для стартапов
и инвесторов
Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила с мольным отношением SiO/AlO=37, содержащего не более 0,04 мас.% оксида натрия, содержит также оксид циркония и/или оксид лантана, связующее - оксид алюминия, и дополнительно оксид магния при следующем соотношении компонентов, мас.%: оксид алюминия - 32,0-34,0, оксид циркония и/или оксид лантана - 0,1-0,5, оксид магния - 0,1-2,0, цеолит - остальное. Синтез низших олефинов из сырьевой смеси, содержащей диметиловый эфир и инертный газ и/или водяной пар, осуществляют при температуре 320-450°C, атмосферном давлении и массовой скорости подачи сырья 500-45000 чв присутствии указанного катализатора, необработанного или предварительно обработанного водяным паром при температуре 500-750°C. Технический результат - повышение стабильности катализатора в условиях воздействия водяного пара, сохранение высокой степени конверсии и высокой селективности по олефинам C-Cв течение длительного времени. 2 н. и 1 з.п. ф-лы, 3 табл., 12 пр.
1. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила, содержащий оксид циркония и/или оксид лантана и связующее - оксид алюминия, отличающийся тем, что используют цеолит с мольным отношением SiO2/Al2O3=37, содержащего не более 0,04 мас.% оксида натрия, а катализатор дополнительно содержит оксид магния при следующем соотношении компонентов, мас.%: 2. Способ синтеза низших олефинов из сырьевой смеси, содержащей диметиловый эфир, при повышенной температуре в присутствии катализатора на основе цеолита типа пентасила, содержащего оксид циркония и/или оксид лантана и связующее - оксид алюминия, отличающийся тем, что сырьевая смесь дополнительно содержит водяной пар или смесь водяного пара и инертного газа, а синтез олефинов проводят при температуре 320-450°C, атмосферном давлении и массовой скорости подачи сырья 500-45000 ч-1 в присутствии катализатора по п.1. 3. Способ по п.2 отличающийся тем, что используют катализатор по п.1, предварительно обработанный водяным паром при температуре 500-750°C.оксид алюминия 32,0-34,0 оксид циркония и/или оксид лантана 0,1-0,5 оксид магния 0,1-2,0 цеолит остальное
Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Возможность получения низших олефинов из природного газа, в частности из синтез-газа через метанол и диметиловый эфир (ДМЭ), привлекает большое внимание отечественных и зарубежных исследователей. Однако главным фактором промышленного внедрения этого процесса является не только активность и селективность катализатора, но и его стабильность. Известен катализатор синтеза низших олефинов из диметилового эфира, описанный в патенте РФ №2445158, на основе цеолита типа пентасил с мольным отношением Si2O/Al2O3=37, содержащего не более 0,04 масс.% оксида натрия, и связующего - оксида алюминия, который дополнительно содержит магний (0,1-2,0 масс.%). В патенте также описан способ получения низших олефинов из смеси, содержащей 10-20 об.% диметилового эфира и 80-90 об.% инертного газа (N2) при повышенной температуре и атмосферном давлении (с конверсией ДМЭ до 97 масс.% и селективностью по C2-C5 олефинам до 82% масс, в том числе по C2-C3 до - 80 мас.%). Наиболее близким к заявленному изобретению является катализатор синтеза низших олефинов из диметилового эфира, описанный в патенте РФ №2323777, на основе цеолитов типа пентасила с SiO2/Al2O3=25-30, содержащего не более 0,11% масс. оксида натрия, содержащий или оксид цинка, или оксид циркония, или оксид лантана, или их двухкомпонентные смеси и связующее - оксид алюминия. Он обладает высокой активностью. Конверсия ДМЭ в его присутствии составляет 98% масс., а содержание олефинов C2-C5 в углеводородной части достигает 80,4% масс. (из них на долю этилена приходится 26, а на долю пропилена-44,4% масс.). В этом патенте также описан способ получения низших олефинов из диметилового эфира в смеси с инертным газом при температуре 340-400°C, повышенном давлении не выше 10 атм и скорости подачи сырья 2000-3000 ч-1 в присутствии этого катализатора. Этот способ является наиболее близким к заявленному способу. К недостаткам описанных катализаторов следует отнести невысокую стабильность. Так, катализатор, описанный в патенте РФ №2445158, теряет стабильность и активность после высокотемпературной обработки водяным паром или в присутствии водяного пара, а катализатор, описанный в патенте РФ №2323777, теряет свою активность через 10 часов работы на 40% даже без использования водяного пара. В условиях промышленного применения данного процесса цеолитсодержащие каталитические системы должны быть устойчивы к воздействию водяных паров при высокой температуре. Кроме того, для повышения стабильной работы цеолитного катализатора его предварительно обрабатывают водяным паром в жестких условиях. Задача настоящего изобретения заключается в получении катализатора, стабильно работающего в течение долгого времени, устойчивого к водяному пару и предварительным высокотемпературным обработкам водяным паром, при сохранении его высокой активности и селективности в процессе получения C2-C3 олефинов из смесей, содержащих до 20% об. ДМЭ. Поставленная задача решается тем, что предложен катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила, содержащий оксид циркония и/или оксид лантана и связующее - оксид алюминия, причем используют цеолит с мольным отношением SiO2/Al2O3=37, содержащего не более 0,04 мас.% оксида натрия, а катализатор дополнительно содержит оксид магния при следующем соотношении компонентов, мас.%: Поставленная задача решается также тем, что предложен способ синтеза низших олефинов из сырьевой смеси, содержащей диметиловый эфир, при повышенной температуре в присутствии катализатора на основе цеолита типа пентасила, содержащего оксид циркония и/или оксид лантана и связующее - оксид алюминия и дополнительно содержит оксид магния, причем сырьевая смесь дополнительно содержит водяной пар или смесь водяного пара и инертного газа, а синтез олефинов проводят при температуре 320-450°C, атмосферном давлении и массовой скорости подачи сырья 500-45000 час-1 в присутствии указанного катализатора. В частном случае катализатор может быть предварительно обработан водяным паром при температуре 500-750°C. Предлагаемое изобретение позволяет создать каталитические системы на базе цеолитов, выпускаемых отечественной промышленностью, как с предварительной обработкой водяным паром при температуре 500-750°C, так и без обработки, для процесса получения низших олефинов из смеси диметилового эфира с инертным газом или водяным паром или смесью инертного газа и водяного пара, сохраняющие высокую активность, селективность и стабильность работы. Технический результат - повышение стабильности катализатора в условиях воздействия водяного пара, сохранение высокой степени конверсии и высокой селективности по олефинам C2-C5 в течение длительного времени. Нижеследующие примеры иллюстрируют предлагаемое изобретение, но никоим образом не ограничивают область его применения. Пример 1. Приготовление катализаторов Для получения катализатора используют цеолит типа пентасил с мольным отношением SiO2/Al2O3=37, содержащий не более 0,04 мас.% оксида натрия. Оксид La и/или Zr вводят в цеолит методом безостаточной пропитки водными растворами соли La до заданного содержания его оксида. Затем цеолит смешивают со связующим - суспензией, содержащей 23% мас. оксида алюминия. Формуют экструдаты с заданным содержанием связующего и пропитывают их раствором соли Mg. Нагревают экструдаты на водяной бане, сушат при 100-110°C в течение не менее 6 часов и прокаливают при 500°C в течение 6 часов. Пример 2 Катализатор готовят аналогично примеру 1, с той разницей, что в качестве оксида металла используют оксид циркония (Zr) в количестве 0,4% масс. Состав полученного катализатора приведен в таблице 1. Пример 3 Катализатор готовят аналогично примеру 1, с той разницей, что вводят два оксида металла - оксид лантана (La) и оксид циркония (Zr) в количестве 0,1 и 0,4% масс. соответственно. Состав полученного катализатора приведен в таблице 1. Состав катализаторов приведен в табл.1. Способ получения олефинов Низшие олефины получают из сырья, содержащего от 10 до 20% об. ДМЭ, от 5 до 90% об. инертного газа (N2) и от 25 до 80% об. водяного пара в присутствии описанных выше катализаторов. Получение низших олефинов из диметилового эфира в смеси с инертным газом осуществляют при атмосферном давлении и температуре 320-450°С, причем более предпочтительными условиями являются проведение процесса при температуре 320-340°С. Процесс ведут в проточном реакторе с неподвижным слоем катализатора, который возможно многократно регенерировать при температуре 450°С в токе азотовоздушной смеси в течение 6 часов. Примеры 4-6 Реакцию проводят на катализаторах, полученных по примерам 1-3 при атмосферном давлении и концентрации ДМЭ в исходной смеси 10 об.%, температуре 320°С и массовой скорости ДМЭ 0,9 ч-1 или температуре 380°С и массовой скорости ДМЭ 3,7 ч-1. Катализаторы предварительно обрабатывают водяным паром при Т=500°С в течение не менее 6 часов. Результаты приведены для Т=320°С, весовой скорости ДМЭ (Wдмэ=0,9 ч-1) и Т=380°С (Wдмэ=3,7 ч-1). После паровой обработки каталитические свойства образцов улучшились при Т=320°С, а на La (0,1%)-Zr (0,4%)-Mg (1%)-HZSM-5/Al2O3 и при 380°C сохранилась высокая селективность по олефинам и активность каталитической системы. Для сравнения испытывают образец по прототипу - полученный аналогично примеру 3, но не содержащий магния. Результаты приведены в табл.2. Примеры 8-12 Образцы катализатора по примеру 3, обработанного водяным паром, как описано в примере 6, отличающийся тем, что содержание магния в катализаторе 2 мас.%, испытывают в синтезе получения олефинов с различной массовой скоростью подачи при температуре 380°C. Смесь содержит 20% об. ДМЭ и 80% об. водяного пара. Результаты представлены в табл.3. Как видно из таблицы, при повышении скорости подачи сырья начиная с 15000 ч-1 степень конверсии падает, но высокая селективность по низшим олефинам сохраняется. Катализатор при объемной скорости подачи смеси 1800 ч-1 был испытан в течение 100 часов, практически не терял активность при сохранении высокой селективности по олефинам даже после пяти циклов окислительной регенерации. Таким образом, предложенный катализатор на базе отечественного аналога цеолита типа ZSM-5 цеолит высокомодульный (ЦВМ), модифицированный лантаном и/или цирконием и магнием, обработанный водяным паром при 500°C, позволяет проводить процесс синтеза низших олефинов из смеси, содержащей до 20% об. диметилового эфира и до 80% водяного пара (Н2O) при относительно невысокой температуре и атмосферном давлении с высокой конверсией ДМЭ и селективностью по C2-C5 олефинам, сохраняя высокую активность в течение длительного промежутка времени. Предложенный катализатор возможно многократно регенерировать в токе азотовоздушной смеси практически без потери его активности и селективности по C2-C3 олефинам.оксид алюминия 32,0-34,0 оксид циркония и/или оксид лантана 0,1-0,5 оксид магния 0,1-2,0 цеолит остальное Таблица 1 Состав используемых катализаторов Примеры Содержание цеолита в составе катализатора, % масс. Al2O3, % масс. Активный элемент Содержание оксида активного элемента в катализаторе, % масс. 1 66,0 32,9 La 0,1 Mg 1,0 2 66,0 32,6 Zr 0,4 Mg 1,0 3 66,0 32,5 La 0,1 Zr 0,4 Mg 1,0 Таблица 2 Каталитические свойства цеолитсодержащих катализаторов, обработанных водяным паром при 500°C № примера Катализатор по примеру Т, °C Конверсия ДМЭ, % Состав продуктов реакции, мас.% Σ олефинов С2- CH4 Σ парафинов С2+ 4 1 320 83,9 0,4 23,1 26,6 26,5 73,1 380 88,0 0,5 10,9 32,2 30,7 65,9 5 2 320 53,9 0,4 20,4 35,4 20,6 79,0 380 74,5 0,5 10,3 35,9 27,7 68,1 6 3 320 76,6 0,4 22,5 27,7 26,5 73,0 380 68,6 0,5 11,3 36,9 27,4 72,2 7 прототип 320 36,8 0,6 24,8 32,7 21,2 78,2 380 99,8 0,5 12,0 23,2 34,2 65,3 Таблица 3 Влияние скорости подачи сырья № примера Объемная скорость исходной смеси, ч-1 КонверсияДМЭ, % Состав продуктов реакции, мас.% Σ олефинов С2- CH4 Σ парафинов С2+ 8 1800 77,3 1,1 33,4 28,4 27,5 71,3 9 3700 65,9 0,9 31,7 33,0 19,2 76,6 10 5600 55,3 5,0 26,8 31,5 21,0 74,6 11 15000 22,9 4,7 26,0 32,0 21,3 75,3 12 22400 13,4 3,1 24,5 30,7 23,9 73,7