патент
№ RU 2601722
МПК C22B3/44

СПОСОБ ПЕРЕРАБОТКИ РАСТВОРОВ, СОДЕРЖАЩИХ ЦВЕТНЫЕ МЕТАЛЛЫ

Авторы:
Калашникова Мария Игоревна Трубина Ольга Акимовна Салтыкова Екатерина Геннадиевна
Все (4)
Номер заявки
2015106345/02
Дата подачи заявки
26.02.2015
Опубликовано
10.11.2016
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

Изобретение относится к гидрометаллургическим способам переработки растворов, содержащих цветные металлы, осаждением гидратов цветных металлов с помощью магнийсодержащего осадителя. В предложенном способе магнийсодержащий осадитель перед использованием подвергается предварительной обработке карбонизацией. Предварительная обработка заключается в продувке водной пульпы магнийсодержащего осадителя углекислым газом под давлением 0,1-0,5 МПа при температуре не более 20-25°С в течение 10-30 мин. После окончания продувки углекислым газом пульпа фильтруется, а фильтрат, содержащий бикарбонат магния, направляется на операцию осаждение гидратов цветных металлов из растворов. Оптимальный расход раствора бикарбоната выбирается из расчета перевода 70-90% цветных металлов из растворов в осадок гидратов цветных металлов, образующийся в процессе осаждения. Обеспечивается снижение остаточного содержания магния в осадке. 5 з.п. ф-лы, 7 табл., 7 пр.

Формула изобретения

1. Способ переработки растворов, содержащих цветные металлы, включающий осаждение из раствора гидратов цветных металлов с использованием предварительно обработанного магнийсодержащего реагента, отличающийся тем, что предварительную обработку магнийсодержащего реагента, взятого в виде водной пульпы, проводят карбонизацией путем продувки углекислым газом под давлением 0,1-0,5 МПа при температуре не более 20-25°C в течение 10-30 мин с последующей фильтрацией, и полученный фильтрат в качестве раствора-осадителя направляют непосредственно на осаждение.

2. Способ по п. 1, отличающийся тем, что содержание магния в растворе-осадителе после предварительной обработки составляет 5-20 г/дм3.

3. Способ по п. 1, отличающийся тем, что содержание цветных металлов в растворе, поступающем на операцию осаждения, составляет 1,0-30 г/дм3.

4. Способ по п. 1, отличающийся тем, что степень осаждения гидратов цветных металлов из раствора составляет 70-90%.

5. Способ по п. 1, отличающийся тем, что сточный раствор после осаждения гидратов цветных металлов, предварительно обработанный известью, подают на операцию карбонизации.

6. Способ по п. 1, отличающийся тем, что в качестве исходного раствора используют раствор, содержащий цветные металлы и имеющий различный анионный состав, например, в виде сульфатных, хлоридных, сульфат-хлоридных, нитратных растворов.

Описание

[1]

Изобретение относится к цветной металлургии, в частности к способам переработки растворов, содержащих цветные металлы и образующихся в процессе гидрометаллургической переработки рудного сырья и промпродуктов, содержащих цветные металлы.

[2]

При реализации проектов гидрометаллургической переработки рудного сырья, содержащего цветные металлы, с целью ограничения капитальных затрат и снижения технологических рисков иногда технологическая схема прерывается на стадии переработки продукционных растворов с получением промежуточного продукта, содержащего цветные металлы. К продукционным растворам относятся растворы, содержащие цветные металлы, полученные при гидрометаллургической переработке исходного сырья. Известны различные способы переработки таких растворов.

[3]

Широко известен способ осаждения гидрата никеля в реакторе путем вливания при перемешивании раствора сернокислого никеля в раствор натриевой щелочи (М.А. Дасоян и др. Производство электрических аккумуляторов. - М.: Высшая школа, 1977, - с. 260-265). Полученная пульпа гидрата никеля характеризуется крайне низкой фильтрационной способностью.

[4]

Также известен способ осаждения основного карбоната никеля взаимодействием водных растворов солей никеля и карбоната натрия. Полученная таким способом пульпа фильтруется значительно лучше, чем гидратная. Серьезным недостатком данного и вышеуказанного способов осаждения цветных металлов является образование сточных вод, содержащих соли натрия, утилизация которых требует значительных затрат. Кроме того, указанные способы предполагают использование дорогостоящих реагентов (каустическая или кальцинированная сода).

[5]

Также известен способ переработки раствора, содержащего цветные металлы, путем обработки его гидроксидом кальция. В результате такой переработки образуется осадок гидратов цветных металлов в смеси с сульфатом кальция. При этом образующийся осадок гидратов цветных металлов в значительной мере загрязнен сульфатом кальция.

[6]

Известен способ осаждения цветных металлов из растворов путем обработки их в автоклаве серосодержащим соединением - сероводородом. Этот способ промышленно реализован на заводах Моа Бей (Куба) и Марин Марин (Австралия) (С.С. Набойченко, Л.П. Ни, Я.М. Шнеерсон, Л.В. Чугаев. Автоклавная гидрометаллургия цветных металлов. Екатеринбург, 2002 г., с. 370-371, 377-378). Недостатком способа является токсичность и горючесть реагента. Данная технология осаждения резко увеличивает капитальные затраты на получение сероводорода, на специальное оборудование (автоклавы осаждения) и инфраструктуру его обслуживания.

[7]

Наиболее близким к предлагаемому способу, который выбран в качестве ближайшего аналога, является способ осаждения никеля и кобальта (WO 9906603 А1, МПК С22В 23/00, опубл. 11.02.1999), согласно которому никель и кобальт из кислотного водного раствора цветных металлов осаждается с помощью прокаленного оксида магния. Осаждение проводится при температуре 30-90°C в течение 1-9 часов. Если время пребывания составляет менее 1 часа, наблюдается неполное растворение оксида магния, если время пребывания составляет более 9 часов, то в осадок переходит значительные количества примесей. Предпочтительно, чтобы pH водного раствора перед добавлением оксида магния составлял 4,5-6,0.

[8]

Недостатком данного способа является относительно высокое остаточное содержание магния в осадке гидратов цветных металлов, полученном в процессе осаждения. При оптимальных параметрах осаждения остаточное содержание магния в осадке гидратов цветных металлов составляет 1-2%. Повышенное содержание магния в таком осадке приводит к увеличению эксплуатационных расходов на переработку такого концентрата.

[9]

Изобретение направлено на устранение указанного недостатка ближайшего аналога (прототипа) путем предварительной обработки магнийсодержащего реагента перед операцией осаждения. В результате такой обработки обеспечивается минимальное остаточное содержание магния в осадке гидратов цветных металлов на уровне 0,2-0,5%.

[10]

Заявленный технический результат достигается тем, что в способе переработки раствора, содержащего цветные металлы, включающем осаждение из раствора гидратов цветных металлов с использованием предварительно обработанного магнийсодержащего реагента, согласно изобретению, предварительную обработку магнийсодержащего реагента, взятого в виде водной пульпы, проводят карбонизацией путем продувки углекислым газом под давлением 0,1-0,5 МПа при температуре не более 20-25°C в течение 10-30 мин с последующей фильтрацией, и полученный фильтрат в качестве раствора-осадителя направляют непосредственно на осаждение.

[11]

Способ может характеризоваться тем, что содержание магния в растворе-осадителе после предварительной обработки составляет 5-20 г/дм3.

[12]

Способ может характеризоваться тем, что содержание цветных металлов в растворе, поступающем на операцию осаждения, составляет 1,0-30 г/дм3.

[13]

Способ может характеризоваться тем, что степень осаждения цветных металлов из раствора составляет 70-90%.

[14]

Способ может характеризоваться, кроме того, тем, что сточный раствор после осаждения гидратов цветных металлов, предварительно обработанный известью, подают на операцию карбонизации.

[15]

Способ может характеризоваться еще и тем, что в качестве исходного раствора используют раствор, содержащий цветные металлы и имеющий различный анионный состав, например, в виде сульфатных, хлоридных, сульфат-хлоридных и нитратных растворов.

[16]

Повышенное содержание магния в осадке гидратов цветных металлов, полученном путем осаждения по способу - ближайшему аналогу, объясняется тем, что процесс осаждения цветных металлов происходит на поверхности твердых частиц раствора-осадителя - окиси магния. В результате частицы окиси магния капсулируются продуктами осаждения и полностью не используются для осаждения цветных металлов. Закапсулированные частицы окиси магния попадают в продукт операции осаждения, что приводит к повышению содержания магния в нем. В процессе карбонизации окиси магния образуется растворимый бикарбонат магния по реакции:

[17]

MgO+2CO2+H2O=Mg(HCO3)2.

[18]

Раствор бикарбоната магния характеризуется высоким коэффициентом использования на операции осаждения и его применение не приводит к образованию закапсулированных частиц магнийсодержащего реагента. В результате остаточное содержание магния в осажденном гидрате цветных металлов снижается до минимума.

[19]

В соответствии с изобретением водная пульпа исходного магнийсодержащего реагента (окись магния, гидрат магния, карбонат магния, гипсокарбонат магния) подается в автоклав и обрабатывается в течение 10-30 минут при температуре 20-25°C и парциальном давлении углекислого газа 0,1-0,5 МПа. Ж/Т исходной пульпы зависит от содержания магния в исходном реагенте и требуемого состава конечного раствора после карбонизации. Содержание магния в конечном растворе после карбонизации исходного магнийсодержащего реагента составляет 5-20 г/дм3. Полученная пульпа фильтруется, отфильтрованный раствор бикарбоната магния направляется на осаждение цветных металлов из растворов. Расход раствора бикарбоната магния зависит от содержания магния в нем и содержания цветных металлов в исходном растворе. Оптимальный расход раствора бикарбоната выбирается из расчета перевода 70-90% цветных металлов из растворов в осадок гидратов цветных металлов, образующийся в процессе осаждения. Осаждение проводится при температуре 30-90°C в течение 3-5 часов. По окончании процесса осаждения гидратный продукт с содержанием магния 0,2-0,5% отделяется от раствора. Раствор с остаточным содержанием цветных металлов направляется на операцию доосаждения с помощью извести с получением оборотного гипсогидратного осадка. Очищенный от цветных металлов раствор, содержащий соли магния, может направляться на операцию осаждения гипсогидрата магния и последующей карбонизации. В этом случае достигается регенерация реагента и отпадает необходимость в приобретении твердого магнийсодержащего реагента.

[20]

Способ применим для переработки растворов при любом содержании цветных металлов в интервале 1,0-30 г/дм3.

[21]

Способ иллюстрируется следующими примерами.

[22]

Пример 1. (Опыты по наиболее близкому способу)

[23]

В экспериментах использовался сульфат-хлоридный раствор следующего состава, г/л: Ni - 17,7; Cu - 0,5; Со - 0,28; Mg - 27,7; Na - 10,0; Cl- - 17,7; SO42- - 135. Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. Объем исходного сульфат-хлоридного раствора, загружаемого в реакционную емкость, составлял 0,6 дм3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве осадителя использовалась полученная после прокаливания окись магния. Осадитель загружали в реакционный объем в виде водной пульпы с Ж:Т - 5. Расход осадителя составлял 75-85% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа (Таблица 1, фигура 1).

[24]

Пример 2. (Опыты по предлагаемому способу). Эксперименты по карбонизации проводили в автоклаве из нержавеющей стали емкостью 1 дм3. Условия карбонизации: скорость вращения двухъярусной мешалки (верхняя - открытая турбина, нижняя - трехлопастная) - 1500 об/мин, температура - 20-25°C, парциальное давление кислорода CO2 - 0,1-0,2 МПа; продолжительность выщелачивания 15 мин. Загрузка магнезии составляла 12-55,8 г/дм3 жидкой фазы. По окончании карбонизации пульпа фильтровалась под давлением СО2. Полученный раствор бикарбоната использовали для осаждения никелевого гидратного концентрата цветных металлов.

[25]

Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. В экспериментах использовался сульфат-хлоридный раствор следующего состава, г/л: Ni - 17,7; Cu - 0,5; Со - 0,28; Mg - 27,7; Na - 10,0; Cl- - 17,7; SO42- - 135. Объем исходного сульфат-хлоридного раствора, загружаемого в реакционную емкость, составлял 0,5 м3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве раствора-осадителя использовался раствор бикарбоната магния. Расход раствора-осадителя составлял ~80% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа. Конечную пульпу фильтровали, осадок промывали водой и сушили, после чего твердая и жидкая фазы пульпы направлялись на химический анализ (Таблица 2, фигура 2).

[26]

Пример 3. (Опыты по предлагаемому способу). Эксперименты по карбонизации проводили в автоклаве из нержавеющей стали емкостью 1 дм3. Условия карбонизации: скорость вращения двухъярусной мешалки (верхняя - открытая турбина, нижняя - трехлопастная) - 1500 об/мин, температура - 20-25°C, парциальное давление кислорода СО2 - 0,1 МПа; продолжительность выщелачивания 15 мин. Загрузка магнезии составляла 33,5 г/дм3 жидкой фазы. По окончании карбонизации пульпа фильтровалась под давлением CO2. Полученный раствор бикарбоната, использовали для осаждения никелевого гидратного концентрата цветных металлов.

[27]

Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. В экспериментах использовался сульфат-хлоридный раствор следующего состава, г/л: Ni - 17,7; Cu - 0,5; Со - 0,28; Mg - 27,7; Na - 10,0; Cl- - 17,7; SO42- - 135. Объем исходного сульфат-хлоридного раствора, загружаемого в реакционную емкость, составлял 0,5 дм3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве раствора-осадителя использовался раствор бикарбоната магния. Расход раствора-осадителя составлял - 70-95% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа. Конечную пульпу фильтровали, осадок промывали водой и сушили, после чего твердая и жидкая фазы пульпы направлялись на химический анализ (Таблица 3, фигура 3).

[28]

Пример 4. (Опыты по предлагаемому способу). Эксперименты по карбонизации проводили так же, как в примере 3.

[29]

Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. В экспериментах использовались сульфат-хлоридные растворы, в которых содержание Ni варьировалось в пределах 1-25 г/дм3, остальные элементы в растворе содержались в следующих количествах, г/л: Cu - 0,5; Со - 0,28; Mg - 27,7; Na - 10,0; Cl- - 17,7; SO42- - 135. Объем исходного сульфат-хлоридного раствора, загружаемого в реакционную емкость, составлял 0,5 дм3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве раствора-осадителя использовался раствор бикарбоната магния. Расход раствора-осадителя составлял ~80% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа. Конечную пульпу фильтровали, осадок промывали водой и сушили, после чего твердая и жидкая фазы пульпы направлялись на химический анализ (Таблица 4, фигура 4).

[30]

Пример 5. (Опыты по предлагаемому способу). Эксперименты по карбонизации проводили так же, как в примере 3.

[31]

Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. В экспериментах использовались исходные растворы с различным анионным составом: раствор 1 (опыт 1) - сульфатный, раствор 2 (опыты 2, 3) - сульфат-хлоридный с переменным содержанием хлор-иона. Состав раствора 1, г/л: Ni - 17,7; Cu - 0,5; Со - 0,28; Mg - 27,7; SO42- - 135; состав раствора 2, г/л: Ni - 17,7; Cu - 0,5; Со - 0,28; Mg - 27,7; Cl- - 9-17,7; SO42- - 135. Объем исходного раствора, загружаемого в реакционную емкость, составлял 0,5 дм3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве раствора-осадителя использовался раствор бикарбоната магния. Расход раствора-осадителя составлял ~80% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа. Конечную пульпу фильтровали, осадок промывали водой и сушили, после чего твердая и жидкая фазы пульпы направлялись на химический анализ (Таблица 5, фигура 5).

[32]

Пример 6. (Опыты по предлагаемому способу). Эксперименты по карбонизации проводили так же, как в примере 3.

[33]

Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. В экспериментах использовались исходные растворы с различным анионным составом: раствор 1 (опыт 1) - хлоридный, раствор 2 (опыт 2) - нитратный. Состав раствора 1, г/л: Ni - 17,0; Cu - 0,5; Со - 0,25; Mg - 25,5; Na - 10,0; Cl- - 115,5; состав раствора 2, г/л: Ni - 17,5; Cu - 0,6; Со - 0,25; Mg - 26,5; Na - 9,5; NO3- - 200,5. Объем исходного раствора, загружаемого в реакционную емкость, составлял 0,5 дм3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве раствора-осадителя использовался раствор бикарбоната магния. Расход раствора-осадителя составлял ~80% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа. Конечную пульпу фильтровали, осадок промывали водой и сушили, после чего твердая и жидкая фазы пульпы направлялись на химический анализ (Таблица 6, фигура 6).

[34]

Пример 7. (Опыты по предлагаемому способу). Эксперименты по карбонизации проводились с использованием растворов, соответствующих по составу сточным растворам после осаждения цветных металлов с содержанием магния 30,0 г/дм3; 0,5дм3 сточных вод обрабатывали известью до pH - 9,5 и полученную пульпу гипса и карбоната магния направляли на операцию карбонизации.

[35]

Операцию карбонизации проводили в автоклаве из нержавеющей стали емкостью 1 дм3. Условия карбонизации: скорость вращения двухъярусной мешалки (верхняя - открытая турбина, нижняя - трехлопастная) - 1500 об/мин, температура - 20-25°C, парциальное давление кислорода СО2 - 0,1 МПа; продолжительность выщелачивания 15 мин. По окончании карбонизации пульпа фильтровалась под давлением СО2. Полученный раствор бикарбоната использовали для осаждения никелевого гидратного концентрата цветных металлов.

[36]

Операция осаждения проводилась в стеклянном стакане емкостью 0,8 дм3. В экспериментах использовались раствор следующего состава, г/л: Ni - 17,7; Cu - 0,5; Со - 0,28; Mg - 27,7; Na - 10,0; Cl- - 17,7; SO42- - 135. Объем исходного раствора, загружаемого в реакционную емкость, составлял 0,5 дм3. Перемешивание пульпы осуществлялось мешалкой (турбина открытого типа) диаметром 6 см со скоростью 600 об/мин. В качестве раствора-осадителя использовался раствор бикарбоната магния, полученный из сточных вод. Расход раствора-осадителя составлял ~80% от стехиометрического расхода, температура процесса - 60°C, продолжительность осаждения составляла 3 часа. Конечную пульпу фильтровали, осадок промывали водой и сушили, после чего твердая и жидкая фазы пульпы направлялись на химический анализ (Таблица 7, фигура 7).

[37]

Таким образом, вышеуказанные примеры подтверждают, что предварительная обработка водной пульпы магнийсодержащего реагента (продувка углекислым газом под давлением 0,1-0,5 МПа в течение 10-30 мин при температуре не более 20-25°C, фильтрация обработанной пульпы) и последующее использование полученного фильтрата в качестве раствора-осадителя гидратов цветных металлов из сульфатных, хлоридных, сульфат-хлоридных и нитратных растворов способствует получению гидратов цветных металлов с низким содержанием магния на уровне 0,2-0,5%. Использование заявленного способа переработки растворов, содержащих цветные металлы, в производстве позволит существенно сократить последующие затраты на производство товарных металлов из гидратов цветных металлов с применением гидрометаллургических технологий.

Как компенсировать расходы
на инновационную разработку
Похожие патенты