патент
№ RU 2658646
МПК H01J9/04

МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Авторы:
Крачковская Татьяна Михайловна Сахаджи Георгий Владиславович Сторублев Антон Вячеславович
Все (4)
Номер заявки
2017122701
Дата подачи заявки
27.06.2017
Опубликовано
22.06.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к электронной технике, а именно к металлопористым катодам (МПК) электронных приборов СВЧ. В торцевую часть металлопористого катода, выполненного в виде корпуса из тугоплавкого металла, погружена пропитанная активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, AlO- 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1 до 0,2 мас.%) покрытая снаружи слоем Os+Ir+Al вольфрамовая губка, которая состоит из отожженного вольфрамового порошка фракции Б (в количестве от 99,3 до 99,8 мас.%) и порошка полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2-0,7 мас.%. Изобретение позволяет повысить долговечность и плотность токоотбора. 2 н. и 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Металлопористый катод, выполненный в виде корпуса из тугоплавкого металла, отличающийся тем, что включает в себя твердосплавную губку, пропитанную активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 - 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1 до 0,2 мас.%) с эмитирующим покрытием из сплава Os+Ir+Al, причем в состав твердосплавной губки входит отожженный вольфрамовый порошок фракции Б (в количестве от 99,3 до 99,8 мас.%) и порошок полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2-0,7 мас.%.

2. Способ изготовления металлопористого катода, включающий формирование корпуса из тугоплавкого металла и вольфрамовой губки, отличающийся тем, что первоначально готовится смесь для приготовления тугоплавкой матрицы, которая имеет в своем составе отожженный вольфрамовый порошок фракции Б (в количестве 99,3-99,8 мас.%), в нее добавляют полиэдральные углеродные наночастицы фуллероидного типа тороидальной формы в количестве 0,2-0,7% мас.%, полученная смесь, предварительно растертая пестиком, прессуется под давлением свыше Р=7,4 кг/см2, далее заготовки отжигаются (при температуре от 600 до 1700°C в среде водорода в течение 8 часов), после охлаждения для повышения механической прочности проводится дополнительный отжиг (при температуре от 1500 до 1950°C в среде водорода в течение 9 мин), после чего диски получают металлический оттенок; затем диски пропитываются активным веществом, состоящим из алюмината бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 - 18,4-18,3% с добавкой водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1 до 0,2 мас.%), после чего готовую губку закрепляют в корпус, проводят механическую обработку и подвергают поочередно процессу вакуумного отжига, глубокого ионного травления и наносят ионно-плазменное покрытие состава Os+Ir+Al.

3. Способ по п. 2, отличающийся тем, что после механической доработки используется только процесс вакуумного отжига.

4. Способ по п. 3, отличающийся тем, что после механической доработки используется процесс вакуумного отжига и глубокого ионного травления эмитирующей поверхности.

Описание

[1]

Изобретение относится к электронной технике, а именно к металлопористым катодам (МПК) электронных приборов СВЧ.

[2]

Известны различные конструкции металлопористых катодов [Кудинцева Г.А. и др. Термоэлектронные катоды. Энергия, 1966], состоящие из пористой вольфрамовой губки, пропитанной активным эмиссионным веществом.

[3]

Наиболее близким аналогом заявляемого металлопористого катода является катод [патент RU на изобретение №2172997], содержащий керн из тугоплавкого металла и матрицу, поры которой заполнены эмитирующим составом. Достоинством такой конструкции является то, что для изготовления МПК не требуется дорогостоящего оборудования. К недостаткам относится невысокая долговечность.

[4]

Известна конструкция и упрощенный процесс изготовления металлопористого катода [патент на изобретение RU 2333565], включающий запрессовку порошка тугоплавкого металла в стакан из молибдена и пропитку сформированной пористой губки активным веществом в виде порошка из алюмината или алюмосиликата бария-кальция при температуре 1700-1800°C в среде водорода, с последующим удалением активного вещества с поверхности стакана и губки многократным смыванием струей воды и формированием таким образом эмитирующей поверхности катода. Достоинством этой конструкции также является простота изготовления металлопористого катода. Однако такая технология не обеспечивает необходимой долговечности МПК, так как губка катода в силу недостаточной температуры спекания запрессованного в корпус катода порошка (1700-1800°C вместо 2000°C при обычной технологии изготовления) имеет повышенную пористость, что вызывает повышенное испарение бария во время работы катода и, соответственно, меньшую долговечность.

[5]

Известно получение различных форм углеродных наночастиц. К ним, в частности, относятся полиэдральные многослойные углеродные наноструктуры фуллероидного типа [Патент RU 2196731], многослойные углеродные наночастицы фуллероидного типа тороидальной формы [Патент RU 2397950].

[6]

Известен также автоэмиссионный катод [Патент RU 2504858], при изготовлении которого применяются углеродные нанотрубки. Такой катод содержит частицы металла, окруженные наноструктурированным углеродным материалом. При этом металл обеспечивает низкое удельное сопротивление, высокую теплопроводность и механическую прочность, а наноуглеродный материал - высокие эмиссионные свойства катода. Достоинством такой конструкции является повышение эффективности автоэлектронной эмиссии. К недостаткам таких катодов можно отнести высокую скорость их деградации.

[7]

Техническим результатом предлагаемого изобретения является повышение долговечности и плотности токоотбора.

[8]

Технический результат достигается тем, что в торцевую часть металлопористого катода, выполненного в виде корпуса из тугоплавкого металла, погружена пропитанная активным веществом состава - алюминат бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 - 18,4-18,3% с добавлением водного раствора сульфоаддукта нанокластеров углерода (Углерона®) с концентрацией 6 г/л (в количестве от 0,1% до 0,2% масс) и покрытая снаружи слоем Os+Ir+Al вольфрамовая губка, которая состоит из отожженного вольфрамового порошка фракции Б (в количестве от 99,3% до 99,8% масс) и порошка полиэдральных наночастиц фуллероидного типа тороидальной формы (Астраленов®) в количестве 0,2% - 0,7% масс.

[9]

Кроме того, технический результат достигается тем, что при изготовлении металлопористого катода, включающем формирование корпуса из тугоплавкого металла и вольфрамовой губки, первоначально готовится смесь для приготовления тугоплавкой матрицы, которая имеет в своем составе отожженный вольфрамовый порошок фракции Б (в количестве 99,3% 99,8% масс.) с добавкой порошка полиэдральных наночастиц фуллероидного типа тороидальной формы в количестве 0,2%-0,7% масс. Полученная смесь, предварительно растертая пестиком, прессуется под давлением свыше Р=7,4 кг/см2. Далее заготовки отжигаются (при температуре от 600°C до 1700°C в среде водорода в течение 8 часов), и после охлаждения для повышения механической прочности проводится дополнительный отжиг (при температуре от 1500°C до 1950°C в среде водорода в течение 9 мин), после чего диски должны получить металлический оттенок. Затем диски пропитываются активным веществом, состоящим из алюмината бария-кальция с соотношением СаО - 4,9%, ВаО - 76,6%, Al2O3 -18,4- 18,3% с добавкой водного раствора сульфоаддукта нанокластеров углерода с концентрацией 6 г/л (в количестве от 0,1% до 0,2% масс), после чего готовую губку закрепляют в корпус, проводят механическую обработку и подвергают поочередно процессу вакуумного отжига, глубокого ионного травления и наносят ионно-плазменное покрытие состава Os+Ir+Al.

[10]

При этом после механической доработки используется только процесс вакуумного отжига или процесс вакуумного отжига и глубокого ионного травления эмитирующей поверхности.

[11]

Варианты концентраций, полученные параметры катодов и их сравнение с аналогами приведены в таблице. Все значения таблицы представлены при токоотборе 2,2 А/см2. Под характеристической температурой понимается температура катода, при которой режим работы катода меняется с режима ограничения пространственным зарядом на режим с температурным ограничением. Соответственно, для наиболее эмиссионно активных катодов изменение режима происходит при достаточно низких температурах. Исследование эмиссионной активности катодов проводилось в режиме импульсного токоотбора на анод при скваженности 1000.

[12]

[13]

Источники информации

[14]

1. Кудинцева Г.А. и др. Термоэлектронные катоды. Энергия, 1966.

[15]

2. Патент RU на изобретение №2172997.

[16]

3. Патент на изобретение RU 2333565.

[17]

4. Полиэдральные многослойные углеродные наноструктуры фуллероидного типа. Патент RU 2196731.

[18]

5. Пономарев А.Н., Юдович М.Е. Многослойные углеродные наночастицы фуллероидного типа тороидальной формы. Патент RU 2397950, под. 23.04.2008, опубл. 27.08.2010.

[19]

6. Патент RU 2504858.

Как компенсировать расходы
на инновационную разработку
Похожие патенты