патент
№ RU 2523781
МПК G01N29/04

СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ КАЧЕСТВА АКУСТИЧЕСКОГО КОНТАКТА ПРИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ

Авторы:
Гусаров Вадим Реджинальдович Мокроусов Александр Сергеевич Терешин Сергей Николаевич
Все (4)
Номер заявки
2013104229/28
Дата подачи заявки
01.02.2013
Опубликовано
20.07.2014
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
3
Реферат

Использование: для контроля качества и акустического контакта при ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что осуществляют выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и выделение собственных реверберационных шумов дефектоскопа и по сравнению амплитуд реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа контролируют контакт электроакустического преобразователя с контролируемым материалом. Технический результат: повышение достоверности контроля качества акустического контакта. 2 н.п. ф-лы, 4 ил.

Формула изобретения

1. Способ контроля качества акустического контакта при ультразвуковой дефектоскопии изделий, заключающийся в том, что осуществляют выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и по его уровню оценивают наличие акустического контакта, отличающийся тем, что дополнительно осуществляют выделение собственных реверберационных шумов дефектоскопа и по сравнению амплитуд реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа контролируют контакт электроакустического преобразователя с контролируемым материалом.

2. Устройство контроля качества акустического контакта при ультразвуковой дефектоскопии, содержащее электроакустический преобразователь дефектоскопа, сигналы с которого, содержащие собственные реверберационные шумы преобразователя и реверберационные шумы структуры контролируемого материала, поступают на временной селектор, имеющий два выхода, к первому выходу которого последовательно подключены первый усилитель, первый интегратор и первый компаратор, а ко второму выходу временного селектора последовательно подключены второй усилитель, второй интегратор и второй компаратор, с выходов первого и второго компаратора информация поступает на вход логической схемы И, к выходу которой подсоединен индикатор, свидетельствующий о наличии или отсутствии акустического контакта.

Описание

[1]

Предлагаемое техническое решение относится к неразрушающему контролю изделий ультразвуковыми методами дефектоскопии и может найти применение для контроля акустического контакта при контроле сварных соединений трубопроводов, изготовленных из магнитных и немагнитных материалов широкого диапазона диаметров.

[2]

С целью повышения достоверности контроля, особенно автоматизированного и механизированного, необходимо использование эффективных способов и специальных систем или устройств, обеспечивающих контроль качества акустического контакта в процессе перемещения ультразвукового преобразователя по поверхности контролируемого изделия.

[3]

Акустический контакт, представляющий собой звукопроводящее соединение между преобразователем и контролируемым изделием, обуславливает энергию возбуждаемых в изделии ультразвуковых колебаний и амплитуду эхо-сигналов от возможных дефектов. В общем случае, от качества акустического контакта зависит достоверность результатов неразрушающего контроля и, как следствие, безопасность эксплуатации ответственных объектов в промышленности.

[4]

Для слежения за качеством акустического контакта в процессе сканирования поверхности объекта контроля используют различные способы, основанные на анализе донных эхо-сигналов, сигналов от конструктивных элементов пьезопреобразователей, низкочастотных колебаний, излучаемых дополнительным устройством, а также величине среднего уровня структурных помех. Известны следующие технические решения:

[5]

Измерение амплитуды донного отражения продольной волны, излучаемой дополнительной пьезопластиной в призму наклонного преобразователя и вводимой в металл в том же месте, где вводится основная поперечная волна (см.: патент США №2667780, от 02.02.1954 г.; или авт. свид. №1534388, от 07.01.1990 г.). Недостатком этого способа является то, что уровень донного сигнала зависит не только от качества акустического контакта, но и от многих других факторов: от отражательной способности противоположной (донной) поверхности, от изменения структуры металла, от толщины контактирующей жидкости и т.п. Кроме того, способ может быть использован только при контроле объектов с эквидистантными поверхностями.

[6]

Способ контроля качества акустического контакта по принятым колебаниям с определением фазы принятых колебаний и определение качества акустического контакта по ее значению (патент РФ №2141653, от 20.11.1999). Недостатком данного способа является то, что контроль качества акустического контакта возможен только для наклонного электроакустического преобразователя.

[7]

Таким образом, указанные выше технические решения обладают низкой достоверностью контроля, имеют ограниченное применение.

[8]

Наиболее близким к заявляемому техническому решению и принятым за прототип является способ контроля качества акустического контакта при ультразвуковой дефектоскопии по авт.свид. №1753405 от 07.08.1992 г. «Выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и по его уровню оценка наличия акустического контакта». Однако уровень реверберационных шумов в первую очередь зависит от структуры контролируемого металла и может меняться в зависимости от контролируемой зоны изделия, а значит не может являться универсальным признаком качества акустического контакта. Таким образом, известный способ контроля качества акустического контакта, принятый за прототип, обладает непостоянностью исходного параметра и, как следствие, приводит к низкой достоверности контроля качества акустического контакта.

[9]

Технический результат - повышение достоверности контроля качества акустического контакта.

[10]

Технический результат достигается за счет того, что предложен новый способ контроля качества акустического контакта при ультразвуковой дефектоскопии изделий, заключающийся в том, что осуществляют выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и по его уровню оценивают наличие акустического контакта. При этом дополнительно осуществляют выделение собственных реверберационных шумов дефектоскопа и по сравнению амплитуд реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа контролируют контакт электроакустического преобразователя с контролируемым материалом.

[11]

Также предлагается устройство контроля качества акустического контакта при ультразвуковой дефектоскопии, осуществляющее предлагаемый способ и содержащее электроакустический преобразователь дефектоскопа, сигналы с которого, содержащие собственные реверберационные шумы преобразователя и реверберационные шумы структуры контролируемого материала, поступают на временной селектор, имеющий два выхода, к первому выходу которого последовательно подключены первый усилитель, первый интегратор и первый компаратор, а ко второму выходу временного селектора последовательно подключены второй усилитель, второй интегратор и второй компаратор, с выходов первого и второго компаратора информация поступает на вход логической схемы И, к выходу которой подсоединен индикатор, свидетельствующий о наличии или отсутствии акустического контакта.

[12]

Предлагаемое техническое решение поясняется следующими фигурами:

[13]

На фиг.1 представлены принятые сигналы при отсутствии (а) и при наличии (б) акустического контакта для неметаллов (оргстекло).

[14]

На фиг.2 представлены принятые сигналы при отсутствии (а) и при наличии (б) акустического контакта для металлов (сталь 20).

[15]

На фиг.3 показана схема подключения устройства определения акустического контакта к дефектоскопу, реализующее предлагаемый способ.

[16]

На фиг.4 показано устройство контроля качества акустического контакта, реализующее предлагаемый способ.

[17]

Из фиг.1-2 видно, что при наличии акустического контакта интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) уменьшается, а в зоне шумов контролируемого материала (зона 2 фиг.1 и фиг.2) увеличивается.

[18]

Данные обстоятельства могут свидетельствовать об обеспечении акустического контакта между электроакустическим преобразователем и контролируемым материалом. Для определения акустического контакта необходимо:

[19]

1. Определить a1C интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) в свободном состоянии (электроакустический преобразователь находится в воздухе) по формуле:

[20]

a1C=1ToTAo(t)dt

[21]

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

[22]

Ao(t) - сигнал с электроакустического преобразователя

[23]

2. Определить a2C - интегральное значение амплитуд в зоне шумов контролируемого материала при свободном состоянии электроакустического преобразователя (зона 2 фиг.1 и фиг.2) по формуле:

[24]

a2C=1TnTTTnAo(t)dt

[25]

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

[26]

Tn - значение времени зоны шумов контролируемого материала, определяемое частотой следования зондирующих импульсов дефектоскопа.

[27]

Ao (t) - сигнал с электроакустического преобразователя.

[28]

3. Определить a1Н - интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) в нагруженном состоянии (электроакустический преобразователь неподвижно находится на объекте контроля, при наличии контактной жидкости) по формуле:

[29]

a1H=1ToTAH(t)dt

[30]

где T - значение времени зоны собственных шумов электроакустического преобразователя устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости…

[31]

AH (t) - сигнал с электроакустического преобразователя в нагруженном состоянии.

[32]

4. Определить a2H - интегральное значение амплитуд в зоне шумов контролируемого материала (зона 2 фиг.1 и фиг.2) при нагруженном состоянии электроакустического преобразователя по формуле:

[33]

a2H=1TnTTTnAH(t)dt

[34]

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

[35]

Tn - значение времени зоны шумов контролируемого материала, определяемое частотой следования зондирующих импульсов дефектоскопа.

[36]

AH (t) - сигнал с электроакустического преобразователя в нагруженном состоянии.

[37]

5. Определить a1 - порог интегрального значения амплитуд в зоне собственных шумов (зона 1 фиг.1 и фиг.2) электроакустического преобразователя по формуле:

[38]

a1=a1H+aC12

[39]

6. Определить a2 - порог интегрального значения амплитуд в зоне контролируемого материала (зона 2 фиг.1 и фиг.2) по формуле:

[40]

a2=a2H+aC22

[41]

Таким образом, определены величины, позволяющие оценить качество акустического контакта.

[42]

Для оценки качества акустического контакта при выполнении контроля необходимо:

[43]

1. Определить интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) при проведении контроля по формуле:

[44]

a1тек=1ToTAтек(t)dt

[45]

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

[46]

Aтек (t) - сигнал с электроакустического преобразователя при проведении контроля.

[47]

2. Определить a2тек - интегральное значение амплитуд в зоне шумов контролируемого материала (зона 2 фиг.1 и фиг.2) при проведении контроля по формуле:

[48]

a2тек=1TnTTTnAтек(t)dt

[49]

где T - значение времени зоны собственных шумов электроакустического преобразователя.

[50]

Tn - значение времени зоны шумов контролируемого материала, определяемое частотой следования зондирующих импульсов дефектоскопа.

[51]

Aтек(t) - сигнал с электроакустического преобразователя при проведении контроля.

[52]

3. Сравнить значение a1тек с пороговым значением для зоны собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2).

[53]

|a1Ha1тек|a1

[54]

4. Сравнить значение a2тек с пороговым значением для зоны контролируемого материала (зона 2 фиг.1 и фиг.2).

[55]

|a2Ha2тек|a2

[56]

5. Определить качество акустического контакта

[57]

|a1Ha1тек|a1 и |a2Ha2тек|a2 - акустический контакт удовлетворительный.

[58]

|a1Ha1тек|>a1 и |a2Ha2тек|a2 - акустический контакт неудовлетворительный.

[59]

|a1Ha1тек|a1 и |a2Ha2тек|>a2 - акустический контакт неудовлетворительный.

[60]

|a1Ha1тек|>a1 и |a2Ha2тек|>a2 - акустический контакт неудовлетворительный.

[61]

Таким образом, можно постоянно контролировать контакт электроакустического преобразователя с контролируемым материалом и судить о его качестве.

[62]

Данный способ может быть реализован на мультипрограммных дефектоскопах или с помощью специального устройства на обычных дефектоскопах.

[63]

Предлагаемый способ можно реализовать с помощью устройство контроля качества акустического контакта.

[64]

Устройство контроля качества акустического контакта представлено на фиг.3 и реализовано следующим образом:

[65]

Сигналы, принятые электроакустическим преобразователем дефектоскопа, на фиг.3 не показан (собственные и структурные реверберационные шумы), поступают на вход временного селектора 1. На выходы временного селектора поступают собственные реверберационные шумы преобразователя (выход 1) и реверберационные шумы структуры контролируемого материала (выход 2). К выходам временного селектора последовательно подсоединены усилители 2, интеграторы 3 и компараторы 4. Каждый усилитель имеет свой коэффициент усиления, а компаратор установленный порог. С выходов компараторов информация поступает на вход логической схемы И 5. К выходу логической схемы И 5 подсоединен индикатор 6, свидетельствующий о наличии или отсутствии акустического контакта. Таким образом, путем выделения и сравнения реверберационных шумов преобразователя и реверберационных шумов структуры контролируемого материала определяется наличие или отсутствие акустического контакта электроакустического преобразователя дефектоскопа.

[66]

Предлагаемое устройство можно подключить к устройству дефектоскопа (см. фиг.4), для этого сигнал от приемника дефектоскопа 10 должен поступать на делитель 8, а оттуда на описанное выше устройство контроля качества акустического контакта 9 и на устройство обработки дефектоскопа 7.

[67]

Выше был раскрыт конкретный вариант осуществления предлагаемого технического решения, но любому специалисту в данной области техники очевидно, что на основе раскрытых данных можно создать вариации устройств, например, применяя для сравнения реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа ПК. Таким образом, объем изобретения не должен быть ограничен конкретным вариантом его осуществления, раскрытым в предлагаемой формуле изобретения.

Как компенсировать расходы
на инновационную разработку
Похожие патенты