патент
№ RU 2411185
МПК B82B3/00

СПОСОБ СИНТЕЗА ОДНОФАЗНОГО НАНОПОРОШКА ФТОРИДА БАРИЯ, ЛЕГИРОВАННОГО ФТОРИДОМ РЕДКОЗЕМЕЛЬНОГО МЕТАЛЛА

Авторы:
Федоров Павел Павлович Осико Вячеслав Васильевич Кузнецов Сергей Викторович
Все (4)
Номер заявки
2009120299/05
Дата подачи заявки
29.05.2009
Опубликовано
10.02.2011
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение может быть использовано в фотонике и неорганических синтезах в качестве каталитически активных фаз. Смешивают фторирующее соединение с раствором, содержащим соль бария и соль редкоземельного элемента, с получением осадка, который промывают и сушат. На смешивание с фторирующим соединением подают раствор, содержащий ионы бария и ионы редкоземельного элемента при их мольном отношении, равном от 0,74:0,26 до 0,30:0,70 соответственно. Изобретение позволяет обеспечить получение фазовочистого кристаллического нанопорошка с высокой концентрацией редкоземельного элемента. 5 з.п. ф-лы.

Формула изобретения

1. Способ синтеза однофазного нанопорошка фторида бария, легированного редкоземельным металлом, включающий смешивание фторирующего соединения с раствором, содержащим соль бария и соль редкоземельного элемента, с получением осадка, его промывку и сушку, отличающийся тем, что на смешивание с фторирующим соединением подают раствор, содержащий ионы бария и ионы редкоземельного элемента при их мольном отношении, равном от 0,74:0,26 до 0,30:0,70 соответственно.

2. Способ по п.1, отличающийся тем, что в качестве фторирующего соединения используют раствор фтористо-водородной кислоты или раствор фторида аммония.

3. Способ по п.1, отличающийся тем, что смешивание растворов осуществляют покапельно.

4. Способ по п.1, отличающийся тем, что на смешивание подают водный или водно-этанольный раствор, содержащий соль бария и соль редкоземельного элемента.

5. Способ по п.1, отличающийся тем, что сушку осадка производят при 60-80°С.

6. Способ по п.1, отличающийся тем, что полученный продукт подвергают дополнительной термообработке путем нагрева до 400°С.

Описание

[1]

Изобретение относится к области синтеза неорганических материалов, в частности к получению наночастиц фторидов, преимущественно редкоземельных и щелочноземельных металлов, которые могут быть использованы в качестве материалов для фотоники, как каталитически активные фазы или реагенты для неорганических синтезов.

[2]

Наночастицами принято считать частицы, размер которых хотя бы в одном направлении составляет менее 100 нм.

[3]

Под редкоземельными элементами, согласно рекомендации ЮПАК, понимают лантан, лантаниды, иттрий и скандий.

[4]

Известен способ получения нанопорошков фторидов щелочноземельных и редкоземельных металлов действием газообразного фтористого водорода на соответствующие оксиды нанометровых размеров (RU 2328448, 10.07.2008). Однако известный способ предназначен только для синтеза индивидуальных фторидов.

[5]

Известны способы получения нанопорошков фторидов и оксифторидов щелочноземельных и редкоземельных элементов смешанного состава осаждением из водных растворов (см., например, EP 1728763, 12.06.2006, EP 1942172, 07.09.2008, US 2008217578, 11.09.2008, US 20080025896, 31.01.2008).

[6]

Однако при осаждении из водных растворов фаз, содержащих фториды, в соответствии с известными техническими решениями образующийся осадок состава: M1-xRxF2+x, где М - щелочноземельный элемент, R - редкоземельный элемент, x - мольная доля, не всегда отвечает условиям фазовой однородности и часто представляет собой смесь частиц разного химического состава, что проявляется в наличии на рентгенограммах двух систем дифракционных отражений, отвечающих образованию твердых растворов различной концентрации.

[7]

Известен способ получения наноразмерных частиц твердых растворов фторидов M1-xRxF2+x, где М=Са, Sr, R=Er, Yb, Се, Nd, x - выше 0 до 0.17, согласно которому осуществляют соосаждение из кислых растворов соответствующих солей раствором фтористоводородной кислоты с кристаллизацией продукта в кубической сингонии, структурном типе флюорита. Полученные продукты имеют кубическую гранецентрированную решетку группы Fm3m (Кузнецов С.В., Яроцкая И.В., Федоров П.П., и др. Получение нанопорошков твердых растворов M1-xRxF2+x (М=Са, Sr, Ва; R=Ce, Nd, Er, Yb). // Ж. неорг. химии. 2007. Т.52. №3. С.364-369).

[8]

Однако при попытках получения таким образом фторида бария, легированного 1-25 мол.% РЗЭ, образуется двухфазный осадок, содержащий два твердых раствора различной концентрации, в том числе почти чистый фтористый барий, который осаждается после основной фазы. Это объясняется сильным различием растворимостей фтористого бария и фторидов редкоземельных элементов. Аналогичные проблемы возникают при попытках осаждения смесей соединений щелочных и редкоземельных элементов.

[9]

Данные рентгенофазового анализа указывают, что второй фазой, осаждающейся наряду с почти чистым фтористым барием, является фаза флюоритовой структуры с существенно меньшим параметром решетки, что в соответствии с концентрационными зависимостями параметров решетки в твердых растворах указывает на вхождение в твердый раствор больших содержаний RF3. Величины мольных объемов примерно соответствуют фазам Ba4R3F17. Эти фазы образуются в системах BaF2-RF3 и кристаллизуются в структуре, производной от типа флюорита с тригональным искажением решетки.

[10]

Наиболее близким к предложенному изобретению является способ синтеза однофазного нанопорошка фторида бария, легированного редкоземельным металлом, включающий смешивание фторирующего соединения с раствором, содержащим соль бария и соль редкоземельного элемента с получением осадка, его промывку и сушку (US 20080025896, 31.01.2008, описание, пример 10).

[11]

Однако известный способ не позволяет получить фазовочистый нанопорошок, характеризующийся содержанием редкоземельных элементов более чем 0,2 моля.

[12]

Задачей настоящего изобретения является разработка способа получения однофазного нанопорошка фторида бария, легированного редкоземельным металлом, имеющего кубическую кристаллическую структуру типа флюорита и характеризующегося повышенным содержанием редкоземельного металла.

[13]

Поставленная задача решается описываемым способом синтеза однофазного нанопорошка фторида бария, легированного редкоземельным металлом, включающим смешивание фторирующего соединения с раствором, содержащим соль бария и соль редкоземельного элемента при их мольном отношении, равном от 0.74:0.26 до 0.30:0.70 соответственно, с получением осадка, его промывку и сушку.

[14]

Предпочтительно, в качестве фторирующего соединения используют раствор фтористоводородной кислоты или раствор фторида аммония.

[15]

Предпочтительно, смешивание растворов осуществляют покапельно.

[16]

Предпочтительно, на смешивание подают водный или водно-этанольный раствор, содержащий соль бария и соль редкоземельного элемента.

[17]

Предпочтительно, сушку осадка производят при температуре 60-80°С.

[18]

Для полного обезвоживания полученный продукт подвергают дополнительной термообработке путем нагрева до 400°С.

[19]

Заявленный способ прост в исполнении.

[20]

Готовят смешанные растворы солей бария и редкоземельных элементов, причем соотношение мольных концентраций меняют в пределах от 0.74:0.26 до 0.30:0.70. В качестве растворителя может быть использована вода или смеси воды с этиловым спиртом. В качестве солей могут быть выбраны нитраты, хлориды или другие растворимые соли бария и редкоземельных элементов, которые могут быть приготовлены путем растворения оксидов, карбонатов или других нерастворимых солей в соответствующих кислотах. Приготовленные растворы покапельно смешиваются при перемешивании с растворами, содержащими фтор-ион, например растворами фтористоводородной кислоты или фторида аммония. Образуется осадок, состоящий из наночастиц. В случае использования фтористоводородной кислоты реакционная смесь или осадок нейтрализуется водным раствором аммиака. Полученный осадок отстаивается, фильтруется и высушивается при температуре 60-80°С. Для полного обезвоживания может нагреваться до 400°С.

[21]

Ниже приведены конкретные примеры осуществления заявленного способа.

[22]

Для подтверждения решения поставленной задачи приведены результаты рентгенофазового анализа.

[23]

Определение эффективных размеров наночастиц и величин микродеформаций проведено по уширению линий на рентгенограммах порошка по методике D.Louer, изложенной в J.Powder Diffraction, 2002, V.17, N4, P.262-268.

[24]

Пример 1. Нитрат бария (ОС.Ч.10-2) растворили в дистиллированной воде (0,05-0,2 моль/л), затем смешали с раствором нитрата иттрия (0,05-0,2 моль/л), полученным растворением оксида иттрия (ХЧ) в концентрированной HNO3 (ОС.Ч.18-4). Соотношение мольной концентрации бария к иттрию в растворе составило 0.57:0.43. Полученный раствор покапельно добавляли в раствор фтористоводородной кислоты (4%, ХЧ). Выпавший белый студенистый осадок декантировали и нейтрализовали добавлением аммиачной воды (концентрации 25%). Величину pH определяли посредством индикаторной тест-полоски. Дважды промывали дистиллированной водой и сушили при температуре 60-80°С. Согласно данным рентгенофазового анализа был получен однофазный образец флюоритовой структуры. Параметр решетки а=5.892 Å. Величина области когерентного рассеяния D=46 нм, величина микродеформаций е=6.1·10-3.

[25]

Пример 2. Аналогичен примеру 1, только вместо оксида иттрия использовался оксид иттербия марки ХЧ. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.848 Å, величина области когерентного рассеяния D=19 нм, величина микродеформаций е=8.7·10-3.

[26]

Пример 3. Аналогичен примеру 1, только взята смесь оксидов иттрия и иттербия. Соотношение атомных концентраций Ba:Y:Yb=0.57:0.385:0.045. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.893(2) Å величина области когерентного рассеяния D=52 нм, величина микродеформаций е=8.0·10-3.

[27]

Пример 4. Аналогичен примеру 1, только вместо оксида иттрия использовался оксид эрбия. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.853 Å, величина области когерентного рассеяния D=46 нм, величина микродеформаций е=8.8·10-3.

[28]

Пример 5. Аналогичен примеру 1, только вместо оксида иттрия использовался оксид неодима марки ХЧ, предварительно прокаленный при 800°С в течение 2 ч со скоростью нагрева 10 град/мин. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.990 Å, величина области когерентного рассеяния D=90 нм, величина микродеформаций е=2.42·10-3.

[29]

Пример 6. Аналогичен примеру 1, только вместо оксида иттрия использовался шестиводный нитрат празеодима. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=6.0236 Å.

[30]

Пример 7. Аналогичен примеру 1. Соотношение атомной концентрации бария к иттрию в растворе составило 0.35:0.65. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.827 Å, D=45 нм, е=5.85·10-3.

[31]

Пример 8. Аналогичен примеру 1. Соотношение атомной концентрации бария к иттрию в растворе составило 0.74:0.26. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.899 Å.

[32]

Пример 9. Аналогичен примеру 1. Соотношение атомной концентрации бария к иттрию в растворе составило 0.30:0.70. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.748 Å.

[33]

Пример 10. Аналогичен примеру 1, только вместо раствора нитрата иттрия, полученного растворением оксида иттрия (ХЧ) в концентрированной HNO3 (ОС.Ч.18-4), использовали раствор нитрата иттрия, полученный растворением шестиводного нитрата иттрия Y(NO3)3•6H2O (содержание основного компонента 99,99%) в бидистиллированной воде, а также вместо покапельного добавления раствора нитратов в раствор фтористоводородной кислоты осуществляли их полное однократное смешение. Исходная концентрация нитрата бария - 0.088 моль/л. Получена взвесь твердой фазы, медленно седиментирующая с образованием белого студенистого осадка. Согласно данным рентгенофазового анализа получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.893 Å, величина области когерентного рассеяния D=65 нм, величина микродеформаций е=6.0·10-3.

[34]

Пример 11. Аналогичен примеру 1, только вместо раствора нитрата иттрия, полученного растворением оксида иттрия (ХЧ) в концентрированной HNO3 (ОС.Ч.18-4), использовали раствор нитрата иттрия, полученный растворением шестиводного нитрата иттрия Y(NO3)3•6H2O (содержание основного компонента 99,99%) в бидистиллированной воде, и вместо дистиллированной воды использован водно-этанольный раствор, содержащий 10 объемных % С2Н5ОН. Получена взвесь твердой фазы, медленно седиментирующая с образованием белого студенистого осадка. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.905 Å, величина области когерентного рассеяния D=38 нм, величина микродеформаций е=6.0·10-3.

[35]

Пример 12. Аналогичен примеру 1, только вместо раствора нитрата иттрия, полученного растворением оксида иттрия (ХЧ) в концентрированной HNO3 (ОС.Ч.18-4), использовали раствор нитрата иттрия, полученный растворением шестиводного нитрата иттрия Y(NO3)3•6H2O (содержание основного компонента 99,99%) в бидистиллированной воде, только вместо раствора фтористоводородной кислоты (4%, ХЧ) использован раствор фторида аммония NH4F с концентрацией 0,32 моль/л. Получен однофазный образец кубической флюоритовой структуры, параметр решетки а=5.965 Å, величина области когерентного рассеяния D=45 нм, величина микродеформаций е=9.0·10-3.

[36]

Таким образом, приведенные примеры показывают, что путем соосаждения из растворов, содержащих ионы бария и редкоземельных элементов при мольном соотношении от 0.74:0.26 до 0.30:0.70, при покапельном смешивании с раствором фтористоводородной кислоты или фторида аммония получены осадки фаз со структурой флюорита, размер частиц которых составляет менее 100 нм. Определенные параметры решетки флюоритовых твердых растворов Ba1-xRxF2+x, где R - редкоземельные элементы, x - мольная доля соответствующего трифторида, соответствуют номинальной концентрации ионов бария и редкоземельных элементов при вычислениях по формуле, приведенной в работе: Федоров П.П., Соболев Б.П. Концентрационная зависимость параметров элементарных ячеек фаз M1-xRxF2+x со структурой флюорита. // Кристаллография. 1992. Т.37. №5. С.1210-1219.

Как компенсировать расходы
на инновационную разработку
Похожие патенты