патент
№ RU 2649081
МПК G01N29/14

СПОСОБ МОНИТОРИНГА СТЕПЕНИ ДЕГРАДАЦИИ СТРУКТУРЫ МАТЕРИАЛА И ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ ПРОЧНОСТИ ИЗДЕЛИЯ

Авторы:
Матвиенко Юрий Григорьевич Чернов Дмитрий Витальевич Елизаров Сергей Владимирович
Все (4)
Номер заявки
2017109571
Дата подачи заявки
22.03.2017
Опубликовано
29.03.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Использование: для мониторинга степени деградации структуры материала и определения остаточной прочности изделия. Сущность изобретения заключается в том, что выполняют акустико-эмиссионный (АЭ) контроль с использованием локационных групп преобразователей активной эмиссии, предусилителей и системы сбора-обработки регистрируемых массивов импульсов активной эмиссии, при этом в режиме реального времени осуществляют градацию массивов импульсов активной эмиссии по уровню относительной энергии и усредненной частоте выбросов, формируют нижний, средний и верхний кластеры в поле указанных параметров, и вычисляют процентное содержание импульсов в каждом кластере, отражающее микро-, мезо- и макроструктурные разрушения материала, причем в качестве информативных и устойчивых акустико-эмиссионных параметров для кластерного разделения сигналов используют показатель относительной энергии импульса, измеряемого в децибелах и соответствующего количеству выбросов в единицах, по которым при сопоставлении с результатами тестовых испытаний материала на разрушение определяют степень деградации и остаточной прочности изделия в зоне акустико-эмиссионного контроля, причем границы формируемых кластеров устанавливают по результатам предварительного тестирования материала изделия исходя из природы источников излучения импульсов и используемого уровня порога дискриминации сигналов. Технический результат: обеспечение возможности в процессе акустико-эмиссионной диагностики изделия осуществлять мониторинг степени деградации структуры материала и определять остаточную прочность изделия в зоне АЭ контроля без привлечения других методов технической диагностики и неразрушающего контроля.

Формула изобретения

Способ мониторинга степени деградации структуры материала и определения остаточной прочности изделия, включающий акустико-эмиссионный контроль, с использованием локационных групп преобразователей активной эмиссии, предусилителей и системы сбора - обработки регистрируемых массивов импульсов активной эмиссии, отличающийся тем, что в режиме реального времени осуществляют градацию массивов импульсов активной эмиссии по уровню относительной энергии и усредненной частоте выбросов, формируют нижний, средний и верхний кластеры в поле указанных параметров, и вычисляют процентное содержание импульсов в каждом кластере, отражающее микро-, мезо- и макроструктурные разрушения материала, при этом в качестве информативных и устойчивых акустико-эмиссионных параметров для кластерного разделения сигналов используют показатель относительной энергии импульса, измеряемого в децибелах и соответствующего количеству выбросов в единицах ЕИ=NИ/tИ, где:

ЕИ- относительная энергия импульса, дБ.,

NИ - количество выбросов в единицах,

tИ - длительность импульса, мкс,

и по которым при сопоставлении с результатами тестовых испытаний материала на разрушение определяют степень деградации и остаточной прочности изделия в зоне акустико-эмиссионного контроля, причем границы формируемых кластеров устанавливают по результатам предварительного тестирования материала изделия исходя из природы источников излучения импульсов и используемого уровня порога дискриминации сигналов.

Описание

[1]

Изобретение относится к способам неразрушающего контроля материалов и изделий по условиям прочности, и предназначено для мониторинга степени деградации структуры материала и определения остаточной прочности изделия в зоне проведения акустико-эмиссионного контроля.

[2]

Для оценки степени деградации материала и определения остаточной прочности используют как неразрушающие [1-5], так и разрушающие способы диагностики состояния материала в объектах исследования [6], когда из изделия вырезается образец свидетель, испытание которого на разрушение позволяет установить степень деградации материала и остаточную прочность изделия. При этом для повышения достоверности определения остаточной прочности образцов свидетелей наряду с исследованием механических свойств изучается химический состав и микроструктура шлифов материала [7-8].

[3]

Для непрерывного или периодического мониторинга состояния деградации материала диагностируемых объектов применяют активные и пассивные экспресс-методы [1, 2]. Пассивные физические методы неразрушающего контроля используют в качестве информативных параметров собственную (внутреннюю) энергию материала объекта контроля. При этом в процессе сканирования объекта контроля дефект сам проявляет себя, излучая физические поля (акустическая эмиссия, экзо-электронная эмиссия, тепловое излучение, и др.).

[4]

При использовании активных методов неразрушающего контроля объект исследования подвергается энергии внешнего воздействия и о состоянии материала судят по явлениям, происходящим при отражении, прохождении или рассеянии этой энергии, что свойственно радиационному, вихретоковому, магнитному, ультразвуковому видам неразрушающего контроля.

[5]

Для повышения достоверности результатов исследования используют многоуровневую комплексную диагностику и комбинирование методов неразрушающего контроля [9-10]. Так, например, для оценки степени повреждаемости металлических материалов применяется метод кинетической твердости в сочетании с акустико-эмиссионной диагностикой [5]. Использование метода кинетической твердости позволяет получать основные характеристики прочностных свойств металла без разрушения конструкции, а акустическая эмиссия дает возможность оценить эволюцию коллективных дислокационных взаимодействий при пластической деформации и процессы, происходящие в металле при зарождении и распространении трещин.

[6]

Большинство применяемых активных и пассивных методов неразрушающего контроля не позволяет проводить непрерывный мониторинг степени деградации материала и определять остаточную прочность изделия в режиме текущего времени. К тому же измерение контролируемых параметров или процессов, диагностическими методами имеет не интегральный, а локальный характер. При этом замеры в одной контрольной зоне при переходе от точки к точке могут давать значительное расхождение регистрируемых параметров, что существенно усложняет оценку степени деградации материала и определение остаточной прочности изделия. Многие диагностические методы, такие как магнитные, не являются универсальными и могут быть использованы применительно лишь к определенным типам материалов (например, к конструкционным сталям, обладающим магнитными свойствами).

[7]

Наиболее близким техническим решением, принятым за прототип, является способ распознавания источников сигналов акустической эмиссии, возникающих при деградации материала, образовании трещин и разрушении конструкции - патент РФ №2569078, 2015 г., МПК G01N 29/14. При проведении акустико-эмиссионной диагностики объектов контроля для идентификации регистрируемых импульсов, возникающих при деградации материала, образовании трещин и разрушении конструкции, использован алгоритм их распознавания по форме затухающей волны [11].

[8]

Целью предлагаемого технического решения является разработка способа, позволяющего в процессе акустико-эмиссионной диагностики изделия, осуществлять мониторинг степени деградации структуры материала и определять остаточную прочность изделия в зоне акустико-эмиссионного контроля без привлечения других методов технической диагностики и неразрушающего контроля.

[9]

Сущность предлагаемого изобретения заключается в том, что в процессе акустико-эмиссионной диагностики изделия в режиме реального времени осуществляют градацию регистрируемых локационных импульсов по уровню относительной энергии и усредненной частоте выбросов, формируют нижний, средний и верхний кластеры в поле указанных параметров, и вычисляют процентное содержание импульсов в каждом кластере, отражающее микро-, мезо- и макроструктурные разрушения материала, по которым при сопоставлении с результатами тестовых испытаний материала на разрушение, определяют степень деградации и остаточной прочности изделия в зоне акустико-эмиссионного контроля, при этом границы формируемых кластеров устанавливают по результатам предварительного тестирования материала изделия исходя из природы источников излучения импульсов, и используемого уровня порога дискриминации сигналов.

[10]

В качестве существенных признаков, наиболее информативных и устойчивых акустико-эмиссионных параметров для кластерного разделения сигналов, использована относительная энергия импульса, измеряемая в децибелах и соответствующая количеству выбросов в единицах:

[11]

ЕИ=NИ/tИ, где:

[12]

ЕИ - относительная энергия импульса, дБ,

[13]

NИ - количество выбросов в единицах,

[14]

tИ - длительность импульса, мкс.

[15]

При осуществлении заявляемого технического решения поставленная задача осуществляется с помощью диаграммы параметров, включающей относительную энергию импульсов и усредненную частоту выбросов, в поле которых регистрируемые импульсы формируют кластеры с низким, средним и высоким уровнем энергии, отражающим, происходящие микро-, мезо- и макроструктурные разрушения материала. Для классификации регистрируемых сигналов активной эмиссии в поле этих параметров специально разработан программный продукт, позволяющий в режиме реального времени регистрировать динамику процентного распределения импульсов в нижнем (WH), среднем (WC) и верхнем (WB) кластерах, и вычислять их процентное содержание, отражающее происходящие микро, мезо и макроструктурные разрушения в процессе нагружения изделия:

[16]

,

[17]

,

[18]

,

[19]

где WH, WC, WB - количество импульсов, формирующих нижний, средний и верхний кластеры, соответственно,

[20]

NH, NC, NB и NΣ - количество зарегистрированных импульсов активной эмиссии в каждом кластере и суммарное их количество.

[21]

Перед проведением мониторинга объектов испытаний выполняют тестовые испытания образцов материала изделия на заданные виды нагружения, определяя требуемые механические и акустические свойства, а также параметры регистрируемых импульсов при заданных уровнях порога дискриминации, диагностируя при этом природу источников их излучения.

[22]

Технико-экономическая эффективность изобретения следует из технического результата, получаемого при осуществлении изобретения, т.е. мониторинга степени деградации структуры материала и остаточной прочности изделия в процессе его нагружения, а следовательно, предотвращения разрушения объектов контроля в зоне активной эмиссии контроля.

[23]

Демонстрации и технические результаты, получаемые в случае реализации этого способа, представлены в Приложении 1.

[24]

Литература

[25]

1. ГОСТ Р 53006-2008. Оценка ресурса потенциально опасных объектов на основе экспресс-методов. Общие требования.

[26]

2. ГОСТ Р 56542-2015. Контроль неразрушающий. Классификация видов и методов. - М.:ФГУП «СТАНДАРТИНФОРМ», 2015. - 15 с.

[27]

3. Дубов А.А. Способ определения предельного состояния металла и оценки ресурса оборудования по магнитным диагностическим параметрам // Контроль. Диагностика, №5, 2003.

[28]

4. Генералов А.С., Мурашов В.В., Далин М.А., Бойчук А.С. Диагностика полимерных композитов ультразвуковым реверберационно-сквозным методом // Авиационные материалы и технологии. М.: ВИАМ, 2012, №1, с. 42-47.

[29]

5. А.Г. Пенкин, В.Ф. Терентъев, М.Б. Бакиров. Оценка степени повреждаемости конструкционных сталей при статическом и циклическом деформировании с использованием методов акустической эмиссии и кинетической твердости. // Деформация и разрушение материалов, №2. 2005. 15-19.

[30]

6. А.С. СССР №1357777 A1 (51) 4. СПОСОБ ОЦЕНКИ ОСТАТОЧНОЙ ДОЛГОВЕЧНОСТИ МАТЕРИАЛА ДЕТАЛИ ПОСЛЕ НАРАБОТКИ. /Н.Г. Бычков, А.Н. Петухов и И.В. Пучков / кл. G01N 3/32. 07.12.1987. Бюл. №45 (72).

[31]

7. РД 03-421-01 Методические указания по проведению диагностирования технического состояния и определению остаточного срока службы сосудов и аппаратов. - М.: Государственное унитарное предприятие «НТЦ по безопасности в промышленности Госгортехнадзора России», 2002, - 136 с.

[32]

8. РД 26.260.004-91. Прогнозирование остаточного ресурса оборудования по изменению параметров его технического состояния при эксплуатации. - М.: Концерн Химнефтемаш, 1991. - 96 с.

[33]

9. Махутов Н.А., Фомин А.В., Иванов В.И., Перьмяков В.Н., Васильев И.Е. Комплексная диагностика предельных состояний и раннего предупреждения аварийных состояний конструкций. // Проблемы машиностроения и надежности машин. – 2013, №2, с. 46-51.

[34]

10. Патент №2403564 РФ: МПК G01N 29/14. Устройство для диагностики предельного состояния и раннего предупреждения об опасности разрушения материалов и изделий/ Васильев И.Е., Иванов В.И., Махутов Н.А., Ушаков Б.Н.; заявитель и патентообладатель Институт машиноведения им. А.А. Благонравова РАН, №2009100183/28, заявл. 11.01.09, опубл. 10.11.10. Бюл. №31.

Как компенсировать расходы
на инновационную разработку
Похожие патенты