патент
№ RU 2581151
МПК H01J1/32

СПОСОБ ИЗГОТОВЛЕНИЯ ЭМИССИОННО-АКТИВНОГО СПЛАВА КАТОДА

Авторы:
Хабачев Максим Николаевич Пашков Алексей Николаевич Урсуляк Назар Дмитриевич
Все (5)
Номер заявки
2014147390/07
Дата подачи заявки
26.11.2014
Опубликовано
20.04.2016
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
3
Реферат

Изобретение относится к области электронной техники. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ включает приготовление исходных компонентов сплава заданного соотношения на основе, по меньшей мере, двух компонентов, при этом одного из них - тугоплавкого металла, другого - щелочноземельного металла, соединение исходных компонентов сплава катода в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава катода, при этом, по меньшей мере, двукратного повторения упомянутой технологической операции, обработку заготовки сплава катода с обеспечением ее заданного размера и формы. Исходные компоненты сплава катода приготавливают в виде бинарного сплава, состоящего из каждого из двух упомянутых компонентов сплава катода, при этом компонент щелочноземельного металла берут в виде интерметаллического соединения тугоплавкого и щелочноземельного металлов при их стехиометрическом соотношении 5:1, повторение упомянутой операции соединения исходных компонентов сплава катода осуществляют двукратно, при этом в первый раз при избыточном давлении инертной газовой среды (1,1-1,2)×10Па, во второй раз при пониженном давлении инертной газовой среды не более 5,0×10Па и при изменении расположения заготовки сплава катода на 180 градусов относительно ее первоначального технологического расположения, а обработку заготовки сплава катода осуществляют посредством ее прокатки, при этом в два этапа, на первом - при температуре 1250-1350°С, с шагом прокатки 0,2-0,3 мм, при изменении после каждого шага прокатки направления заготовки сплава кат

Формула изобретения

1. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ, включающий приготовление исходных компонентов сплава заданного соотношения на основе, по меньшей мере, двух компонентов, при этом одного из них - тугоплавкого металла, другого - щелочноземельного металла, соединение исходных компонентов сплава катода в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава катода, при этом, по меньшей мере, двукратного повторения упомянутой технологической операции, обработку заготовки сплава катода с обеспечением ее заданного размера и формы, отличающийся тем, что исходные компоненты сплава катода приготавливают в виде бинарного сплава, состоящего из каждого из двух упомянутых компонентов сплава катода, при этом компонент щелочноземельного металла берут в виде интерметаллического соединения тугоплавкого и щелочноземельного металлов при их стехиометрическом соотношении 5:1, повторение упомянутой операции соединения исходных компонентов сплава катода осуществляют двукратно, при этом в первый раз при избыточном давлении инертной газовой среды (1,1-1,2)×105 Па, во второй раз при пониженном давлении инертной газовой среды не более 5,0×104 Па и при изменении расположения заготовки сплава катода на 180 градусов относительно ее первоначального технологического расположения, а обработку заготовки сплава катода осуществляют посредством ее прокатки, при этом в два этапа, на первом - при температуре 1250-1350°С, с шагом прокатки 0,2-0,3 мм, при изменении после каждого шага прокатки направления заготовки сплава катода на 90 градусов с последующим отжигом в вакууме, при температуре не менее 1000°С, в течение 1-1,5 ч, при давлении остаточных газов не более 1,33×102 Па, на втором - при комнатной температуре, с шагом прокатки не более 0,1 мм до степени деформации заготовки сплава катода 60-70%, далее с шагом прокатки не более 0,05 мм.

2. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ по п. 1, отличающийся тем, что исходные компоненты сплава катода приготавливают, например, в виде бинарного сплава компонентов палладий-барий.

3. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов по п. 1, отличающийся тем, что исходные компоненты сплава катода приготавливают, например, в виде бинарного сплава компонентов платина-барий.

4. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ по п. 1, отличающийся тем, что в случае изготовления эмиссионно-активного сплава катода для магнетрона с автоэлектронными эмиттерами после упомянутой обработки заготовки сплава катода дополнительно осуществляют ее микрообработку лазером при мощности излучения не менее 1,5 Вт до заданной степени открытой пористости ее поверхности.

Описание

[1]

Изобретение относится к электронной технике и может найти применение при изготовлении специальных двойных эмиссионно-активных сплавов катодов для электровакуумных приборов СВЧ.

[2]

Технические характеристики современных электровакуумных приборов СВЧ, прежде всего обеспечение высокой выходной мощности и низких массогабаритных характеристик, предъявляют соответствующие требования к катодам и соответственно их материалам, а именно обеспечение:

[3]

- высокой плотности и стабильности эмиссионного тока Jэ (A/см2),

[4]

- высокого коэффициента вторичной электронной эмиссии (КВЭЭ),

[5]

- низких (300-500)°С рабочих температур Траб.,

[6]

- увеличение срока службы (не менее 5000 часов),

[7]

- высокой устойчивости к воздействию электронной и ионной бомбардировки.

[8]

Работа выхода электронов (РВЭ) и коэффициент вторичной электронной эмиссии материалов катодов обусловлены, прежде всего, адсорбционными свойствами материала активного элемента катода.

[9]

Известны и широко распространены металлопористые термокатоды, представляющие собой металлическую губку из тугоплавкого металла, например вольфрама (W), рения (Re), молибдена (Mo), содержащую соединения эмиссионно-активных материалов, преимущественно бария (Ва) [1].

[10]

Известен магнетрон на основе упомянутых катодов, содержащий анод и коаксиально размещенный внутри него катод, содержащий не менее одного автоэлектронного эмиттера и не менее одного термо-вторично-электронного эмиттера, выполненного на основе эмиссионно-активного сплава катода (сплава катода) палладий-бариевого, в котором целью является создание экономичного, надежного магнетрона с рабочей температурой катода 400-800°С, с увеличенным сроком службы, с малым временем готовности [2].

[11]

Термо-вторично-электронный эмиттер выполнен в виде прессованной пористой губки, сформированной из смеси порошков эмиссионно-активного палладий-бариевого сплава, по меньшей мере, одного тугоплавкого металла из группы, состоящей из вольфрама (W), молибдена (Mo), тантала (Та), ниобия (Nb), рения (Re), и/или, по меньшей мере, одного платинового металла из группы, состоящей из осмия (Os), иридия (Ir), платины (Pt), рутения (Ru), родия (Rh), палладия (Pd).

[12]

Изготовление катодов может быть выполнено одним из известных способов, например прессованием исходных порошков компонентов сплава катода.

[13]

Выполнение термо-вторично-электронного эмиттера указанным образом отличается:

[14]

- высокой трудоемкостью изготовления (более 40 технологических операций) и соответственно низкой производительностью,

[15]

- неустойчивостью катода к электронной бомбардировке из-за вероятности окисления порошков компонентов сплава катода,

[16]

- сложностью контролируемости технологического процесса,

[17]

- взрывоопасностью из-за необходимости использования водорода,

[18]

- сложностью серийного производства.

[19]

Известен способ изготовления термо-вторично-эмиссионного катода, содержащий ионно-плазменное напыление на эмиттер слоя на основе палладия толщиной 2-3 мкм и нагрев при температуре 900-1000°С в течение 1-2 ч, в котором с целью повышения коэффициента вторичной электронной эмиссии в области низких энергий первичных электронов в качестве эмиттеров используют сплав палладий-барий, который закрепляют на молибденовом керне диффузионной сваркой, в качестве сплава на основе палладия используют сплав, содержащий 20-22 мас. % оксида магния, а прогрев ведут при давлении не выше 10-4 Па [3].

[20]

Отмечено, что данный способ изготовления термо-вторично-эмиссионного катода позволяет увеличить коэффициент вторичной электронной эмиссии более чем в два раза.

[21]

Однако данный способ отличается:

[22]

- невысокой стойкостью материала катода к электронной бомбардировке, приводящей со временем к деградации эмиссионной активности из-за наличия в нем кислородосодержащего компонента (оксида магния),

[23]

- сложностью контролируемости скорости испарения бария и соответственно эмиссионной активности сплава катода из-за блокировки поверхности эмиттера бария напыляемым слоем палладия и оксида магния,

[24]

- сложностью контроля технологических операций, обусловленных жесткими требованиями технологических параметров.

[25]

Известен катод и способ его изготовления, в котором катод выполнен из четырехкомпонентного сплава - металла из группы платины (Pt), металла из группы щелочноземельных металлов, например бария (Ва), активатора диффузии щелочноземельного металла (активного элемента) из групп элементов молибден (Mo), гафний (Hf), цирконий (Zr), торий (Th) и переходных элементов (иридий (Ir), осмий (Os), рутений (Ru) и др.), обеспечивающего снижение работы выхода электронов.

[26]

Способ изготовления катода заключается в приготовлении исходных компонентов сплава катода в заданном соотношении.

[27]

Соединение исходных компонентов сплава катода в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава катода при этом, по меньшей мере, трехкратном повторении данной технологической операции.

[28]

Обработка заготовки сплава катода с обеспечением его заданного размера и формы посредством обработки ее методом электроискровой резки.

[29]

Техническим результатом заявленного изобретения является повышение плотности и стабильности эмиссионного тока, повышение коэффициента вторичной электронной эмиссии, снижение себестоимости, повышение экологичности, обеспечение высокого срока службы катода.

[30]

Указанный технический результат достигается заявленным способом изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ, включающим приготовление исходных компонентов сплава заданного соотношения на основе, по меньшей мере, двух компонентов, при этом одного из них - тугоплавкого металла, другого - щелочноземельного металла, соединение исходных компонентов сплава катода в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава катода, при этом, по меньшей мере, двукратного повторения упомянутой технологической операции, обработку заготовки сплава катода с обеспечением ее заданного размера и формы, в котором исходные компоненты сплава катода приготавливают в виде бинарного сплава, состоящего из каждого из двух упомянутых компонентов сплава катода, при этом компонент щелочноземельного металла берут в виде интерметаллического соединения тугоплавкого и щелочноземельного металлов при их стехиометрическом соотношении 5:1, повторение упомянутой операции соединения исходных компонентов сплава катода осуществляют двукратно, при этом в первый раз при избыточном давлении инертной газовой среды (1,1-1,2)×105 Па, во второй раз при пониженном давлении инертной газовой среды не более 5,0×104 Па и при изменении расположения заготовки сплава катода на 180 градусов относительно ее первоначального технологического расположения, а обработку заготовки сплава катода осуществляют посредством ее прокатки, при этом в два этапа, на первом - при температуре 1250-1350°С, с шагом прокатки 0,2-0,3 мм, при изменении после каждого шага прокатки направления заготовки сплава катода на 90 градусов с последующим отжигом в вакууме, при температуре не менее 1000°С, в течение 1-1,5 ч, при давлении остаточных газов не более 1,33×102 Па, на втором - при комнатной температуре, с шагом прокатки не более 0,1 мм до степени деформации заготовки сплава катода 60-70%, далее с шагом прокатки не более 0,05 мм.

[31]

Исходные компоненты сплава катода приготавливают, например, в виде бинарного сплава компонентов палладий-барий.

[32]

Исходные компоненты сплава катода приготавливают, например, в виде бинарного сплава компонентов платина-барий.

[33]

В случае изготовления эмиссионно-активного сплава катода для магнетрона с автоэлектронными эмиттерами после упомянутой обработки заготовки сплава катода дополнительно осуществляют ее микрообработку лазером при мощности излучения не менее 1,5 Вт до заданной степени открытой пористости ее поверхности.

[34]

Раскрытие сущности изобретения

[35]

Совокупность существенных признаков заявленного способа изготовления эмиссионно-активного сплава катода, а именно когда:

[36]

Исходные компоненты сплава катода приготавливают в виде бинарного сплава, состоящего из каждого из двух упомянутых компонентов сплава катода, при этом компонент щелочноземельного металла берут в виде интерметаллического соединения тугоплавкого и щелочноземельного металлов при их стехиометрическом соотношении 5:1.

[37]

Это обеспечивает оптимальное содержание щелочноземельного металла (активного элемента-компонента) в сплаве катода и тем самым однородность его распределения.

[38]

Повторение операции соединения исходных компонентов сплава катода осуществляют двукратно, при этом:

[39]

в первый раз при избыточном давлении инертной газовой среды не менее 1,1×105 Па обеспечивает быстрое (не более 3 мин) соединение компонентов сплава катода, интенсивный отвод избыточного тепла из зоны взаимодействия компонентов сплава катода и тем самым подавление значительной сублимации испарения бария и тем самым оптимальное содержание щелочноземельного металла (активного элемента) компонента сплава катода;

[40]

во второй раз при пониженном давлении инертной газовой среды не более 5,0×104 Па и при изменении расположения заготовки сплава катода на 180 градусов относительно расположения на первом этапе обеспечивает:

[41]

а) эффективную дегазацию заготовки сплава катода от отравляющих примесей (кислород-, углеродсодержащих и др.),

[42]

б) естественное конвекционное перемешивание компонентов жидкого сплава катода без потерь и тем самым однородность распределения щелочноземельного металла компонента сплава катода.

[43]

И как следствие выше указанного

[44]

во-первых, повышение плотности и стабильности эмиссионного тока,

[45]

во-вторых, повышение коэффициента вторичной электронной эмиссии,

[46]

в-третьих, снижение себестоимости благодаря исключения из сплава катода компонентов редких металлов (осмия, иридия и др.),

[47]

в-четвертых, повышение экологичности благодаря исключению из сплава катода радиоактивных компонентов тория и высокотоксичных компонентов стронция, церия и др.,

[48]

в-пятых, достаточно высокий срок службы катода (не менее 5000 часов).

[49]

Обработку заготовки сплава катода с обеспечением его заданного размера и формы осуществляют посредством прокатки, при этом в два этапа:

[50]

на первом - при температуре 1250-1350°С, с шагом прокатки 0,2-0,3 мм, при изменении после каждого шага прокатки направления заготовки сплава катода на 90 градусов с последующим отжигом в вакууме, при температуре не менее 1000°С, в течение 1-1,5 ч, при давлении остаточных газов не более 1,33×102 Па,

[51]

на втором - при комнатной температуре, с шагом прокатки не более 0,1 мм до степени деформации заготовки сплава катода 60-70%, далее с шагом прокатки не более 0,05 мм обеспечивает:

[52]

а) изотропность текстуры заготовки сплава катода и тем самым ее однородность,

[53]

б) удаление отравляющих примесей из сплава катода (углерода, кислорода, цинка и др.).

[54]

И как следствие этого повышение однородности микроструктуры сплава катода, что иллюстрирует фиг. 1, 2, плотности и стабильности эмиссионного тока.

[55]

Исходные компоненты сплава катода в виде бинарного сплава компонентов палладий-барий либо платина-барий, в отличие от других возможных бинарных сплавов указанных компонентов, обладают способностью при их соединении посредством высокотемпературного плавления наиболее активно образовывать термостабильные двухфазные системы интерметаллического соединения и чистого тугоплавкого компонента (палладия либо платины), которые обладают повышенными эмиссионными свойствами.

[56]

Дополнительная микрообработка лазером до заданной степени открытой пористости поверхности заготовки сплава катода при мощности излучения не менее 1,5 Вт в случае его использования для магнетрона с автоэлектронными эмиттерами обеспечивает более развитую поверхность сплава катода и тем самым активизирует испарение щелочноземельного компонента, например бария, на автоэлектронный эмиттер магнетрона с безнакальным запуском и тем самым обеспечивает его запуск и работу.

[57]

Наличие компонента щелочноземельного металла в виде интерметаллического соединения тугоплавкого и щелочноземельного металлов при их стехиометрическом соотношении 5:1.

[58]

Равно как осуществление операции соединения исходных компонентов сплава только двукратно, при технологических параметрах:

[59]

в первый раз при избыточном давлении инертной газовой среды не менее 1,1×105 Па,

[60]

во второй раз при пониженном давлении инертной газовой среды не более 5,0×104 Па и при изменении расположения заготовки сплава катода на 180 градусов относительно расположения на первом этапе являются оптимальными для обеспечения оптимального содержания компонентов в сплаве катода и однородности компонента щелочноземельного металла.

[61]

Обработка заготовки сплава катода посредством прокатки в два этапа:

[62]

на первом - как при температуре менее 1250°С, так и более 1350°С, с шагом прокатки как менее 0,2 мм, так и более 0,3 мм, при изменении после каждого шага прокатки направления заготовки сплава на 90 градусов с последующим отжигом в вакууме, при температуре менее 1000°С, в течение как менее 1 часа, так и более 1,5 часа, при давлении остаточных газов не более 1,33×102 Па, не желательна, так как приводит к нарушению однородности и текстуры заготовки сплава катода;

[63]

на втором - при комнатной температуре, с шагом прокатки более 0,1 мм до степени деформации заготовки сплава как менее 60, так и более 70%, с шагом прокатки более 0,05 мм не желательна, так как приводит к деформации заготовки сплава катода и образованию трещин.

[64]

Изобретение поясняется чертежами.

[65]

На фиг. 1 дана микроструктура образца эмиссионно-активного сплава катода, содержащего 2,3 мас.% бария (Ва) и палладий (Pd) - остальное, полученного:

[66]

а) заявленным способом,

[67]

б) по способу прототипа.

[68]

На фиг. 2 дано рентгеновское изображение указанного образца эмиссионно-активного сплава катода после технологической операции - обработка заготовки сплава посредством:

[69]

а) прокатки (заявленный способ),

[70]

б) метода электроискровой резки (способ прототипа).

[71]

На Фиг. 3 дана микроструктура вышеуказанного образца эмиссионно-активного сплава катода, которая дополнительно микрообработана лазером до заданной степени открытой пористости поверхности заготовки сплава катода.

[72]

Примеры конкретного выполнения заявленного способа изготовления эмиссионно-активного сплава катода

[73]

Пример 1

[74]

Приготавливают исходные компоненты сплава катода заданного соотношения на основе двух компонентов, тугоплавкого металла - палладия в количестве 14,92 г (чистотой 99,96%, марка ППд1 ПдАП-1 СТО 00195-2008), другого - щелочноземельного металла - бария в количестве 3,91 г (чистотой 99,0%).

[75]

Соединяют исходные компоненты сплава в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава.

[76]

Для чего приготовленную шихту исходных компонентов сплава катода размещают в углубление водоохлаждаемого медного пода камеры установки дуговой печи А535.02ТО с нерасходуемым вольфрамовым электродом.

[77]

Осуществляют высокотемпературное плавление шихты исходных компонентов сплава катода в течение 3 мин, максимальной силе тока 315 А, повторяя данную операцию двукратно:

[78]

при этом в первый раз при избыточном давлении инертной газовой среды 1,15×105 Па,

[79]

во второй раз при пониженном давлении инертной газовой среды 2,5×104 Па и при изменении расположения заготовки сплава катода на 180 градусов относительно расположения на первом этапе.

[80]

Обрабатывают заготовку сплава катода с обеспечением его заданного размера и формы посредством ее прокатки (четырехвалковый прокатный стан «Кварто»), при этом в два этапа:

[81]

на первом - при температуре 1300°С, с шагом прокатки 0,25 мм, при изменении после каждого шага прокатки направления заготовки сплава катода на 90 градусов с последующим отжигом в вакууме, при температуре 1300°С, в течение 75 мин, при давлении остаточных газов 0,66×102 Па,

[82]

на втором - при комнатной температуре, с шагом прокатки 0,25 мм до степени деформации заготовки сплава 65 процентов, далее с шагом прокатки 0,02 мм.

[83]

Примеры 2-6. Аналогично примеру 1 изготовлены образцы эмиссионно-активного сплава катода, но при других технологических параметрах (примеры 2-5) и для одного типа электровакуумного прибора.

[84]

В случае использования эмиссионно-активного сплава катода в катодном узле для магнетрона с автоэлектронными эмиттерами после упомянутой обработки заготовки сплава дополнительно осуществляют микрообработку с использованием автоматизированной лазерной технологической установки «Каравелла-2» на базе лазера на парах меди при мощности не менее 1,5 Вт до заданной степени открытой пористости поверхности заготовки сплава (пример 6).

[85]

Пример 7. Данные соответствуют прототипу.

[86]

Изготовленные образцы эмиссионно-активного сплава катода были опробованы для изготовления катодного узла ТСЗ 520 364 СБ

[87]

в электровакуумном приборе для испытания катодов ТСЗ 309 112 СБ (примеры 1-5),

[88]

в электровакуумном приборе магнетроне с автоэлектронными эмиттерами (МИ-463) (пример 6).

[89]

При этом измерены:

[90]

плотность эмиссионного тока (Jэ) А/см2 согласно КРПГ.25803.000,

[91]

коэффициент вторичной электронной эмиссии (КВЭЭ) согласно КРПГ.25803.00042,

[92]

рабочая температура Траб (°С) пирометром любого типа со шкалой до 1500°С.

[93]

Данные представлены в таблицах.

[94]

Как видно из таблиц, образцы эмиссионно-активного сплава катода имеют плотность эмиссионного тока (Jэ) А/см2 и коэффициент вторичной электронной эмиссии (КВЭЭ).

[95]

1. Для исходных компонентов сплава катода палладий-барий

[96]

Jэ - порядка 0,021 А/см2, КВЭЭ - порядка 2,90, выполненные согласно технологическим параметрам заявленной формулы изобретения (примеры 1-3),

[97]

Jэ - порядка 0,008 А/см2, КВЭЭ - порядка 2,70, выполненные согласно технологическим параметрам за пределами заявленной формулы изобретения,

[98]

Jэ - 0,003 A/см2, КВЭЭ - 2,55 - данные прототипа (Таблица 1).

[99]

2. Для исходных компонентов сплава катода платина-барий

[100]

Jэ - порядка 6,0 А/см2, КВЭЭ - порядка 3,0, выполненные согласно технологическим параметрам заявленной формулы изобретения (примеры 1-3),

[101]

Jэ - порядка 4,0 А/см2, КВЭЭ - порядка 2,80, выполненные согласно технологическим параметрам за пределами заявленной формулы изобретения,

[102]

Jэ - порядка 5,0 А/см2 (Jэ), КВЭЭ - нет данных - данные прототипа (Таблица 2).

[103]

Таким образом, заявленный способ изготовления эмиссионно-активного сплава катода позволит по сравнению с прототипом:

[104]

повысить плотность эмиссионного тока примерно в 7 раз в случае эмиссионно-активного сплава катода палладий-барий,

[105]

повысить плотность эмиссионного тока примерно на 20% и коэффициент вторичной электронной эмиссии примерно на 14% в случае эмиссионно-активного сплава катода платина-барий,

[106]

повысить однородность эмиссионного тока благодаря обеспечению изотропности текстуры сплава катода и его стабильность благодаря исключению отравляющих примесей (углерода, кислорода, цинка и др.) сплава катода,

[107]

при обеспечении срока службы не менее 5000 час.

[108]

Кроме того, улучшение экологичности и снижение себестоимости способа.

[109]

Источники информации

[110]

1. Дюбуа Б.Ч., Королев А.Н. Современные эффективные катоды / Электронная техника. Серия 1. СВЧ-Техника, 2011 г., вып. 1 (508), с. 5-24.

[111]

2. Патент РФ №2380784, МПК H01J 25/00, приоритет 24.10.2008 г., опубл. 27.01.2010 г.

[112]

3. Патент РФ №2069915, МПК H01J 1/32, приоритет 29.12.1990 г., опубл. 27.11.96 г.

[113]

4. Патент США №6791251, МПК H01J 1/32, приоритет 29.12.1990 г., опубл. 14.09.2004 г., - прототип.

[114]

[115]

Как компенсировать расходы
на инновационную разработку
Похожие патенты