патент
№ RU 2631430
МПК C07D487/04

НОВЫЙ СПОСОБ СИНТЕЗА ПРОИЗВОДНЫХ ТЕТРАГИДРОПИРАЗИНО[2,3-c]ПИРИДАЗИНА

Авторы:
Чилов Гермес Григорьевич Стройлов Виктор Сергеевич Титов Илья Юрьевич
Все (5)
Номер заявки
2016141986
Дата подачи заявки
26.10.2016
Опубликовано
22.09.2017
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
6
Реферат

Изобретение относится к способe синтеза производных тетрагидропиразино[2,3-с]пиридазина формулы (1)которые могут быть использованы для изготовления лекарственных средств для лечения онкологических, хронических воспалительных и прочих заболеваний. Технический результат: новый способ синтез позволяет получить соединения общей формулы (1), обладающие повышенной степенью чистоты. 6 з.п. ф-лы, 6 ил., 5 пр.

Формула изобретения

1. Способ получения соединения формулы (1)

цикл А представляет собой фенил, опционально замещенный 1-3 группами RA;

RA выбирается независимо и представляет собой галоген, частично или полностью галогенированные С1-5-алкил, OC1-3-алкил;

R1 представляет собой галоген OSO2R,

R2 представляет собой водород или -СН3,

R представляет собой частично или полностью галогенированный C1-3-алкил или фенил, опционально 1-3 группами СН3 или атомами галогена,

который включает циклизацию соли соединения соли (2)

с образованием соединения формулы (1), в ходе которой соль соединения (2) смешивают с подходящим растворителем и при повышенной температуре добавляют к раствору или суспензии основания в соответствующим растворителе.

2. Способ по п. 1, при котором используют хлорид, бромид, иодид, ацетат, сульфат, тозилат, мезилат, трифторацетат соединения (2).

3. Способ по п. 1, при котором в качестве растворителя используют диметилформамид, диметилацетамид, N-метилпирролидон.

4. Способ по п. 1, при котором в качестве основания используют карбонат калия, карбонат цезия, безводный ацетат натрия, триэтиламин, трибутиламин, тетраметилгуанидин, N-этилморфолин.

5. Способ по п. 1, при котором добавление соли (2) осуществляют при температуре от 130 до 180°C.

6. Способ по п. 1, при котором соль (2) добавляют к раствору или суспензии основания.

7. Способ по п. 1, при котором соль (2) вводят под слой раствора или суспензии основания.

Описание

[1]

Область техники

[2]

Изобретение относится к области фармакологии и медицины и касается способа синтеза производных тетрагидропиразино[2,3-с]пиридазина, которые могут быть использованы для лечения онкологических, хронических воспалительных и прочих заболеваний.

[3]

Уровень техники

[4]

Онкологические заболевания являются одной из основных причин заболеваемости и смертности во всем мире и смертности во всем мире - по данным Всемирной Организации Здравоохранения, в 2012 году произошло около 14 миллионов новых случаев заболевания и 8,2 миллиона случаев смерти, связанных с раком. Немелкоклеточный рак легкого (НМКРЛ) - остаточно распространенное (14% всех онкологических пациентов) и первое по смертности (28% всех онкологических смертей) среди онкологических заболеваний. Заболевание характеризуется поздней стадией диагностирования и высоким риском мета-стазирования в мозг, что осложняет хирургическое вмешательство и снижает эффективность химиотерапии. Дополнительным осложняющим фактором является высокая гетерогенность заболевания: порядка 15% случаев обусловлены аберрантной активностью (в следствие мутаций) ГТФазы KRAS, 10% - киназы EGFR, 5% - киназы ALK, при этом остальные идентифицированные группы заболеваний имеют еще меньший размер, а порядка 50% случаев не имеют однозначно установленной мишени заболевания.

[5]

Перспективным подходом для терапии онкологических заболеваний, вызванных нарушением активности протеинкиназ является применение низкомолекулярных химических соединений для ингибирования их активности. Примерами Перспективным подходом для терапии заболеваний, ассоциированных с нарушенной активностью протеинкиназ, является применение низкомолекулярных химических соединений для ингибирования их активности. Примерами таких ингибиторов, одобренных для применения в клинической практике, являются: иматиниб, нилотиниб, дазатитниб, лапатиниб, гефитиниб, эрлотиниб, кризотиниб и др.

[6]

Эффективными ингибиторами киназы ALK являются производные тетрагидропира-зино[2,3-с]пиридазина, которые характеризуются высокой активностью и селективностью по сравнению с другими препаратами. Способ синтеза производных тетрагидропиразино[2,3-с]пиридазина описан в международной публикации WO 2015047133. Общая схема синтеза ключевых интермедиатов конечных соединений выглядит следующим образом:

[7]

[8]

[9]

[10]

[11]

На данной схеме цикл А представляет фенил, опционально замещенный 1-3 группами RA, R представляет Н или СН3, RA выбирается независимо и представляет собой галоген, частично или полностью галогенированный С1-5 алкил, ОС1-3-алкил.

[12]

Конечные продукты - ингибиторы ALK получают интермедиата 1-4

[13]

[14]

[15]

Не ограничивающие примеры ингибиторов ALK, которые можно получить по данной схеме, приведены ниже

[16]

[17]

[18]

[19]

[20]

Паладий-катализируемое нуклеофильное замещение соединения 1-2 с последующим удалением Вос-группы приводит к другому классу ингибиторов ALK

[21]

[22]

Не ограничивающие примеры ингибиторов ALK, которые можно получить по данной схеме, приведены ниже

[23]

[24]

[25]

Одной из ключевых стадий указанного способа получения указанных ингибиторов киназы ALK является стадия циклизации солевых производных I-0 с образованием интер-медиата I-1. Для этого к перемешиваемому раствору 9.6 г (20 ммоль) интермедиата I-0 в 100 мл безводного N-метилпирролидона прибавляют 8.7 мл (0.05 моль) основания Хунига и выдерживают полученную смесь 10 часов при 100°С (ТСХ-контроль), охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 200 мл насыщенного раствора NaHCO3 и отфильтровывают образовавшийся осадок, который промывают водой (3×50 мл), сушат и разделяют хроматографически. Получают: 1.7 г (25%) соединения I-1.

[26]

Необходимость хроматографического продукта I-1 связана с тем, что данная реакция протекает даже при комнатной температуре с образованием двух продуктов, а именно продукта атаки концевого атома азота по атому углерода в положении 3 с образованием целевого соединения I-1, а также продукта ипсо-атаки концевого азота по углероду в положении 4 (известной как перегруппировка Смайлса), с образованием побочного продукта I-1B

[27]

[28]

Побочный продукт I-1В по своим свойствам очень похож на продукт I-1, поэтому разделение перекристаллизацией приводит к большим потерям целевого соединения. Использование хроматографического разделения позволяет добиться увеличения выхода до 25%, однако существенно удорожает синтез продукта в промышленном масштабе.

[29]

Раскрытие изобретения

[30]

Задачей изобретения является создание нового способа синтеза производных тетра-гидропиразино[2,3-с]пиридазина, свободного от образования трудноотделимого побочного продукта, где указанные производные тетрагидропиразино[2,3-с]пиридазина в совокупности представлены общей формулой (1)

[31]

[32]

где цикл А представляет собой фенил, опционально замещенный 1-3 группами RA;

[33]

RA выбирается независимо и представляет собой галоген, частично или полностью галогенированные C1-5-алкил, ОС1-3-алкил;

[34]

R1 представляет собой галоген,

[35]

R2 представляет собой водород или -СН3.

[36]

Техническим результатом, достигаемым при использовании изобретения, является повышение выхода реакции циклизации с образованием производных тетрагидропиразино[2,3-с]пиридазина (1), повышение чистоты образующихся продуктов и устранение стадии хроматографического разделения продуктов реакции за счет снижения количества образующегося побочного продукта перегруппировки - соединений формулы 1А

[37]

[38]

Поставленная задача и требуемый технический результат достигаются за счет нового способа синтеза указанного соединения, который включает циклизацию соли соединения общей формулы (2)

[39]

[40]

в ходе которой соль соединения (2) смешивают с подходящим растворителем и при повышенной температуре добавляют к раствору или суспензии основания в соответствующим растворителе.

[41]

В качестве соли соединения (2) может быть использован хлорид, бромид, иодид, ацетат или трифторацетат соединения (2), в качестве растворителя для реакции циклизации могут быть использованы диметилформамид, диметилацетамид, N-метилпирролидон, диметилсульфоксид; в качестве основания может быть использован карбонат калия, карбонат цезия, безводный ацетат натрия, триэтиламин, трибутиламин, тетраметилгуанидин, N-этилморфолин. Циклизацию осуществляют при температуре 130-180°С, раствор соединения (2) добавляют в реакционную смесь по каплям или вводят под слой раствора или суспензии основания в подходящем растворителе.

[42]

Существенное отличие предложенной методики от известной из уровня техники заключается в том, что раствор соединения (2) добавляют в реакционную смесь (раствору или суспензии основания в подходящем растворителе) при повышенной температуре. Нами было установлено, что образование целевой продукт (1) является термодинамическим продуктом, а побочный продукт (1А) - кинетическим продуктом. Изменение последовательности добавления реагентов, а также введение солей (2) в нагретый раствор или суспензию основания с образованием свободного основания (2) при высоких температурах позволяет практически полностью исключить образование побочного продукта в ходе реакции.

[43]

Краткое описание чертежей

[44]

На Фиг. 1 - изображен1Н-ЯМР спектр основного продукта 5-(2,5-дихлоробензил)-3-хлоро-5,6,7,8-тетрагидропиразино [2,3-с]пиридазина.

[45]

На Фиг. 2 - изображен13С-ЯМР спектр основного продукта 5-(2,5-дихлоробензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина.

[46]

На Фиг. 3 - изображена структура основного продукта 5-(2,5-дихлоробензил)-3-хлоро-5,6,7,8-тетрагидропиразино [2,3-с]пиридазина.

[47]

На Фиг. 4 - изображен1Н-ЯМР спектр побочного продукта перегруппировки N1-(2,5-дихлоробензил)-N6-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина.

[48]

На Фиг. 5 - изображен13С-ЯМР спектр побочного продукта перегруппировки N1-(2,5-дихлоробензил)-N2-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина.

[49]

На Фиг. 6 - изображена структура побочного продукта перегруппировки N1-(2,5-дихлоробензил)-N2-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина.

[50]

Осуществление изобретения

[51]

Ниже с целью иллюстрации отдельных аспектов осуществления изобретения приведены примеры осуществления предлагаемого способа. Приведенные ниже примеры не предназначены для того, чтобы каким-либо образом ограничивать объем настоящего изобретения.

[52]

Пример 1. Способ синтеза 5-(2,5-дихлоробензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина

[53]

[54]

45,4 г (~0,5 моль) трифторацетата диамина 3 смешивают с 200 мл безводного диметилацетамида, и по каплям, поддерживая температуру около 150°С и прибавляют к суспензии 80 г безводного поташа в 500 мл безводного диметилацетамида. По окончании прибавления реакционную смесь перемешивают при заданной температуре еще 30 минут, охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 600 мл этилацетата и 500 мл воды, органический слой отделяют, промывают водой 3×300 мл, сушат над сульфатом натрия, растворитель удаляют в вакууме и сушат. Остаток перекристаллизовывают из изопропанола. Получают: 7,8 г (48%) целевого 5-(2,5-дихлоробензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина.

[55]

1Н-ЯМР,13С-ЯМР спектры, а также структура целевого продукта реакции приведены на Фиг. 1, 2 и 3 соответственно.

[56]

Подбор оптимальных условий циклизации был осуществлен для реакции образования 5-(2,5-дихлоробензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина (4) на загрузках 5-10 г. Зависимость соотношения продуктов 4:4А от условий протекания реакции представлена в таблице.1Н-ЯМР,13С-ЯМР спектры, а также структура побочного продукта перегруппировки приведены на Фиг. 4, 5 и 6 соответственно.

[57]

[58]

В результате подбора условий нами было достигнуто соотношение продуктов 12:1 в пользу целевого соединения. Дальнейшее повышение температуры приводило к существенному снижению выхода целевого соединения 4 за счет осмоления реакционной смеси.

[59]

При увеличении загрузок до 50-100 г, за счет увеличения продолжительности прибавления раствора исходного соединения наблюдалось значительное осмоление реакционной смеси. Мы предполагаем, что данный процесс связан с высокой основностью карбоната цезия, а умеренная растворимость Cs2CO3 в диметилацетамиде (DMAA) в сочетании с высокой насыпной плотностью приводят к сложностям с перемешиванием, и как следствие, возникновению диффузионного фактора в процессе протекания реакции, и к неравномерностям нагревания реакционной смеси. Совокупность этих процессов при масштабировании не только приводит к заметному осмолению, но так же является причиной плохой воспроизводимости получаемых результатов. В результате дополнительной оптимизации условий реакции циклизации, мы перешли к использованию N-метилпироллидона (NMP) растворимость неорганических карбонатов в котором значительно выше, а так же предприняли попытку использовать гомогенные высококипящие органические основания, такие как тетраметилгуанидин (TMG), трибутиламин (Bu3N) и N-этилморфолин. Результаты оптимизации представлены ниже

[60]

[61]

Как видно из приведенных данных, использование органических оснований - трибу-тиламина, N-этилморфолина и тетраметилгуанидина приводит к образованию побочного продукта, что, по видимому, связано с наличием основания в парах над реакционной смесью. Это приводит к образованию свободного амина в растворе соли при температуре ниже температуры реакционной смеси и как следствие к образованию продукта побочного продукта (продукта перегруппировки Смайлса). Использования в качестве основания карбоната калия, имеющего по сравнению с карбонатом цезия значительно более низкую насыпную плотность, позволило с одной стороны, избежать появления основания в газовой фазе над реакционной смесью, а с другой, позволяло осуществлять энергичное перемешивания с распределением карбоната калия по всему объему реакционной смеси. Дополнительным преимущество этого карбоната калия является дешевизна реагента.

[62]

Среди использованных нами растворителей N-метилпирролидон обладает самой высокой температурой кипения (202-204°С), что позволяет сильнее нагревать реакционную смесь и таким образом повышать выход реакции. Однако, как уже было отмечено выше, оборотной стороной высокой температуры проведения реакции является начинающееся осмоление реакционной смеси, а так же сложность удаления растворителя. Диметилфор-мамид (DMF) при этих температурах в присутствии оснований значительно разлагается с выделением нуклеофильного диметиламина, что приводит к образованию побочных продуктов (данные продукты были зафиксированы нами по данным ВЭЖХ/МС-анализа реакционной смеси). Таким образом, диметилацетамид, является оптимальным растворителем для проведения данной реакции, так как позволяет достичь приемлемых выходов и может быть отогнан из реакционной смеси в вакууме водоструйного насоса при температуре ниже 100°С.

[63]

Пример 2. 5-(2,6-дихлоро-3-фторобензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина

[64]

[65]

38,4 г (~0,1 моль) хлорида N1-(2,6-дихлоро-3-фторобензил)-N1-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина смешивают с 100 мл безводного диметилацетамида, и по каплям, поддерживая температуру около 150°С прибавляют к суспензии 80 г безводного поташа в 500 мл безводного диметилацетамида. По окончании прибавления реакционную смесь перемешивают при заданной температуре еще 45 минут, охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 600 мл этилацетата и 500 мл воды, органический слой отделяют, промывают водой 3×300 мл, сушат над сульфатом натрия, растворитель удаляют в вакууме и сушат. Получают: 15,3 г (44%) целевого продукта 5-(2,6-дихлоро-3-фторобензил)-3-хлоро-5,6,7,8-тетрагидропиразино [2,3-с]пиридазина.

[66]

Пример 3. Синтез 5-(2,6-дихлоро-3-фторобензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина

[67]

[68]

38,4 г (~0,1 моль) хлорида N1-(2,6-дихлоро-3-фторобензил)-N1-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина смешивают с 100 мл безводного диметилацетамида, и по каплям, поддерживая температуру около 150°С прибавляют к суспензии 80 г безводного поташа в 500 мл безводного диметилацетамида. По окончании прибавления реакционную смесь перемешивают при заданной температуре еще 45 минут, охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 600 мл этилацетата и 500 мл воды, органический слой отделяют, промывают водой 3×300 мл, сушат над сульфатом натрия, растворитель удаляют в вакууме и сушат. Получают: 15,3 г (44%) целевого продукта 5-(2,6-дихлоро-3-фторобензил)-3-хлоро-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина.

[69]

Пример 3. Синтез 3-хлоро-5-(5-хлоро-2-(трифторметил)бензил)-5,6,7,8-тетрагидропиридазин-4-ил)этан-1,2-диамина

[70]

[71]

49,6 г (~0,1 моль) трифторацетата N1-(2-хлоро-5-(трифторметил)бензил)-N1-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина смешивают с 100 мл безводного диметилацетамида, и по каплям, поддерживая температуру около 140°С прибавляют к суспензии 80 г безводного поташа в 500 мл безводного диметилацетамида. По окончании прибавления реакционную смесь перемешивают при заданной температуре еще 45 минут, охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 600 мл этилацетата и 500 мл воды, органический слой отделяют, промывают водой 3×300 мл, сушат над сульфатом натрия, растворитель удаляют в вакууме и сушат. Получают: 13,8 г (38%) целевого продукта 3-хлоро-5-(5-хлоро-2-(трифторметил)бензил)-5,6,7,8-тетрагидропиридазин-4-ил)этан-1,2-диамина.

[72]

Пример 4. Синтез 3-бромо-5-(1-(5-хлоро-2-(трифторметил)фенил)этил)-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина

[73]

[74]

55,5 г (~0,1 моль) трифторацетата N1-(6-бромо-3-хлоропиридазин-4-ил)-N1-(1-(2-хлоро-5-(трифторметил)фенил)этил)этан-1,2-диамина смешивают с 100 мл безводного диметилацетамида, и по каплям, поддерживая температуру около 160°С прибавляют к суспензии 120 г безводного карбоната цезия в 500 мл безводного диметилацетамида. По окончании прибавления реакционную смесь перемешивают при заданной температуре еще 60 минут, охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 600 мл этилацетата и 500 мл воды, органический слой отделяют, промывают водой 3×300 мл, сушат над сульфатом натрия, растворитель удаляют в вакууме и сушат. Получают: 22,3 г (53%) целевого продукта 3-бромо-5-(1-(5-хлоро-2-(трифторметил)фенил)этил)-5,6,7,8-тетрагидропиразино [2,3-с] пиридазина.

[75]

Пример 5. Синтез 3-хлоро-5-(1-(5-хлоро-2-метоксифенил)этил)-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина

[76]

[77]

47,3 г (~0,1 моль) трифторацетата N1-(1-(2-хлоро-5-метоксифенил)этил)-N1-(3,6-дихлоропиридазин-4-ил)этан-1,2-диамина смешивают с 100 мл безводного диметилацетамида, и по каплям, поддерживая температуру около 150°С прибавляют к раствору 32 мл (~0.25 моль) тетраметилгуанидина в 500 мл безводного диметилацетамида. По окончании прибавления реакционную смесь перемешивают при заданной температуре еще 45 минут, охлаждают, растворитель удаляют в вакууме, к остатку прибавляют 600 мл этилацетата и 500 мл воды, органический слой отделяют, промывают водой 3×300 мл, сушат над сульфатом натрия, растворитель удаляют в вакууме и сушат. Получают: 17,3 г (51%) целевого продукта 3-хлоро-5-(1-(5-хлоро-2-метоксифенил)этил)-5,6,7,8-тетрагидропиразино[2,3-с]пиридазина.

[78]

Предложенное изобретение не ограничено описанными выше вариантами осуществления, а наоборот оно охватывает различные модификации и варианты в рамках сущности и объема предлагаемой формулы изобретения.

Как компенсировать расходы
на инновационную разработку
Похожие патенты