патент
№ RU 2670586
МПК H04N5/217

Способ увеличения динамического диапазона в ячейках фотоприемной матрицы ИК диапазона

Авторы:
Якимов Юрий Александрович Кузнецов Антон Николаевич Мощев Иван Сергеевич
Все (4)
Номер заявки
2017141943
Дата подачи заявки
01.12.2017
Опубликовано
23.10.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к области приема и обработки оптической информации и касается способа увеличения динамического диапазона в ячейках фотоприемной матрицы ИК диапазона. Способ включает в себя индивидуальную автоподстройку времени накопления для каждого пикселя фотоприемной матрицы. На вход антиблюминга накопительной ячейки схемы считывания сигнала подают ступенчатое напряжение антиблюминга с периодом кадра, содержащее несколько последовательно увеличивающихся уровней. Длительность каждого следующего уровня короче, чем длительность предыдущего уровня. В результате для пикселей с низким уровнем освещенности время накопления остается постоянным, а для пикселей с высоким уровнем освещенности время накопления уменьшается обратно пропорционально величине фотоэлектрического сигнала. Технический результат заключается в расширении динамического диапазона и повышении информативности получаемого изображения. 4 ил.

Формула изобретения

Способ увеличения динамического диапазона в ячейках фотоприемной матрицы ИК диапазона, включающий индивидуальную автоподстройку времени накопления для каждого пиксела фотоприемной матрицы, отличающийся тем, что на вход антиблюминга накопительной ячейки схемы считывания сигнала подают не постоянное, а ступенчатое напряжение антиблюминга с периодом кадра, содержащее несколько последовательно увеличивающихся уровней, первый из которых имеет длительность, превышающую длительность второго уровня, второй имеет длительность, превышающую длительность третьего уровня, и т.д., в результате чего для пикселей с низким уровнем освещенности время накопления остается постоянным, а для пикселей с высоким уровнем освещенности время накопления уменьшается обратно пропорционально величине фотоэлектрического сигнала.

Описание

[1]

Изобретение относится к области приема и обработки оптической информации матричными преобразователями изображений (МПИ) в условиях высокого контраста наблюдаемых объектов.

[2]

Известен способ расширения динамического диапазона (multi-framing), основанный на суперпозиции подкадров с различным временем накопления программно-аппаратными средствами за пределами МПИ [A. Richards and В. Cromwell, Superframing: Scene Dynamic Range Extension of Infrared Cameras. FLIR Systems, Indigo Operations]. В этом способе предполагается запоминание подкадров изображения с изменяемым временем накопления, например, по закону Tn=T02n, где n - порядковый номер подкадра (0, 1, 2, …). При этом синтезируется изображение с широким динамическим диапазоном и с передаточной характеристикой, близкой к логарифмической. Существенным недостатком этого способа является снижение кадровой частоты МПИ в n раз, что допустимо только при наблюдении статических или малоподвижных объектов.

[3]

Известен способ расширения динамического диапазона (solar-cell mode), основанный на логарифмической зависимости фото-ЭДС на p-n переходе от освещенности фоточувствительного элемента, т.е. режим «солнечного элемента» [Yang Ni, et al. A 768×576 Logarithmic Image Sensor. New Image Technologies SA]. Притом что динамический диапазон в этом варианте расширяется до 120-140 дБ, существует ряд следующих недостатков: низкая чувствительность, порядка 60-90 мВ на декаду изменения фототока; низкая скорость стекания фотогенерированного заряда при слабых уровнях освещенности; большой уровень геометрического шума, связанный с температурной зависимостью ВАХ p-n переходов. Кроме того, для режима «солнечного элемента» требуется специально разработанная технология изготовления фоточувствительной матрицы для исключения межэлементной взаимосвязи при прямом смещении фотодетекторов, характерном для этого режима.

[4]

Известен способ расширения динамического диапазона (multi-reset), основанный на дополнительном сбросе накопительной емкости в течение кадра [SypressSemiconductor. «LUPA1300-2». Available at htpp//:www.supress.com, 2008]. Этот способ наиболее близок к заявляемому техническому решению и принят за прототип. К недостаткам прототипа можно отнести то, что он эффективен только в накопительных ячейках с интегрированием фототока на собственной емкости фотодетектора, применяемых в МПИ видимого диапазона. В МПИ коротковолнового ИК диапазона накопительные ячейки преимущественно строятся по схеме с емкостным трансимпедансным усилителем (CTIA - capacitance trans impedance amplifier), которая позволяет стабилизировать рабочий режим фотодетектора в широком диапазоне освещенностей, а также реализовать режим snap-shot (мгновенная фотография) с высокой кадровой частотой.

[5]

Техническим результатом является значительное (более чем на 2 порядка) расширение динамического диапазона МПИ, вследствие чего повышается информативность получаемого изображения.

[6]

Технический результат достигается за счет применения в МПИ способа расширения динамического диапазона интегральной схемы считывания, состоящего в том, что в течение каждого кадра на вход антиблюминга накопительной ячейки интегральной схемы считывания сигнала подается не постоянное, а ступенчатое напряжение антиблюминга, содержащее несколько последовательно увеличивающихся уровней, первый из которых имеет длительность, превышающую длительность второго уровня, второй имеет длительность, превышающую длительность третьего уровня и т.д., в результате чего, для пикселей с низким уровнем освещенности время накопления остается постоянным и равным периоду кадра, а для пикселей с высоким уровнем освещенности время накопления уменьшается обратно пропорционально величине фотоэлектрического сигнала, что приводит к формированию линейно-логарифмической передаточной характеристики.

[7]

Особенностью функционирования МПИ в коротковолновом ИК диапазоне является необходимость регистрации изменений освещенности на четыре-пять порядков в пределах наблюдаемой сцены. Накопительные ячейки интегральных схем считывания фотосигнала с линейной передаточной характеристикой не в состоянии обеспечить детальную передачу столь высококонтрастного изображения. В связи с этим к накопительным ячейкам предъявляются повышенные требования по величине динамического диапазона.

[8]

Суть заявляемого устройства поясняется чертежами.

[9]

На фиг. 1 приведена элементарная схема устройства.

[10]

На фиг. 2, 3 приведены диаграммы работы устройства.

[11]

На фиг. 4 приведены фотографии применения данного устройства.

[12]

Суть предлагаемого способа расширения динамического диапазона можно охарактеризовать как введение в накопительные ячейки МПИ функции «динамического антиблюминга». Обычно транзистор антиблюминга стоит в каждой накопительной ячейке и ограничивает накопленное напряжение при больших засветках, снижая при этом взаимосвязь между ячейками, но не расширяя динамический диапазон. Типичная накопительная ячейка со схемой CTIA и с p-канальным транзистором антиблюминга PMOS приведена на фиг. 1. Рост напряжения на накопительной емкости Cint происходит пропорционально фототоку Ip и времени накопления tint до заданного уровня ограничения Vmax:

[13]

[14]

где VABL - напряжение антиблюминга, VT - пороговое напряжение р-МОП транзистора антиблюминга.

[15]

В предлагаемом способе вместо статического напряжения на вход антиблюминга подается ступенчатое напряжение с двумя уровнями: VABL1 (интервал 0-1), VABL2 (интервал 1-2) (фиг. 2). В соответствии с выражением (1), максимальные значения накопленного напряжения Vmax на каждом из интервалов будут заданы уровнями (VABL1+VT) и (VABL2+VT).

[16]

Если напряжение заряда накопительного конденсатора Vint(t) достигает уровня Vmax1, то оно перестает дальше расти и процесс накопления останавливается до включения следующего уровня антиблюминга. При фототоке Ip1 напряжение Vint(t) не достигает первого уровня ограничения, равного Vmax1=VABL1+VT, поэтому накопление идет в течение полного кадра, т.е. время накопления равно tint(Ip1)=t0-1-2. При фототоке Ip2>Ip1 напряжение Vint(t) достигает первого уровня ограничения и до момента окончания интервала 0-1 не меняется. При переключении напряжения антиблюминга VABL на уровень VABL2 растет уровень второго ограничения Vmax2=VABL2+VT и, соответственно, напряжение Vint(t) снова начинает расти на интервале 1-2 до конца кадра. Моментом начала накопления в этом случае будет «плавающая» точка 0', а время накопления при этом снижается до значения:

[17]

[18]

Аналогично, при фототоке Iр3>Ip2 время накопления будет еще ниже:

[19]

[20]

Таким образом, время накопления в ячейке автоматически снижается при увеличении уровня фототока. На фиг. 3 приведены зависимости времени накопления tint в ячейке и соответствующего выходного сигнала Vint от величины фототока Ip при двух уровнях напряжения VABL. Следует отметить, что вид функции tint=f(Ip), определяющей ширину динамического диапазона, может оптимизироваться за счет выбора параметров напряжения VABL в зависимости от распределения и соотношения яркостей фрагментов наблюдаемой сцены.

Как компенсировать расходы
на инновационную разработку
Похожие патенты