для стартапов
и инвесторов
Изобретение относится к преобразовательной технике, конкретнее к устройствам преобразования энергии взрывчатого вещества в электромагнитную. Технический результат состоит в увеличении области эффективного сжатия магнитного поля и повышении кпд. Автономный генератор электромагнитного излучения радиочастотного диапазона включает в себя диэлектрический корпус с расположенными на его внутренней поверхности полуобмотками равной длины, соединенными последовательно с ними конденсатором и источником начального тока на основе пьезоэлементов, трубчатый лайнер с зарядом ВВ и инициатором. На торцах корпуса автономного генератора установлены торцевые фланцы с посадочными местами для лайнера, обеспечивающие эксцентриситет его установки по отношению к полуобмоткам. Пьезоэлементы источника начального тока установлены на торцевых фланцах генератора. 2 ил.
Изобретение относится к преобразовательной технике, конкретнее к устройствам преобразования энергии взрывчатого вещества в электромагнитную. Известные устройства служащие этой цели - взрывомагнитные генераторы (см. напр. Г. Кнопфель «Сверхсильные импульсные магнитные поля» М: Мир, 1973 г, с. 215) - содержат заряд взрывчатого вещества (ВВ), окруженный проводящей оболочкой (лайнером) и подключенную к нагрузке обмотку. Начальные ток и магнитное поле в обмотке создаются внешним источником начального тока (в основном используются конденсаторные батареи), после чего магнитное поле сжимается расширяющимся под давлением продуктов детонации лайнером, за счет чего величина силы тока, текущего через нагрузку возрастает. Для того, чтобы существенно уменьшить габариты источника начального тока для таких устройств создан источник тока, описанный в докладе (V A. Demidov, V. D. Sadunov, S. A. Kazakov et al., «Piezoceramic power supply of EMG» B: «Megagauss and megaampere pulse technology and applications. Proceedings of Seventh Magnetic Field Generation and Related Topics», Sarov (Arzamas-16), August 5-10, 1996. Edited by V. K. Chernyshev, V. D. Selemir, L. N. Plyashkevich. Part I, Sarov, VNIIEF, 1997, p.336). Такой источник начального тока включает набор пьезоэлементов, заряд ВВ для формирования в них ударной волны и инертный буфер для снижения давления в ударной волне до значений, при которых не нарушается электропрочность пьезоэлементов. Применение такого источника начального тока требует специального отдельного блока синхронизации момента срабатывания этого источника и его включения в цепь питаемого устройства и момента срабатывания взрывомагнитного генератора, что усложняет устройство и снижает надежность его работы. В качестве прототипа изобретения выбран автономный витковый генератор частот, описанный в учебном пособии (А. Б. Прищепенко «Взрывы и волны». Взрывные источники электромагнитного излучения радиочастотного диапазона. Издание второе (электронное), переработанное и дополненное. М: Директ-Медиа, 2012, с. 133). Генератор включает цилиндрический корпус из диэлектрика, на внутренней поверхности которого размещены две полуобмотки равной длины между которыми включены конденсатор и источник начального тока на основе пьезоэлементов, а также трубчатый лайнер с зарядом ВВ и инициатором. На торцах корпуса установлены фланцы с посадочными местами для лайнера, обеспечивающими эксцентриситет его установки по отношению к полу обмоткам. При срабатывании генератора, на полувысоте заряда ВВ инициируется детонация, под действием продуктов которой лайнер расширяется. Достигнув источника начального тока лайнер, ударом по его инертному буферу, формирует в нем ударную волну, которая, ослабившись до значений гарантирующих сохранение электропрочности пьезоэлементов, вызывает их деполяризацию и протекание тока, заряжающего конденсатор. В момент достижения током максимума, расширяющийся далее лайнер замыкает полуобмотки, тем самым производя отключение источника начального тока от основного электрического контура генератора, и в основном электрическом контуре взрывомагнитного генератора возникают колебания, приводящие к формированию электромагнитного излучения. Недостатком описанного генератора является то, что элементы устройства начальной запитки (инертный буфер и пьезоэлементы) занимают значительную часть рабочего объема генератора, что ведет к сокращению продольного размера полуобмоток. Уменьшение продольного размера полуобмоток (при прочих неизменных параметрах генератора) означает, что общее эффективное время работы генератора будет уменьшаться, а значит, будет уменьшаться и время, в течение которого расширяющимся лайнером совершается работа против пондеромоторных сил магнитного поля тока в основном контуре генератора, т.е. увеличивается область эффективного сжатия магнитного поля. Следовательно, доля энергии преобразуемой из химической энергии ВВ в электромагнитную энергию формируемого устройством излучения также будет снижаться, а значит будет снижаться и КПД устройства в целом. Техническим результатом данного изобретения является увеличение области эффективного сжатия магнитного поля и повышение КПД устройства. Технический результат достигается за счет того, что автономный генератор электромагнитного излучения радиочастотного диапазона включает в себя диэлектрический корпус с расположенными на его внутренней поверхности полуобмотками равной длины, соединенными последовательно с ними конденсатором и источником начального тока на основе пьезоэлементов, трубчатый лайнер с зарядом ВВ и инициатором, на торцах корпуса автономного генератора установлены торцевые фланцы с посадочными местами для лайнера, обеспечивающие эксцентриситет его установки по отношению к полуобмоткам, а пьезоэлементы источника начального тока установлены на торцевых фланцах генератора. На Фиг. 1 представлена схема автономного генератора электромагнитного излучения радиочастотного диапазона. На Фиг. 2 (а, б) представлена схема расширения лайнера автономного генератора электромагнитного излучения радиочастотного диапазона (вид сбоку и вид сверху в разрезе). Принятые обозначения: 1. Диэлектрический корпус генератора 2. Полу обмотки 3. Конденсатор 4. Система пьезоэлементов 5. Торцевые фланцы 6. Заряд взрывчатого вещества (заряд ВВ) 7. Лайнер 8. Инициатор детонации Генератор электромагнитного излучения состоит из цилиндрического диэлектрический корпуса 1, на внутренней поверхности которого размещены полуобмотки 2. Каждая из полуобмоток 2 одним выводом подключена к конденсатору 3, а другим к выводу системы пьезоэлементов 4 (приведено последовательно-параллельное подключение пьезоэлементов 4, но, в зависимости от требуемых значений тока и напряжения, возможны и другие варианты подключений). Система пьезоэлементов 4 имеет электрические выводы, и, например, может представлять собой набор однотипных пьезоэлементов прямоугольной формы с размерами, определяемыми необходимым начальным током в устройстве, электрически соединяемых параллельно (либо последовательно, либо последовательно-параллельно). Система пьезоэлементов 4 размещена в торцевых фланцах 5, обеспечивающих посадочное место заполненного ВВ 6 лайнера 7 (с эксцентриситетом ε установки лайнера 7 относительно полуобмоток 2 в сторону противоположную установке конденсатора 3). Заряд ВВ 6 снабжен инициатором детонации 8. Генератор электромагнитного излучения работает следующим образом. Срабатывание инициатора 8 вызывает детонацию заряда ВВ 6, под давлением продуктов детонации заряда ВВ 6 начинается расширение лайнера 7. Расширение продуктов детонации на торцах заряда ВВ 6 приводит к формированию в них областей разрежения, поэтому форма расширяющегося лайнера 7 не цилиндрическая, а «бочкообразная» (показана пунктиром на фигуре 2а). Удар такого расширяющегося лайнера 7 по внутренним поверхностям фланцев 5 - не лобовой, а скользящий, за счет чего снижается давление в ударной волне, формируемой в торцевых фланцах 5, а внутренние слои этих фланцев 5 выполняют роль буфера, снижающего давление ударной волны до значений, обеспечивающих сохранение электропрочности в пьезоэлементах системы пьезоэлектрических элементов 4. Нагруженные перешедшей из фланцев 5 в пьезоэлементы системы пьезоэлементов 4 ударной волной, пьзоэлементы деполяризуются, и в электрической цепи включающей систему пьезоэлементов 4, полуобмотки 2 и конденсатор 3 начинает протекать электрический ток. Эксцентриситет ε установки лайнера 7 и положение пьезоэлементов системы пьезоэлементов 4 подобраны так, что в момент достижения током максимума, расширяющийся лайнер 7 замыкает разрыв между полуобмотками 2 (на противоположном от установке конденсатора 3 конце полуобмоток, см. фигуру 2б), замыкая электрическую цепь «конденсатор 3 - полуобмотки 2», в которой возникают электрические колебания, частота которых возрастает, поскольку дальнейшее расширение лайнера 7 приводит к существенному уменьшению индуктивности (уменьшение площади, охватываемой колебательным контуром). Дальнейшее движение расширяющегося лайнера 7 представляет собой перемещение двух точек контакта «лайнер 7 - полуобмотка 2» (по одной точке контакта на каждой из полуобмоток, движущихся симметрично), перемещение которых вдоль полуобмоток 2 электрически закорачивает ту часть полуобмоток 2, вдоль которой лайнер 7 уже осуществил электрический контакт (положение расширяющегося лайнера показано пунктиром на фигуре 26). Незакороченные в данный момент времени токонесущие элементы контура служат магнитной антенной, для излучения электромагнитных волн радиочастотного диапазона. Генератор работает в режиме параметрического усилителя, работа расширяемого продуктами детонации заряда ВВ 6 лайнера 7 совершается в те моменты времени, когда существенно магнитное поле колебательного процесса. Повышение КПД генерации реализуется за счет полного использования рабочего объема устройства за счет изъятия из этого объема генератора источника начального тока. Таким образом достигается заявленный результат.