патент
№ RU 2631923
МПК H02H7/12

Сверхвысокочастотное циклотронное защитное устройство

Авторы:
Голеницкий Иван Иванович Быковский Сергей Васильевич Будзинский Юрий Афанасьевич
Все (4)
Номер заявки
2016114977
Дата подачи заявки
18.04.2016
Опубликовано
29.09.2017
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

Изобретение относится к области высокочастотной радиоэлектроники, а именно к устройствам защиты от воздействия входной мощности большого уровня в СВЧ-радиоприемных устройствах, в частности в приемниках радиолокационных станций 8-миллиметрового диапазона длин волн. Технический результат - повышение частоты ЦЗУ и расширение области применения ЦЗУ в приемниках РЛС 8-миллиметрового диапазона длин волн для защиты их от воздействия входной мощности большого уровня. Сверхвысокочастотное циклотронное защитное устройство содержит ленточный катод, фокусирующий электрод, установленный перед катодом и выполненный в форме прямоугольной пластины с краями, загнутыми под прямым углом по направлению к катоду, анод, резонаторную систему с входным и выходным объемными резонаторами, имеющими однонаправленную связь друг с другом через электронный поток и осуществляющими взаимодействие с быстрой циклотронной волной электронного потока, при этом каждый резонатор соединен и согласован с внешними СВЧ-линиями трактом передачи сигнала, коллектор электронов, магнитную систему на постоянных магнитах, продольно намагниченных вдоль направления распространения электронного потока, установленных на противоположных внутренних стенках прямоугольного магнитопровода и снабженных полюсными наконечниками. Магнитная система содержит четыре дополнительных магнита, намагниченных в направлении, перпендикулярном направлению распространения электронного потока, причем каждый магнит расположен между боковыми стенками полюсного наконечника и магнитопровода и прилегает к ним магнитным полюсом, одноименным полюсу продольно намагниченного постоянного магнита. Коллектор электронов выполнен в виде двух тонких взаимно параллельных пластин на проволочном держателе, установленном в цилиндрической полости полюсного наконечника, ось которой ориентирована перпендикулярно направлению распространения ленточного электронного потока вдоль его ширины. 4 ил.

Формула изобретения

Сверхвысокочастотное циклотронное защитное устройство, содержащее ленточный катод, фокусирующий электрод, установленный перед катодом и выполненный в форме прямоугольной пластины с краями, загнутыми под прямым углом по направлению к катоду, анод, резонаторную систему с входным и выходным объемными резонаторами, имеющими однонаправленную связь друг с другом через электронный поток и осуществляющими взаимодействие с быстрой циклотронной волной электронного потока, при этом каждый резонатор соединен и согласован с внешними СВЧ-линиями трактом передачи сигнала, коллектор электронов, магнитную систему на постоянных магнитах, продольно намагниченных вдоль направления распространения электронного потока, установленных на противоположных внутренних стенках прямоугольного магнитопровода и снабженных полюсными наконечниками, отличающееся тем, что магнитная система содержит четыре дополнительных магнита, намагниченных в направлении, перпендикулярном направлению распространения электронного потока, причем каждый магнит расположен между боковыми стенками полюсного наконечника и магнитопровода и прилегает к ним магнитным полюсом, одноименным полюсу продольно намагниченного постоянного магнита, коллектор электронов выполнен в виде двух тонких взаимно параллельных пластин на проволочном держателе, установленном в цилиндрической полости полюсного наконечника, ось которой ориентирована перпендикулярно направлению распространения ленточного электронного потока вдоль его ширины.

Описание

[1]

Изобретение относится к области высокочастотной радиоэлектроники, а именно к устройствам защиты от воздействия входной мощности большого уровня в СВЧ-радиоприемных устройствах, в частности в приемниках радиолокационных станций 8-миллиметрового диапазона длин волн.

[2]

В современных радиолокационных станциях (РЛС) предъявляются жесткие требования к входным каскадам приемника. Наряду с малым коэффициентом шума в рабочей полосе частот они должны быть надежно защищены от СВЧ-мощности высокого уровня при предельно малом времени восстановления параметров после окончания СВЧ-импульса.

[3]

По всей совокупности указанных требований наиболее перспективными являются циклотронные защитные устройства (ЦЗУ), работающие на быстрой циклотронной волне (БЦВ) электронного потока. Они обладают рядом технических преимуществ перед твердотельными и газоразрядными защитными устройствами: уникально малым (порядка наносекунд) временем срабатывания и восстановления режима работы после окончания импульса большой мощности, высоким уровнем допустимой входной мощности (до нескольких десятков киловатт в импульсе), малыми потерями сигнала, низким уровнем шума, линейностью амплитудной и фазовой характеристик.

[4]

Физический принцип работы ЦЗУ основан на взаимодействии СВЧ-поля резонаторов с протяженным емкостным зазором с полем БЦВ электронного потока, связанной с вращением электронов в продольном магнитном поле с циклотронной частотой , где η=e/m - отношение заряда электрона к его массе, В - индукция продольного магнитного поля. Взаимодействие СВЧ-полей резонаторов с БЦВ электронного потока происходит на частоте входного сигнала , совпадающей с циклотронной частотой и собственной частотой резонаторов в центре рабочей полосы частот .

[5]

В настоящее время созданы ЦЗУ см-диапазона длин волн на частоте до и соответственно индукцией поля В=0.35 Тл, которые широко применяются в приемных устройствах РЛС см-диапазона и обеспечивают их эффективную защиту от воздействия входной мощности большого уровня в условиях радиопротиводействия.

[6]

Актуальной задачей является создание ЦЗУ для защиты приемников РЛС 8-миллиметрового диапазона длин волн на частоте с уровнем индукции поля B=1.3 Тл [1]. Однако в настоящее время ЦЗУ для этого частотного диапазона не разработаны.

[7]

Наиболее близким к предлагаемому изобретению (прототипом) является ЦЗУ 3-сантиметрового диапазона длин волн [2, 3].

[8]

Устройство-прототип [2, 3] содержит ленточный катод, фокусирующий электрод, установленный перед катодом и выполненный в форме прямоугольной пластины с краями, загнутыми под прямым углом по направлению к катоду, анод, резонаторную систему с входным и выходным объемными резонаторами с собственной частотой, равной циклотронной частоте на частоте входного сигнала в центре рабочей полосы частот . Резонаторы взаимодействуют с БЦВ электронного потока и имеют однонаправленную связь друг с другом через электронный поток, при этом каждый резонатор соединен и согласован с внешними СВЧ-линиями трактом передачи сигнала. Взаимодействие СВЧ-полей резонаторов с БЦВ электронного потока происходит на частоте входного сигнала в центре рабочей полосы частот, равной циклотронной частоте в продольном магнитном поле с индукцией В=0.35 Тл. Магнитное поле создается с помощью магнитной системы на постоянных магнитах, намагниченных в продольном направлении распространения электронного потока, установленных на противоположных внутренних стенках прямоугольного магнитопровода и снабженных полюсными наконечниками. Коллектор электронов представляет собой полый цилиндр с закрытым дном и входным прямоугольным отверстием для пропускания ленточного электронного потока, установленный внутри полости полюсного наконечника для обеспечения его магнитной экранировки от магнитного поля в междуполюсном зазоре.

[9]

Недостаток ЦЗУ-прототипа связан с тем, что он работает в ограниченной области рабочих частот см-диапазона длин волн. Для работы ЦЗУ в другом частотном диапазоне и, а именно, в приемниках РЛС 8-миллиметрового диапазона длин волн (, B=1.3 Тл) необходимы изменения конструкции его основных узлов, включая магнитную, резонаторную и коллекторную системы.

[10]

Техническим результатом предлагаемого изобретения является повышение частоты ЦЗУ и расширение области применения ЦЗУ в приемниках РЛС 8-миллиметрового диапазона длин волн для защиты их от воздействия входной мощности большого уровня.

[11]

Технический результат достигается тем, что предлагаемое сверхвысокочастотное циклотронное защитное устройство содержит ленточный катод, фокусирующий электрод, установленный перед катодом и выполненный в форме прямоугольной пластины с краями, загнутыми под прямым углом по направлению к катоду, анод, резонаторную систему с входным и выходным объемными резонаторами, имеющими однонаправленную связь друг с другом через электронный поток и осуществляющими взаимодействие с быстрой циклотронной волной электронного потока, при этом каждый резонатор соединен и согласован с внешними СВЧ-линиями трактом передачи сигнала, коллектор электронов, магнитную систему на постоянных магнитах, продольно намагниченных вдоль направления распространения электронного потока, установленных на противоположных внутренних стенках прямоугольного магнитопровода и снабженных полюсными наконечниками. Магнитная система содержит четыре дополнительных магнита, намагниченных в направлении, перпендикулярном направлению распространения электронного потока, причем каждый магнит расположен между боковыми стенками полюсного наконечника и магнитопровода и прилегает к ним магнитным полюсом, одноименным полюсу продольно намагниченного постоянного магнита. Коллектор электронов выполнен в виде двух тонких взаимно параллельных пластин на проволочном держателе, установленном в цилиндрической полости полюсного наконечника, ось которой ориентирована перпендикулярно направлению распространения ленточного электронного потока вдоль его ширины.

[12]

Применение в магнитной системе четырех дополнительных магнитов, намагниченных в направлении, перпендикулярном направлению распространения электронного потока, расположенных между боковыми стенками полюсного наконечника и магнитопровода, прилегающих к ним магнитным полюсом, одноименным полюсу продольно намагниченного постоянного магнита, позволяет сформировать однородное продольное магнитное поле, необходимое для обеспечения работы предлагаемого ЦЗУ на более высокой частоте в 8-миллиметровом диапазоне длин волн.

[13]

Выполнение коллекторного узла в виде двух тонких взаимно параллельных пластин, закрепленных на проволочном держателе, установленном внутри цилиндрической полости в коллекторном полюсном наконечнике, ось которой ориентирована перпендикулярно направлению распространения электронного потока, вдоль его ширины обеспечивает эффективную магнитную экранировку коллектора от магнитного поля и тем самым улучшает шумовые параметры предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн.

[14]

Изобретение поясняется чертежами.

[15]

На фиг. 1 показана структурная схема предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн, где:

[16]

- ленточный катод 1;

[17]

- фокусирующий электрод 2;

[18]

- анод 3;

[19]

- входной резонатор 4;

[20]

- выходной резонатор 5;

[21]

- электронный поток 6;

[22]

- тракт передачи сигнала 7;

[23]

- коллектор электронов 8;

[24]

- постоянный магнит с продольной намагниченностью 9;

[25]

- прямоугольный магнитопровод 10;

[26]

- полюсный наконечник 11;

[27]

- дополнительный магнит с поперечной намагниченностью 12.

[28]

На фиг. 2а показана магнитная система предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн (объемный фрагмент 1/4 части), где:

[29]

- постоянный магнит с продольной намагниченностью 9;

[30]

- прямоугольный магнитопровод 10;

[31]

- полюсный наконечник 11;

[32]

- дополнительный магнит с поперечной намагниченностью 12.

[33]

На фиг. 2 (б) показан график функции распределения продольной составляющей индукции поля вдоль оси магнитной системы (X=Y=0), где

[34]

- Bz - индукция магнитного поля.

[35]

На фиг. 3 показан коллектор предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн (объемный фрагмент 1/2-части) (а) и его проекция на плоскость (Y=0) (б), где:

[36]

- коллектор электронов 8;

[37]

- полюсный наконечник 11;

[38]

- коллекторные пластины 13;

[39]

- проволочный держатель коллектора 14;

[40]

- цилиндрическая полость 15.

[41]

На фиг. 4. показано распределение плотности тока по поперечному сечению ленточного электронного потока в предлагаемом ЦЗУ 8-миллиметрового диапазона длин волн.

[42]

Устройство содержит последовательно расположенные друг за другом фокусирующий электрод 2, ленточный катод 1, анод 3, входной резонатор 4 и выходной резонатор 5 с трактами передачи сигнала 7, имеющие однонаправленную связь друг с другом через ленточный электронный поток 6, коллектор 8. Магнитная система бронированного типа содержит прямоугольный магнитопровод 10, два постоянных магнита 9, установленных на двух противоположных внутренних стенках магнитопровода 10, намагниченных в одинаковом направлении распространения электронного потока 6 и снабженных полюсными наконечниками 11. Между боковыми стенками полюсных наконечников 11 и внутренними стенками магнитопровода 10 установлены четыре дополнительных магнита 12, каждый из которых намагничен в направлении, перпендикулярном направлению распространению электронного потока 6, и ориентирован своими магнитными полюсами таким образом, что прилегает к стенкам полюсных наконечников 11 и внутренним стенкам магнитопровода 10 магнитными полюсами, одноименными полюсам продольно намагниченных магнитов 9. Коллектор 8 установлен внутри цилиндрической полости 15 полюсного наконечника 11. Коллектор 8 представляет собой две параллельные коллекторные пластины 13, установленные на проволочном держателе коллектора 15.

[43]

Сверхвысокочастотное циклотронное защитное устройство 8-миллиметрового диапазона длин волн работает следующим образом.

[44]

В режиме пропускания входной сигнал поступает из тракта передачи сигнала 7 во входной резонатор 4. Под его воздействием в электронном потоке 6 возбуждается БЦВ электронного потока, которая передает энергию сигнала в выходной резонатор 5 и далее по тракту передачи сигнала 7 во внешнюю СВЧ-линию. В зазоре между полюсными наконечниками 11 направление магнитных потоков дополнительных магнитов 12 с поперечной намагниченностью совпадает с магнитным потоком магнитов 9 с продольной намагниченностью, что позволяет повысить величину индукции поля до уровня В=1.3 Тл для эффективного взаимодействие полей резонаторов 4, 5 с БЦВ электронного потока на центральной частоте в 8-миллиметровом диапазоне длин волн. После взаимодействия с полями резонаторов 4, 5 электронный поток 6 поступает в коллектор 8. Благодаря электрической изоляции коллектора 8 и, следовательно, возможности подачи на него потенциала Uколл, многократно превышающего потенциал Uo резонаторов 4, 5 (Uколл»Uo), а также благодаря резкому спаду индукции поля в области коллектора 8 вследствие его магнитной экранировки устраняется возможность попадания в емкостной зазор выходного резонатора 5 вторично-эмиссионных электронов из облучаемой поверхности коллектора 8 (пластин 13 и держателя 14), которые вызывают шумовые «всплески» в рабочей полосе частот и ухудшают шумовые характеристики ЦЗУ.

[45]

Техническая возможность реализации предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн подтверждена методом компьютерного моделирования.

[46]

Моделирование выполнялось в декартовой системе координат XYZ на основе применения 3D-моделей магнитной и электронно-оптической систем с учетом действия собственного пространственного заряда ленточного электронного потока.

[47]

На объемном фрагменте 1/4 части магнитной система предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн, показанном на фиг. 2а, изображены части магнитопровода 10, постоянных магнитов 9 с продольной намагниченностью, полюсных наконечников 11, постоянных магнитов 12 с поперечной намагниченностью.

[48]

Плоские боковые и торцевые стенки магнитопровода 10 имеют размеры по координатам XYZ, равные соответственно 45×5×62 мм3 и 43×30×2 мм3. Магниты 9 с продольной намагниченностью имеют одинаковые размеры 40×10×15 мм3 и установлены в плоскости продольной симметрии Y=0 магнитопровода 10. Магнит 9 прилегает одной плоскостью к внутренней торцевой стенке магнитопровода 10, а противоположной плоскостью к полюсному наконечнику 11. Полюсный наконечник 11 имеет форму пирамиды с плоскими боковыми стенками, обращенными в сторону боковых внутренних стенок магнитопровода 10. Со стороны магнитного зазора полюсные наконечники 11 имеют квадратную форму сечением 10×10 мм2. Полюсные наконечники 11 обращены друг к другу своими вершинами и образуют междуполюсный зазор длиной 0<Z<Zk, где Zk=9.3 мм. В этом зазоре расположены: катод 1, фокусирующий электрод 2, анод 3, входной 4 и выходной 5 резонаторы. Между боковой стенкой магнитопровода 10 и плоской боковой стенкой полюсного наконечника 11 установлен магнит 12 с поперечной намагниченностью с размером 40×10×25 мм3. Все магниты 9 и 12 изготовлены из сплава «самарий-кобальт», магнитопровод 10 и полюсные наконечники 11 - из стали «армко».

[49]

График функции распределения продольной составляющей индукции поля вдоль оси магнитной системы (X=Y=0) (фиг. 2б) показывает, что в данной магнитной системе формируется магнитное поле с индукцией на уровне Bz=1.3 Тл, близкое к однородному в области 0<Z<9.0 и резко спадающее в области коллектора 9.0<Z.

[50]

На объемном фрагменте 1/4 части предлагаемого ЦЗУ 8-миллиметрового диапазона длин волн изображена конструкция коллекторного узла 8 (фиг. 3а). На фиг. 3б показана его проекция на плоскость Y=0. Коллектор 8 состоит из двух тонких взаимно параллельных пластин 13 на проволочном держателе 14, установленном на оси цилиндрической полости 15 внутри полюсного наконечника 11. Ось цилиндрической полости 15 с держателем 14 направлена вдоль координаты Y, т.е. вдоль ширины ленточного электронного потока 6 перпендикулярно направлению его распространения. Пластины 13 с держателем 14 электрически изолированы от коллекторного полюсного наконечника 11.

[51]

Распределение плотности тока по поперечному сечению ленточного электронного потока в предлагаемом ЦЗУ 8-миллиметрового диапазона длин волн представлено на фиг. 4. Расчет проводился на разных расстояниях от плоскости полюсного наконечника 11, включая плоскость эмиттера (Z=3.3 мм), входную (Z=4.9 мм) и выходную (Z=6.1 мм) плоскости емкостного зазора входного резонатора 4, входную (Z=7.4 мм) и выходную (Z=8.6 мм) плоскости емкостного зазора выходного резонатора 5, а также входную плоскость (Z=9.3 мм) полюсного наконечника 11 с цилиндрической коллекторной полостью 15. Поперечные размеры (по координат X и Y) эмитирующей поверхности ленточного катода 1 равны 0.022×0.75 мм2, емкостных зазоров входного 4 и выходного 5 резонаторов - 0.05×0.60 мм2. Расчет выполнен при следующих заданных потенциалах: фокусирующего электрода 2 (Uф=-30В), анода 3 (Ua=+13B) входного и выходного резонаторов 4, 5 (Uo=+16B), коллектора 8 (Uколл=+250В). Расчетная величина тока (микропервеанса) ленточного электронного потока равна 186 мкА (2.9 мкА/В3/2).

[52]

Приведенные результаты моделирования доказывают возможность качественной жесткой фокусировки сверхтонкого ленточного электронного потока с поперечными размерами, близкими к размерам эмитирующей поверхности катода без искажения его краев, что необходимо для реализации эффективного взаимодействия полей резонаторов с БЦВ электронного потока в предлагаемом ЦЗУ 8-миллиметрового диапазона длин волн.

[53]

Таким образом, частота предлагаемого сверхвысокочастотного циклотронного защитного устройства повышается по сравнению с прототипом в 4 раза, что необходимо для защиты приемников РЛС 8-миллиметрового диапазона длин волн от воздействия входной мощности большого уровня. Создание предлагаемого изобретения позволит реализовать известные преимущества ЦЗУ в РЛС 8-миллиметрового диапазона длин волн, повысить устойчивость их работы в условиях радиопротиводействия.

[54]

Источники информации

[55]

1. Ю.А. Будзинский, С.В. Быковский, И.И. Голеницкий, В.Г. Калина. Становление, развитие и перспективы СВЧ-приборов на циклотронном резонансе электронного потока. // Электронная техника. Серия 1. СВЧ-техника. Часть 1. Вып. 3 (518). 2013 г. С. 136-142.

[56]

2. Патент Российской Федерации №2530746, МПК Н02Н 7/00. Опубликовано: 10.10.2014. Бюллетень №28.

[57]

3. И.И. Голеницкий, Н.Г. Духина, Е.И. Каневский. Комплексный расчет трехмерных электронно-оптических и магнитных фокусирующих систем ЭВП СВЧ. Раздел 4. Ленточный электронный поток в ЦЗУ. // Электронная техника. Сер. 1. СВЧ-техника. Вып. 2 (482). 2003 г. С. 60-65.

Как компенсировать расходы
на инновационную разработку
Похожие патенты