и плотностью 1025-1200 кг/м3100
этилацетат3,6-10
моющий препарат с массовой долей поверхностно-активных веществ 30-38% и
температурой замерзания не выше минус 30°С 0,2

[12]

Недостатками наиболее близкого аналога являются узкий временной предел образования геля (до 4 ч 15 мин) и низкая устойчивость образующегося геля в пресных и слабоминерализованных водах.

[13]

Технической задачей предложения является повышение эффективности способа за счет расширения диапазона времени гелеобразования водоизоляционной композиции и повышения устойчивости образующегося геля в пресных и слабоминерализованных водах.

[14]

Техническая задача решается способом изоляции водопритоков в скважине, включающим приготовление и закачку в зону изоляции водоизоляционной композиции, состоящей из высокомодульного жидкого стекла с силикатным модулем 3,5-6 и кремнефтористого натрия.

[15]

Новым является то, что водоизоляционную композицию готовят на насыщенном растворе кремнефтористого натрия при следующих соотношениях компонентов, об. ч.:

[16]

высокомодульное жидкое стекло с силикатным модулем 3,5-625
насыщенный раствор кремнефтористого натрия25-250

[17]

Новым является то, что водоизоляционную композицию готовят на 0,3-0,5%-ном растворе кремнефтористого натрия и дополнительно вводят этилацетат и моющий препарат при следующих соотношениях компонентов, об. ч.:

[18]

высокомодульное жидкое стекло с силикатным модулем 3,5-625
0,3-0,5%-ный раствор кремнефтористого натрия25-250
этилацетат1-5
моющий препарат с массовой долей поверхностно-активных
веществ 30-38%0,1

[19]

Анализ патентной и научно-технической литературы позволил сделать вывод об отсутствии технических решений, содержащих существенные признаки заявленного способа, выполняющих аналогичную задачу, поэтому можно сделать вывод о соответствии критерию «новизна» и «изобретательский уровень».

[20]

В заявляемом способе используют высокомодульное жидкое стекло с силикатным модулем 3,5-6 (ВМЖС). ВМЖС представляет собой раствор полисиликата натрия от прозрачного до серого цвета с рН в пределах 9,5-11,5. Силикатный модуль жидкого стекла показывает отношение массовой концентрации диоксида кремния к массовой концентрации оксида натрия в жидком стекле.

[21]

Кремнефтористый натрий (гексафторосиликат натрия - Na2SiF6) представляет собой белый кристаллический порошок, плохо растворимый в воде, пожаро- и взрывобезопасный. Кремнефтористый натрий известен как отвердитель силикатных растворов, который не только ускоряет затвердевание, но и повышает водоустойчивость бетонов и цементов вследствие нейтрализации свободной щелочи.

[22]

Этилацетат (СН3-СОО-СН2-СН3) - этиловый эфир уксусной кислоты по ГОСТ 8981-78 представляет собой прозрачную жидкость с плотностью 898-900 кг/м3.

[23]

Моющий препарат с массовой долей поверхностно-активных веществ 30-38% представляет собой водный раствор смеси анионных (сульфанол, сульфонат) и неионогенных (неонол) поверхностно-активных веществ (ПАВ), подвижную вязкую жидкость от желтого до коричневого цвета (далее моющий препарат). Показатель активности водородных ионов водного раствора моющего препарата с массовой долей 1% (по активному веществу) рН находится в пределах от 7 до 9. В состав моющего препарата входят: алкилбензолсульфонат натрия, моноалкилфениловые эфиры полиэтиленгликоль, алкилсульфат натрия, этиленгликоль и метанол. Моющий препарат в предложении используется в качестве ПАВ и способствует совмещению органической и неорганической фаз водоизоляционной композиции, вследствие чего происходит ее равномерное гелеобразование. Моющий препарат не замерзает до минус 30°С и удобен для работы в зимнее время.

[24]

В водоизоляционной композиции по предлагаемому способу расширен диапазон времени гелеобразования до 28 ч, в отличие от способа по наиболее близкому аналогу, где наибольшее время гелеобразования составляет 4 ч 15 мин. Расширение диапазона времени гелеобразования водоизоляционной композиции достигается за счет совместного использования в качестве гелеобразователей этилацетата и раствора кремнефтористого натрия от 0,3%-ного до насыщенного (насыщенным является раствор, содержащий 7,62 г кремнефтористого натрия в 1 л воды). Время гелеобразования зависит от концентрации раствора кремнефтористого натрия - с его насыщенным раствором гелеобразование происходит быстрее, чем с 0,3%-ным раствором, также от количества этилацетата: чем его больше, тем время гелеобразования короче. Ввиду того, что в предлагаемом способе используется концентрация раствора кремнефтористого натрия от 0,3%-ного до насыщенного, то осаждения его не происходит и не возникает технологических осложнений при закачке.

[25]

Водоизоляционную композицию готовят непосредственно на скважине. В мерники цементировочного агрегата ЦА-320 закачивают высокомодульное жидкое стекло с силикатным модулем 3,5-6 и раствор кремнефтористого натрия. Для сокращения времени гелеобразования и получения более плотного геля используют этилацетат и моющий препарат, для чего в чанок цементировочного агрегата ЦА-320 наливают этилацетат, туда же добавляют моющий препарат и перемешивают, полученный в чанке раствор перекачивают в мерники агрегата с высокомодульным жидким стеклом и раствором кремнефтористого натрия и тщательно перемешивают. Далее водоизоляционную композицию закачивают в скважину. До водоизоляционной композиции и после нее в скважину закачивают буфер из пресной воды в объеме 200-300 л для предупреждения ее преждевременного гелеобразования при воздействии минерализованной воды.

[26]

Время гелеобразования водоизоляционной композиции определяют опытным путем в лабораторных условиях. Результаты лабораторных испытаний приведены в табл. 1 и 2. В стеклянный стакан объемом 200 мл наливают 150 мл (150 об. ч.) насыщенного раствора кремнефтористого натрия и 25 мл (25 об. ч.) высокомодульного жидкого стекла, перемешивают и оставляют полученную композицию на гелеобразование. Периодически наклоняя стакан, фиксируют время, когда мениск жидкости в стакане перестанет смещаться. Определенное таким образом время является временем гелеобразования, которое составляет 8 ч (табл. 1, опыт 6). Остальные опыты, представленные в табл. 1, готовят аналогичным образом. В опыте №1 гель не образуется из-за недостаточного количества насыщенного раствора кремнефтористого натрия, а в опыте №8 образуется жидкий гель, который по своей консистенции не подходит для применения в предложенном способе. Оптимальное время гелеобразования получено в опытах №№2-7. По времени гелеобразования выбирают оптимальное соотношение компонентов состава для применения в предлагаемом способе при следующих соотношениях, об. ч.:

[27]

высокомодульное жидкое стекло с силикатным модулем 3,5-625
насыщенный раствор кремнефтористого натрия25-250

[28]

[29]

В стеклянном стакане объемом 200 мл готовят раствор моющего препарата в этилацетате, для чего 0,1 мл (0,1 об. ч.) моющего препарата растворяют в 1 мл (1 об. ч.) этилацетата, наливают туда 150 мл (150 об. ч.) 0,5%-ного раствора кремнефтористого натрия и перемешивают. Далее туда же наливают 25 мл (25 об. ч.) высокомодульного жидкого стекла, перемешивают и оставляют полученную композицию на гелеобразование. Через 14 ч 20 мин образуется гель (табл. 2, опыт №8). Оптимальное время гелеобразования получено в опытах №№3-19. Результаты опытов №№1-2 не вошли в оптимальный диапазон из-за короткого времени гелеобразования - менее 1 ч. Для приготовления водоизоляционной композиции по предложенному способу выбран 0,3-0,5%-ный раствор кремнефтористого натрия при следующих соотношениях компонентов, об. ч.:

[30]

высокомодульное жидкое стекло с силикатным модулем 3,5-625
0,3-0,5%-ный раствор кремнефтористого натрия25-250
этилацетат1-5
моющий препарат с массовой долей поверхностно-активных
веществ 30-38%0,1

[31]

[32]

Устойчивость образующихся гелей по наиболее близкому аналогу и по предложению проверяли в лабораторных условиях следующим образом. В стеклянные стаканы с полученными гелями наливали пресную воду плотностью 1000 кг/м3, слабоминерализованную воду плотностью 1080 кг/м3, минерализованную воду плотностью 1180 кг/м3, накрывали стеклянными чашами Петри и оставляли на 6 мес, периодически отмечая изменения в размерах гелей. Было установлено, что гели, полученные по предложенному способу, в течение 6 мес сохранились без изменений во всех водах, в то время как гели, полученные по наиболее близкому аналогу, в пресной и слабоминерализованной воде разрушились на 40% и 20% соответственно в течение того же времени, что подтверждает повышение устойчивости образующегося геля в пресных и слабоминерализованных водах. Устойчивость гелей по предложенному способу в пресной воде можно объяснить тем, что в составе присутствует кремнефтористый натрий.

[33]

Примеры практического применения

[34]

Пример 1. В скважину, обводненную подошвенной водой, с текущим забоем 1234 м и интервалом перфорации 1211-1217 м спустили НКТ диаметром 73 мм до глубины 1180 м. Приготовили 3,5 м3 водоизоляционной композиции, для чего в первую половину мерника цементировочного агрегата ЦА-320М набрали 0,5 м3 ВМЖС (25 об. ч.), во вторую половину мерника цементировочного агрегата ЦА-320М набрали 3,0 м3 насыщенного раствора кремнефтористого натрия (150 об. ч.). Далее содержимое обоих мерников перемешали в течение 10 мин (опыт №6, табл. 1). Аналогичным образом приготовили 3,5 м3 водоизоляционной композиции в мернике другого цементировочного агрегата. В НКТ закачали последовательно 0,3 м3 пресной воды в качестве разделительного буфера; водоизоляционную композицию в общем объеме 35 м3 (композиция последовательно готовилась в первом, а затем во втором агрегате, после чего закачивалась в скважину из первого, а затем из второго агрегата, затем цикл повторялся); 4,0 м3 пресной воды для продавливания в пласт. Оставили скважину на время гелеобразования и укрепления геля в течение 24 ч. Далее освоили скважину, спустили подземное оборудование и ввели скважину в эксплуатацию. В результате проведенных работ обводненность скважины снизилась на 30%, добыча нефти увеличилась на 209%.

[35]

Пример 2. В скважину, обводненную закачиваемой системой ППД водой, с текущим забоем 1828 м и интервалом перфорации 1817-1820 м спустили насосно-компрессорные трубы (НКТ) диаметром 73 мм до глубины 1790 м.

[36]

Приготовили 5 м3 водоизоляционной композиции, для чего в первую половину мерника цементировочного агрегата ЦА-320М набрали 1 м3 ВМЖС (25 об. ч.), во вторую половину мерника цементировочного агрегата ЦА-320М набрали 4 м3 0,5%-ного раствора кремнефтористого натрия (100 об. ч.). В чанке агрегата растворили 4 л моющего препарата (0,1 об. ч.), например МЛ-81Б, в 40 л этилацетата (1 об. ч.), закачали во вторую половину мерника цементировочного агрегата ЦА-320М и перемешали. Далее содержимое обоих мерников перемешали в течение 10 мин (опыт №6, табл. 2). Аналогичным образом приготовили 5 м3 водоизоляционной композиции в мернике другого цементировочного агрегата. В НКТ закачали последовательно: 0,3 м3 пресной воды в качестве разделительного буфера; водоизоляционную композицию в общем объеме 25 м3 (композиция последовательно готовилась в первом, а затем во втором агрегате, после чего закачивалась в скважину из первого, а затем из второго агрегата, затем цикл повторялся); 6,0 м3 пресной воды для продавливания в пласт. Оставили скважину на время гелеобразования и укрепления геля в течение 24 ч. Далее освоили скважину, спустили подземное оборудование и ввели скважину в эксплуатацию. В результате проведенных работ обводненность скважины снизилась на 35%, добыча нефти увеличилась на 241%.

[37]

Таким образом, в данном предложении достигается результат - повышение эффективности способа за счет расширения диапазона гелеобразования водоизоляционной композиции и повышения устойчивости образующегося геля в пресных и слабоминерализованных водах.

Как компенсировать расходы
на инновационную разработку
Похожие патенты