Compositions and methods for controlling pests are provided. The methods involve transforming organisms with a nucleic acid sequence encoding an insecticidal protein. In particular, the nucleic acid sequences are useful for preparing plants and microorganisms that possess insecticidal activity. Thus, transformed bacteria, plants, plant cells, plant tissues and seeds are provided. Compositions are insecticidal nucleic acids and proteins of bacterial species. The sequences find use in the construction of expression vectors for subsequent transformation into organisms of interest including plants, as probes for the isolation of other homologous (or partially homologous) genes. The pesticidal proteins find use in controlling, inhibiting growth or killing Lepidopteran, Coleopteran, Dipteran, fungal, Hemipteran and nematode pest populations and for producing compositions with insecticidal activity.
1. A DNA construct comprising i) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 1, or a variant or fragment thereof, and having insecticidal activity; and one or more of the nucleic acid molecules selected from the group comprising ii) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 7 or 798, or a variant or fragment thereof, and having insecticidal activity. 2. The DNA construct of 3. The DNA construct of 4. A transgenic plant comprising a molecular stack of i) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 1, or a variant or fragment thereof, and having insecticidal activity; and ii) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 7 or 798, or a variant or fragment thereof, and having insecticidal activity. 5. The transgenic plant of 6. The transgenic plant of 7. A transgenic plant comprising a breeding stack of: i) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 1, or a variant or fragment thereof, and having insecticidal activity; and ii) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 7 or 798, or a variant or fragment thereof, and having insecticidal activity. 8. The transgenic plant of 9. The transgenic plant of 10. The transgenic plant of 11. A transgenic corn or soy plant comprising the DNA construct of 12. A composition comprising: i) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 1, or a variant or fragment thereof, and having insecticidal activity; and ii) a nucleic acid molecule encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 7 or 798, or a variant or fragment thereof, and having insecticidal activity. 13. A method for controlling an insect pest population comprising contacting the insect pest population with the transgenic plant of
This application claims the benefit of International Application No. PCT/US2018/013253, filed on Jan. 11, 2018, which claims the benefit of U.S. Provisional Application No. 62/452,627, filed Jan. 31, 2017, each of which is hereby incorporated herein in its entirety by reference. The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named “7417WOPCT_SequenceListing.txt” created on Jan. 18, 2017, and having a size of 4,505 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety. This disclosure relates to the field of molecular biology. Provided are novel genes that encode pesticidal proteins. These pesticidal proteins and the nuchcleic acid sequences that encode them are useful in preparing pesticidal formulations and in the production of transgenic pest-resistant plants. Biological control of insect pests of agricultural significance using a microbial agent, such as fungi, bacteria or another species of insect affords an environmentally friendly and commercially attractive alternative to synthetic chemical pesticides. Generally speaking, the use of biopesticides presents a lower risk of pollution and environmental hazards and biopesticides provide greater target specificity than is characteristic of traditional broad-spectrum chemical insecticides. In addition, biopesticides often cost less to produce and thus improve economic yield for a wide variety of crops. Certain species of microorganisms of the genus Crop plants have been developed with enhanced insect resistance by genetically engineering crop plants to produce pesticidal proteins from Accordingly, there remains a need for new pesticidal proteins with different ranges of insecticidal activity against insect pests, e.g., insecticidal proteins which are active against a variety of insects in the order Lepidoptera and/or the order Coleoptera including but not limited to insect pests that have developed resistance to existing insecticides. Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include nucleic acid molecules encoding sequences for pesticidal and insecticidal polypeptides, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. Compositions also include the pesticidal polypeptide sequences and antibodies to those polypeptides. The nucleic acid sequences can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. The nucleotide or amino acid sequences may be synthetic sequences that have been designed for expression in an organism including, but not limited to, a microorganism or a plant. Compositions also comprise transformed bacteria, plants, plant cells, tissues and seeds. In particular, isolated or recombinant nucleic acid molecules are provided encoding 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, and SEQ ID NOs: 958-1026, as well as amino acid substitutions, deletions, insertions, fragments thereof and combinations thereof. Methods are provided for producing the polypeptides and for using those polypeptides for controlling or killing a Lepidopteran, Coleopteran, nematode, fungi, and/or Dipteran pests. The transgenic plants of the embodiments express one or more of the pesticidal sequences disclosed herein. In various embodiments, the transgenic plant further comprises one or more additional genes for insect resistance, for example, one or more additional genes for controlling Coleopteran, Lepidopteran, Hemipteran or nematode pests. It will be understood by one of skill in the art that the transgenic plant may comprise any gene imparting an agronomic trait of interest. Methods for detecting the nucleic acids and polypeptides of the embodiments in a sample are also included. A kit for detecting the presence of a PtIP-83 polypeptide or detecting the presence of a polynucleotide encoding a PtIP-83 polypeptide in a sample is provided. The kit may be provided along with all reagents and control samples necessary for carrying out a method for detecting the intended agent, as well as instructions for use. Compositions and methods for addressing insect resistance management are also contemplated by the disclosure. In one embodiment, compositions are contemplated that comprise polynucleotide sequences encoding PtIP-83Aa (SEQ ID NO: 1) and PtIP-83Cb (SEQ ID NO: 7) or PtIP-83Gb (SEQ ID NO: 798) polypeptides disclosed herein. In another embodiment, methods are contemplated for minimizing the development of insect resistance comprising utilizing compositions, including transgenic plants, comprising polynucleotide sequences encoding PtIP-83Aa (SEQ ID NO: 1) and PtIP-83Cb (SEQ ID NO: 7) or PtIP-83Gb (SEQ ID NO: 798) polypeptides disclosed herein. The compositions and methods of the embodiments are useful for the production of organisms with enhanced pest resistance or tolerance. These organisms and compositions comprising the organisms are desirable for agricultural purposes. The compositions of the embodiments are also useful for generating altered or improved proteins that have pesticidal activity or for detecting the presence of PtIP-83 polypeptides. It is to be understood that this disclosure is not limited to the particular methodology, protocols, cell lines, genera, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure. As used herein the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to “the protein” includes reference to one or more proteins and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs unless clearly indicated otherwise. The present disclosure is drawn to compositions and methods for controlling pests. The methods involve transforming organisms with nucleic acid sequences encoding PtIP-83 polypeptides. In particular, the nucleic acid sequences of the embodiments are useful for preparing plants and microorganisms that possess pesticidal activity. Thus, transformed bacteria, plants, plant cells, plant tissues and seeds are provided. The compositions are pesticidal nucleic acids and proteins of bacterial species. The nucleic acid sequences find use in the construction of expression vectors for subsequent transformation into organisms of interest, as probes for the isolation of other homologous (or partially homologous) genes, and for the generation of altered PtIP-83 polypeptides by methods known in the art, such as site directed mutagenesis, domain swapping or DNA shuffling. The PtIP-83 find use in controlling or killing Lepidopteran, Coleopteran, Dipteran, fungal, Hemipteran and nematode pest populations and for producing compositions with pesticidal activity. Insect pests of interest include, but are not limited to, Lepidoptera species including but not limited to: Corn Earworm, (CEW) ( By “pesticidal toxin” or “pesticidal protein” is used herein to refer to a toxin that has toxic activity against one or more pests, including, but not limited to, members of the Lepidoptera, Diptera, Hemiptera and Coleoptera orders or the Nematoda phylum or a protein that has homology to such a protein. Pesticidal proteins have been purified from organisms including, for example, In some embodiments the PtIP-83 polypeptide include amino acid sequences deduced from the full-length nucleic acid sequences disclosed herein and amino acid sequences that are shorter than the full-length sequences, either due to the use of an alternate downstream start site or due to processing that produces a shorter protein having pesticidal activity. Processing may occur in the organism the protein is expressed in or in the pest after ingestion of the protein. Thus, provided herein are novel isolated or recombinant nucleic acid sequences that confer pesticidal activity. Also provided are the amino acid sequences of PtIP-83 polypeptides. The protein resulting from translation of these PtIP-83 polypeptide genes allows cells to control or kill pests that ingest it. One aspect pertains to isolated or recombinant nucleic acid molecules comprising nucleic acid sequences encoding PtIP-83 polypeptides or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding proteins with regions of sequence homology. As used herein, the term “nucleic acid molecule” refers to DNA molecules (e.g., recombinant DNA, cDNA, genomic DNA, plastid DNA, mitochondrial DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An “isolated” nucleic acid molecule (or DNA) is used herein to refer to a nucleic acid sequence (or DNA) that is no longer in its natural environment, for example in vitro. A “recombinant” nucleic acid molecule (or DNA) is used herein to refer to a nucleic acid sequence (or DNA) that is in a recombinant bacterial or plant host cell. In some embodiments, an “isolated” or “recombinant” nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For purposes of the disclosure, “isolated” or “recombinant” when used to refer to nucleic acid molecules excludes isolated chromosomes. For example, in various embodiments, the recombinant nucleic acid molecule encoding PtIP-83 polypeptides can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleic acid sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. In some embodiments an isolated nucleic acid molecule encoding PtIP-83 polypeptides has one or more change in the nucleic acid sequence compared to the native or genomic nucleic acid sequence. In some embodiments the change in the native or genomic nucleic acid sequence includes but is not limited to: changes in the nucleic acid sequence due to the degeneracy of the genetic code; changes in the nucleic acid sequence due to the amino acid substitution, insertion, deletion and/or addition compared to the native or genomic sequence; removal of one or more intron; deletion of one or more upstream or downstream regulatory regions; and deletion of the 5′ and/or 3′ untranslated region associated with the genomic nucleic acid sequence. In some embodiments the nucleic acid molecule encoding a PtIP-83 polypeptide is a non-genomic sequence. A variety of polynucleotides that encode PtIP-83 polypeptides or related proteins are contemplated. Such polynucleotides are useful for production of PtIP-83 polypeptides in host cells when operably linked to suitable promoter, transcription termination and/or polyadenylation sequences. Such polynucleotides are also useful as probes for isolating homologous or substantially homologous polynucleotides that encode PtIP-83 polypeptides or related proteins. One source of polynucleotides that encode PtIP-83 polypeptides or related proteins is a fern or other primitive plant species which contains a PtIP-83 polynucleotide of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 717, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752 or SEQ ID NO: 753, encoding a PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or SEQ ID NOs: 889-957,. The polynucleotides of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 717, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752 and SEQ ID NO: 753 can be used to express PtIP-83 polypeptides in bacterial hosts that include but are not limited to Polynucleotides that encode PtIP-83 polypeptides can also be synthesized de novo from a PtIP-83 polypeptide sequence. The sequence of the polynucleotide gene can be deduced from a PtIP-83 polypeptide sequence through use of the genetic code. Computer programs such as “BackTranslate” (GCG™ Package, Acclerys, Inc. San Diego, Calif.) can be used to convert a peptide sequence to the corresponding nucleotide sequence encoding the peptide. Examples of PtIP-83 polypeptide sequences that can be used to obtain corresponding nucleotide encoding sequences include, but are not limited to the PtIP-83 polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 and SEQ ID NOs: 958-1026. Furthermore, synthetic PtIP-83 polynucleotide sequences of the disclosure can be designed so that they will be expressed in plants. Methods are available in the art for synthesizing plant-preferred genes. See, for example, Murray, et al., (1989) In some embodiments the nucleic acid molecule encoding a PtIP-83 polypeptide is a polynucleotide having the sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 717, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752, SEQ ID NO: 753, and SEQ ID NOs: 889-957, and variants, fragments and complements thereof. “Complement” is used herein to refer to a nucleic acid sequence that is sufficiently complementary to a given nucleic acid sequence such that it can hybridize to the given nucleic acid sequence to thereby form a stable duplex. “Polynucleotide sequence variants” is used herein to refer to a nucleic acid sequence that except for the degeneracy of the genetic code encodes the same polypeptide. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is a non-genomic nucleic acid sequence. As used herein a “non-genomic nucleic acid sequence” or “non-genomic nucleic acid molecule” or “non-genomic polynucleotide” refers to a nucleic acid molecule that has one or more change in the nucleic acid sequence compared to a native or genomic nucleic acid sequence. In some embodiments the change to a native or genomic nucleic acid molecule includes but is not limited to: changes in the nucleic acid sequence due to the degeneracy of the genetic code; codon optimization of the nucleic acid sequence for expression in plants; changes in the nucleic acid sequence to introduce at least one amino acid substitution, insertion, deletion and/or addition compared to the native or genomic sequence; removal of one or more intron associated with the genomic nucleic acid sequence; insertion of one or more heterologous introns; deletion of one or more upstream or downstream regulatory regions associated with the genomic nucleic acid sequence; insertion of one or more heterologous upstream or downstream regulatory regions; deletion of the 5′ and/or 3′ untranslated region associated with the genomic nucleic acid sequence; insertion of a heterologous 5′ and/or 3′ untranslated region; and modification of a polyadenylation site. In some embodiments the non-genomic nucleic acid molecule is a cDNA. In some embodiments the non-genomic nucleic acid molecule is a synthetic nucleic acid sequence. In some embodiments the nucleic acid molecule encoding a PtIP-83 polypeptide is a the non-genomic polynucleotide having a nucleotide sequence having at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity, to the nucleic acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 717, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752, SEQ ID NO: 753, or SEQ ID NOs: 889-957, wherein the PtIP-83 polypeptide has insecticidal activity. In some embodiments the non-genomic polynucleotide is not the nucleic acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 717, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752, SEQ ID NO: 753 or SEQ ID NOs: 889-957. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising an amino acid sequence having at least 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, wherein the PtIP-83 polypeptide has insecticidal activity. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising an amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 or more amino acid substitutions compared to the native amino acid at the corresponding position of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768′ SEQ ID NO: 769 or SEQ ID NOs: 958-1026. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising an amino acid sequence of any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is any one of SEQ ID NO: 172-235, SEQ ID NO: 300-333, SEQ ID NO: 368-397, SEQ ID NO: 428-517, SEQ ID NO: 634-639, and SEQ ID NO: 718-727. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide variant of SEQ ID NO: 1, wherein the amino acid at position 53 is Val, Ala, Cys or Thr; the amino acid at position 54 is Lys, Ala, Cys, Asp, Glu, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser or Thr; the amino acid at position 55 is Arg, Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 56 is Leu, Glu, Phe, Ile, Met, Thr or Val; the amino acid at position 57 is Tyr, Cys, Ile, Leu, Met, Thr or Val; the amino acid at position 58 is Val, Cys, Ile or Leu; the amino acid at position 59 is Phe, Leu, Met, Val or Tyr; the amino acid at position 60 is Ala, Cys, Gly, Ser, Thr or Val; the amino acid at position 61 is Asp, Glu, His or Ser; the amino acid at position 62 is Val, Ala, Cys, Ile, Leu or Thr; the amino acid at position 63 is Val, Ala, Cys, Ile, Leu, Met or Thr; the amino acid at position 64 is Glu, Ala, Cys, Phe, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 65 is Leu, Ala, Cys, Phe, His, Ile, Met, Asn, Gln, Thr, Val or Trp; the amino acid at position 66 is Pro, Asp, Gly, Met, Gln or Arg; the amino acid at position 363 is Gln, Ala, Cys, Glu, Phe, Gly, His, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 364 is Ile, Ala, Cys, Glu, Phe, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 365 is Leu, Ala, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Arg, Val, Trp or Tyr; the amino acid at position 366 is Gly, Ala, Cys, Phe, His, Ile, Lys, Leu, Met, Asn, Ser, Thr or Val; the amino acid at position 367 is Ser, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val or Trp; the amino acid at position 368 is Tyr, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Trp; the amino acid at position 369 is Leu, Ala, Cys, Asp, Phe, Gly, Ile, Met, Thr or Val; the amino acid at position 370 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 371 is Gln, Ala, Cys, Asp, Glu, Phe, Gly, Ile, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 372 is Gln, Ala, Cys, Asp, Phe, Gly, His, Ile, Leu, Asn, Arg, Ser, Val or Tyr; the amino acid at position 373 is Asn, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Gln, Ser, Thr, Val or Trp; the amino acid at position 556 is Trp, Phe, Thr or Tyr; the amino acid at position 557 is Arg, Cys, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 558 is Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Val, Trp or Tyr; the amino acid at position 559 is Lys, Ala, Cys, Phe, Gly, His, Ile, Leu, Asn, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 560 is Cys, Ala, Phe, Gly, Ile, Met, Asn, Arg, Ser, Thr or Val; the amino acid at position 561 is Lys, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Arg, Ser, Thr, Val or Tyr; the amino acid at position 562 is Asn, Cys, Asp, Glu, Gly, His, Leu, Met, Arg, Ser, Thr, Val or Tyr; the amino acid at position 563 is Val, Ala, Cys, Asp, Phe, His, Ile, Leu, Met, Asn, Gln, Thr or Trp; the amino acid at position 564 is Ala, Cys, Gly, Met, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 646 is Leu, Ala, Cys, Gly, Ile, Met, Asn, Gln, Ser, Thr or Val; the amino acid at position 647 is Leu, Asp, Gly, Met, Asn, Gln or Thr; the amino acid at position 648 is Met, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 649 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Met, Asn, Gln, Arg, Ser, Thr, Trp or Tyr; the amino acid at position 650 is Thr, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Val or Tyr; the amino acid at position 651 is Glu, Ala, Cys, Asp, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 652 is Leu, Cys, Phe, Ile, Lys, Met, Pro, Arg, Ser, Thr or Val; the amino acid at position 653 is Thr, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Pro, Arg, Ser, Val or Trp; the amino acid at position 654 is Thr, Ala, Cys, Phe, Ile, Lys, Leu, Met, Pro, Arg, Ser, Val, Trp or Tyr; the amino acid at position 655 is Trp, Phe or Tyr; the amino acid at position 771 is Arg, Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Asn, Ser, Thr, Val, Trp or Tyr; the amino acid at position 772 is Arg, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 773 is Asp, Ala, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 774 is Gln, Ala, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 775 is Val, Ala, Cys, Asp, Glu, Gly, His, Ile, Asn, Pro, Gln, Arg, Ser, Thr or Tyr; the amino acid at position 776 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 777 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 778 is Phe, Ala, His, Ile, Leu, Met, Asn, Gln, Ser, Val, Trp or Tyr; the amino acid at position 779 is Gln, Ala, Cys, Asp, Glu, Gly, His, Lys, Leu, Asn, Pro, Arg, Ser, Thr or Val; the amino acid at position 780 is Ala, Cys, Asn, Pro, Gln or Ser; the amino acid at position 781 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 782 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 783 is Pro, Ala, Cys, Asp, Glu, Gly, His, Asn, Gln, Arg, Ser, Thr or Val; the amino acid at position 784 is Leu, Ala, Glu, Phe, His, Ile, Lys, Met, Asn, Pro, Gln, Ser, Thr, Val or Trp; the amino acid at position 785 is Asn, Ala, Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; and the amino acid at position 786 is Tyr, Phe, Ile, Leu or Trp. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide variant of SEQ ID NO: 1, wherein the amino acid at position 1 is Met or deleted; the amino acid at position 2 is Ala or deleted; the amino acid at position 3 is Leu, Val or deleted; the amino acid at position 4 is Val, Met or Leu; the amino acid at position 7 is Gly or Ser; the amino acid at position 8 is Lys or Thr; the amino acid at position 10 is Phe or Tyr; the amino acid at position 11 is Glu or Arg; the amino acid at position 18 is Met or Ile; the amino acid at position 19 is Gly, Pro or Ala; the amino acid at position 20 is Val or deleted; the amino acid at position 21 is Leu or Val; the amino acid at position 23 is Arg or Gln; the amino acid at position 37 is Val or Leu; the amino acid at position 38 is Arg or Asn; the amino acid at position 40 is Ala or Ser; the amino acid at position 43 is Asn or Asp; the amino acid at position 45 is Gly or Ala; the amino acid at position 46 is Gln or Glu; the amino acid at position 48 is Glu, Pro or Val; the amino acid at position 51 is Glu or Gly; the amino acid at position 52 is Lys, Arg or Thr; the amino acid at position 56 is Leu or Val; the amino acid at position 59 is Phe or Leu; the amino acid at position 66 is Pro or Ala; the amino acid at position 67 is Val, Pro or Thr; the amino acid at position 68 is Val, Arg, Phe or Gly; the amino acid at position 69 is Glu, Ala or Lys; the amino acid at position 70 is Trp, Thr, His, Tyr or Arg; the amino acid at position 71 is Arg, Pro or deleted; the amino acid at position 72 is Trp, Asp, Leu or deleted; the amino acid at position 73 is Pro, Gln, Asn, His or deleted; the amino acid at position 74 is Pro, Met or Thr; the amino acid at position 75 is Gln, His or Arg; the amino acid at position 76 is Ile, Met or Leu; the amino acid at position 84 is Ile or Val; the amino acid at position 91 is Trp or Phe; the amino acid at position 93 is Thr or Ile; the amino acid at position 94 is Asp or Gly; the amino acid at position 96 is Arg or Ser; the amino acid at position 97 is Gln, Phe or Arg; the amino acid at position 98 is Ser or deleted; the amino acid at position 99 is Asp or Ala; the amino acid at position 100 is Thr or Ala; the amino acid at position 101 is Glu, Thr or Trp the amino acid at position 103 is His, Arg, Glu or Gln; the amino acid at position 105 is Thr or Pro; the amino acid at position 108 is Lys, Gln or Glu; the amino acid at position 109 is Leu or Val; the amino acid at position 111 is Ala or Thr; the amino acid at position 112 is Ile, Arg, Thr or deleted; the amino acid at position 113 is Gln, Ala, Gly or deleted; the amino acid at position 114 is Arg, Glu or Ile; the amino acid at position 115 is Glu or Gln; the amino acid at position 116 is Glu, Asn, Gln or Arg; the amino acid at position 117 is Asn, Val, Tyr or Phe; the amino acid at position 118 is Arg or Lys; the amino acid at position 119 is Trp or Ser; the amino acid at position 122 is Thr, Lys or Ala; the amino acid at position 124 is Ala or Thr; the amino acid at position 126 is Gly or Asp; the amino acid at position 127 is Met or Ala; the amino acid at position 128 is Asn or Lys; the amino acid at position 131 is Val, Ile or Thr; the amino acid at position 133 is Ile or Val; the amino acid at position 134 is His or Tyr; the amino acid at position 135 is Ala or Gly; the amino acid at position 137 is Glu or Lys; the amino acid at position 139 is Gln or Glu; the amino acid at position 140 is Val, Arg or Leu; the amino acid at position 141 is Gly or Ser; the amino acid at position 142 is Val or Pro; the amino acid at position 144 is Thr, Leu, Phe or Tyr; the amino acid at position 145 is Met, Pro or Asn; the amino acid at position 146 is Ser, Gly or Asn; the amino acid at position 147 is Trp or Asn; the amino acid at position 148 is Ser, Ala or Pro; the amino acid at position 149 is Ser or deleted; the amino acid at position 150 is Val, Ile or Tyr; the amino acid at position 152 is Arg, Ala, Val or Gly; the amino acid at position 154 is Ser, Trp or Glu; the amino acid at position 156 is Leu, Asp or Gln; the amino acid at position 158 is Ser or Cys; the amino acid at position 159 is Val, Thr or Ile; the amino acid at position 162 is Ser or Ala; the amino acid at position 163 is Gly or deleted; the amino acid at position 164 is Phe or deleted; the amino acid at position 165 is Arg or Ala; the amino acid at position 166 is Ala, Arg, Met or Phe; the amino acid at position 167 is Val or His; the amino acid at position 168 is Ser or Asn; the amino acid at position 169 is Val, His or Thr; the amino acid at position 170 is Phe or Val; the amino acid at position 171 is Glu, Asn or Asp; the amino acid at position 172 is Val, Ala, Arg or Glu; the amino acid at position 175 is Ser, Arg or Trp; the amino acid at position 176 is Val or Ile; the amino acid at position 177 is Arg or Ile; the amino acid at position 179 is Thr, Ile, Val or Ser; the amino acid at position 180 is Leu, Phe or Thr; the amino acid at position 181 is Gly, Thr, Gln or Ser; the amino acid at position 182 is Ala, Leu, Phe or Ile; the amino acid at position 183 is Thr or Gly; the amino acid at position 184 is Leu, Thr, Ser or Arg; the amino acid at position 185 is Arg, Gly, Asp or Ala; the amino acid at position 186 is Pro, Val or Gln; the amino acid at position 187 is Asp, Thr or Ser; the amino acid at position 188 is His, Gly or Ala; the amino acid at position 189 is Ala, Arg, Pro or deleted; the amino acid at position 190 is Leu, Asn or deleted; the amino acid at position 191 is Tyr or deleted; the amino acid at position 192 is Ser, Ile, Val or Asn; the amino acid at position 193 is Thr or Asp; the amino acid at position 194 is Thr or Ser; the amino acid at position 195 is Met or Thr; the amino acid at position 196 is Gln, His, Leu or Ser; the amino acid at position 197 is Ala, Gly or Leu; the amino acid at position 198 is Thr, Glu or Ala; the amino acid at position 199 is Pro or Arg; the amino acid at position 200 is Asn, Ser, Thr or Gly; the amino acid at position 201 is Ala, Leu, Glu or Trp; the amino acid at position 202 is Ser, Asp, Phe or Leu; the amino acid at position 203 is His, Pro, Gly or Ser; the amino acid at position 204 is Ile, Trp, His or Gly; the amino acid at position 205 is Ser, Asn or Ile; the amino acid at position 206 is Ala, Gly, Asp, Tyr or Arg; the amino acid at position 207 is Phe, Val or Leu; the amino acid at position 208 is Asn, Ser, Pro or Leu; the amino acid at position 210 is Arg, Asp, Glu or Tyr; the amino acid at position 211 is Ile, Ser or Thr; the amino acid at position 212 is Val, Ala or Asp; the amino acid at position 214 is Pro or Arg; the amino acid at position 215 is Ser or Thr; the amino acid at position 217 is Tyr or Phe; the amino acid at position 218 is Arg or Ser; the amino acid at position 219 is Val or Ala; the amino acid at position 220 is Cys, Leu or Ser; the amino acid at position 221 is Pro or His; the amino acid at position 222 is Leu, Arg or Ser; the amino acid at position 224 is Asn or Ser; the amino acid at position 225 is Asp, Arg or Thr; the amino acid at position 226 is Thr or Asn; the amino acid at position 227 is Asp, Leu or deleted; the amino acid at position 228 is Thr or deleted; the amino acid at position 229 is Tyr or deleted; the amino acid at position 230 is Leu or deleted; the amino acid at position 231 is Gly or deleted; the amino acid at position 232 is Ile or deleted; the amino acid at position 233 is Pro or deleted; the amino acid at position 234 is Ala, Pro or deleted; the amino acid at position 235 is Asp, Ile or Val; the amino acid at position 236 is Val, Ser or Glu; the amino acid at position 237 is Ala, Phe or Tyr; the amino acid at position 238 is Ala or Thr; the amino acid at position 239 is Val, Ser or Gly; the amino acid at position 240 is Leu or Ile; the amino acid at position 243 is Asp or Glu; the amino acid at position 249 is Asn or Ser; the amino acid at position 252 is Leu or Met; the amino acid at position 257 is Thr or Ser; the amino acid at position 259 is His or Leu; the amino acid at position 266 is Ala or Val; the amino acid at position 267 is Cys or Gly; the amino acid at position 268 is His, Arg or Tyr; the amino acid at position 272 is Asp or Glu; the amino acid at position 273 is Val, Met, Ile or Leu; the amino acid at position 274 is Val or Met; the amino acid at position 278 is Gly or Ala; the amino acid at position 279 is Glu or Val; the amino acid at position 281 is Leu or Ala; the amino acid at position 282 is Asn, Leu or Ile; the amino acid at position 285 is Asn or Ser; the amino acid at position 286 is Lys, Asp or Glu; the amino acid at position 287 is Leu or Val; the amino acid at position 290 is Pro, Gln or Arg; the amino acid at position 291 is Leu or Val; the amino acid at position 292 is Lys or Val; the amino acid at position 293 is Glu or Gln; the amino acid at position 294 is Ser, Asn or Lys; the amino acid at position 295 is Thr or Ser; the amino acid at position 296 is Gln or His; the amino acid at position 297 is Leu or Met; the amino acid at position 300 is Ser or Thr; the amino acid at position 301 is Glu or Ala; the amino acid at position 302 is Ser, Pro or Ala; the amino acid at position 304 is Lys or Asn; the amino acid at position 313 is Val or Ile; the amino acid at position 314 is His, Glu or Gln; the amino acid at position 315 is Ala, Cys or Ser; the amino acid at position 316 is Ala or Val; the amino acid at position 317 is Met or Ile; the amino acid at position 319 is Met or Ile; the amino acid at position 320 is Val or Gly; the amino acid at position 321 is Arg or Pro; the amino acid at position 322 is Ile or Phe; the amino acid at position 323 is Gly or Val; the amino acid at position 324 is Leu or Ser; the amino acid at position 336 is Ser or Asn; the amino acid at position 339 is Asn, Lys or Arg; the amino acid at position 350 is Arg or Gln; the amino acid at position 351 is Glu or Asp; the amino acid at position 353 is Lys or Arg; the amino acid at position 354 is Gln or Arg; the amino acid at position 355 is Phe or Leu; the amino acid at position 356 is Lys or Arg; the amino acid at position 360 is Ile, Val or Ala; the amino acid at position 365 is Leu or Phe; the amino acid at position 371 is or Glu; the amino acid at position 372 is or Lys; the amino acid at position 374 is Arg or Lys; the amino acid at position 376 is Phe or Leu; the amino acid at position 378 is Glu or Asp; the amino acid at position 381 is Leu or Val; the amino acid at position 388 is Ala or Ser; the amino acid at position 395 is Arg or Lys; the amino acid at position 396 is Glu, Gln or Gly; the amino acid at position 399 is Asp or Asn; the amino acid at position 400 is Asn, Thr or Asp; the amino acid at position 401 is Thr or Ala; the amino acid at position 402 is Phe, Ile or Leu; the amino acid at position 406 is Asp or Glu; the amino acid at position 408 is Leu or Met; the amino acid at position 410 is Gly or Leu; the amino acid at position 414 is Ala or Glu; the amino acid at position 416 is Ser, Asn or Asp; the amino acid at position 417 is Ser, Arg or Gly; the amino acid at position 423 is Lys or Gln; the amino acid at position 431 is Arg or Lys; the amino acid at position 432 is Gln or Glu; the amino acid at position 436 is Arg or Glu; the amino acid at position 440 is Asn or Arg; the amino acid at position 442 is Leu or Val; the amino acid at position 447 is Ser, Lys or Arg; the amino acid at position 448 is Ala or Ser; the amino acid at position 451 is Gln or Met; the amino acid at position 453 is Gly or Ala; the amino acid at position 455 is Ala or Val; the amino acid at position 457 is Leu or Val; the amino acid at position 467 is Val or Ala; the amino acid at position 471 is Gly or Ala; the amino acid at position 475 is Ser or Asn; the amino acid at position 483 is Gly or Ala; the amino acid at position 493 is Gln or Gly; the amino acid at position 504 is Val or Ile; the amino acid at position 506 is Asp or His; the amino acid at position 509 is Asp or Asn; the amino acid at position 510 is Ser or Ala; the amino acid at position 512 is Glu or Asp; the amino acid at position 515 is Gly or Ser; the amino acid at position 516 is Gln or His; the amino acid at position 517 is Ile or Leu; the amino acid at position 519 is Asp, Gly or Gln; the amino acid at position 522 is Val, Glu, Pro or Val; the amino acid at position 525 is Glu or Asp; the amino acid at position 526 is Leu or Met; the amino acid at position 539 is Val or Ile; the amino acid at position 555 is Val or Ala; the amino acid at position 557 is Arg or Lys; the amino acid at position 563 is Val or Met; the amino acid at position 571 is Ser or Cys; the amino acid at position 575 is Val or Glu; the amino acid at position 577 is Met or Ile; the amino acid at position 579 is Glu or Gln; the amino acid at position 583 is Asp or Glu; the amino acid at position 589 is Met or Leu; the amino acid at position 590 is Met or Leu; the amino acid at position 593 is Met or Ile; the amino acid at position 595 is Arg or Gln; the amino acid at position 596 is Ser or Thr; the amino acid at position 597 is Gln or His; the amino acid at position 607 is Ala or Val; the amino acid at position 608 is Asp or Asn; the amino acid at position 612 is Tyr, His or Phe; the amino acid at position 617 is Thr or Ile; the amino acid at position 618 is Gln or His; the amino acid at position 625 is Arg or Ser; the amino acid at position 626 is Met or Ile; the amino acid at position 628 is Leu or Ile; the amino acid at position 633 is Ile or Met; the amino acid at position 634 is Leu or Met; the amino acid at position 642 is Arg or Met; the amino acid at position 648 is Met or Thr; the amino acid at position 651 is Glu or Gln; the amino acid at position 654 is Thr, Val or Ala; the amino acid at position 658 is Gly or Arg; the amino acid at position 663 is Gly or Ala; the amino acid at position 664 is Asp or Asn; the amino acid at position 668 is Ala or Thr; the amino acid at position 669 is Gln or His; the amino acid at position 671 is Asn or Ser the amino acid at position 675 is Ile, Val or Ser; the amino acid at position 678 is Met, Ile, Ala or Thr; the amino acid at position 682 is Pro or Gln; the amino acid at position 683 is Ser or Pro; the amino acid at position 685 is Asp or Asn; the amino acid at position 694 is Asp or Gly; the amino acid at position 697 is Asn or Ser; the amino acid at position 704 is Glu or Gly; the amino acid at position 714 is Ala or Gly; the amino acid at position 721 is Ser or Phe; the amino acid at position 722 is Ser or Asn; the amino acid at position 724 is Ser or Thr; the amino acid at position 734 is His or Gln; the amino acid at position 736 is Val or Ala; the amino acid at position 737 is Lys or Gln; the amino acid at position 739 is Ala or Ser; the amino acid at position 740 is Ser or Met; the amino acid at position 741 is Gly or Asn; the amino acid at position 742 is Ile or Gly; the amino acid at position 743 is Gly or deleted; the amino acid at position 745 is Gly or Asp; the amino acid at position 751 is Thr, Ser or Ala; the amino acid at position 753 is Gln or Arg; the amino acid at position 754 is Thr or Ser; the amino acid at position 756 is Thr or Ile; the amino acid at position 757 is Val or Ile; the amino acid at position 766 is Ile or Val; the amino acid at position 773 is Asp or Glu; the amino acid at position 774 is Gln or Glu; the amino acid at position 776 is Leu or Met; the amino acid at position 777 is Pro or Thr; the amino acid at position 782 is Ala, Asp or Val; the amino acid at position 786 is Tyr or Phe; the amino acid at position 787 is His or Gln; the amino acid at position 788 is Tyr or Met; the amino acid at position 789 is Ala or Arg; the amino acid at position 790 is Tyr or Thr; the amino acid at position 791 is Arg or Ala; the amino acid at position 792 is Leu or Ser; the amino acid at position 796 is Asp or Glu; the amino acid at position 797 is Ser, Thr or Ala the amino acid at position 802 is Glu or Gln; the amino acid at position 806 is Gln, Asp, Glu or His; the amino acid at position 810 is Lys or Thr; the amino acid at position 819 is Arg or His; the amino acid at position 829 is Lys, Ser, Ala or Pro; the amino acid at position 832 is Ala, Lys or Glu; the amino acid at position 833 is Gly or Glu; the amino acid at position 842 is Leu or Pro; the amino acid at position 847 is Gln or Glu; the amino acid at position 848 is Ile or Val; the amino acid at position 849 is Val or Ala; the amino acid at position 855 is Thr or Met; the amino acid at position 860 is Ile or Val; and the amino acid at position 864 is His or Gln. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide variant of SEQ ID NO: 1, wherein the amino acid at position 1 is Met or deleted; the amino acid at position 2 is Ala or deleted; the amino acid at position 3 is Leu, Val, Ile or deleted; the amino acid at position 4 is Val, Met, Ile or Leu; the amino acid at position 7 is Gly, Thr or Ser; the amino acid at position 8 is Lys, Arg, Ser or Thr; the amino acid at position 10 is Phe, Trp or Tyr; the amino acid at position 11 is Glu, Asp, Lys or Arg; the amino acid at position 18 is Met, Val, Leu or Ile; the amino acid at position 19 is Gly, Pro or Ala; the amino acid at position 20 is Val, Ile, Leu or deleted; the amino acid at position 21 is Leu, Ile or Val; the amino acid at position 23 is Arg, Lys, Asn or Gln; the amino acid at position 37 is Val, Ile or Leu; the amino acid at position 38 is Arg, Lys, Gln or Asn; the amino acid at position 40 is Ala, Gly, Thr or Ser; the amino acid at position 43 is Asn, Gln, Glu or Asp; the amino acid at position 45 is Gly or Ala; the amino acid at position 46 is Gln, Asp, Asn or Glu; the amino acid at position 48 is Glu, Asp, Pro, Ile, Leu or Val; the amino acid at position 51 is Glu, Asp, Ala or Gly; the amino acid at position 52 is Lys, Arg, Ser or Thr; the amino acid at position 56 is Leu, Ile or Val; the amino acid at position 59 is Phe, Ile, Val or Leu; the amino acid at position 66 is Pro, Gly or Ala; the amino acid at position 67 is Val, Pro, Ile, Leu, Ser or Thr; the amino acid at position 68 is Val, Arg, Phe, Ile, Leu, Lys or Gly; the amino acid at position 69 is Glu, Ala, Asp, Gly, Arg or Lys; the amino acid at position 70 is Trp, Thr, His, Tyr, Lys or Arg; the amino acid at position 71 is Arg, Pro, Lys or deleted; the amino acid at position 72 is Trp, Asp, Leu, Ile, Val, Glu or deleted; the amino acid at position 73 is Pro, Gln, Asn, His or deleted; the amino acid at position 74 is Pro, Met, Ser or Thr; the amino acid at position 75 is Gln, His, Asn, Lys or Arg; the amino acid at position 76 is Ile, Met, Val or Leu; the amino acid at position 84 is Ile, Leu or Val; the amino acid at position 91 is Trp or Phe; the amino acid at position 93 is Thr, Ser, Leu, Val or Ile; the amino acid at position 94 is Asp, Glu, Ala or Gly; the amino acid at position 96 is Arg, Lys, Thr or Ser; the amino acid at position 97 is Gln, Phe, Asn, Lys or Arg; the amino acid at position 98 is Ser, Thr or deleted; the amino acid at position 99 is Asp, Glu, Gly or Ala; the amino acid at position 100 is Thr, Ser, Gly or Ala; the amino acid at position 101 is Glu, Thr, Asp, Ser or Trp the amino acid at position 103 is His, Arg, Lys, Glu or Gln; the amino acid at position 105 is Thr, Ser or Pro; the amino acid at position 108 is Lys, Arg, Asn, Asp, Gln or Glu; the amino acid at position 109 is Leu, Ile or Val; the amino acid at position 111 is Ala, Ser or Thr; the amino acid at position 112 is Ile, Arg, Thr, Leu, Val, Lys, Ser or deleted; the amino acid at position 113 is Gln, Ala, Gly, Asn or deleted; the amino acid at position 114 is Arg, Glu, Lys, Asp or Ile; the amino acid at position 115 is Glu, Asp, Asn or Gln; the amino acid at position 116 is Glu, Asn, Gln, Asp, Lys or Arg; the amino acid at position 117 is Asn, Val, Tyr, Ile, Leu, Gln, Trp or Phe; the amino acid at position 118 is Arg or Lys; the amino acid at position 119 is Trp, Thr or Ser; the amino acid at position 122 is Thr, Lys, Ser, Arg or Ala; the amino acid at position 124 is Ala, Gly, Ser or Thr; the amino acid at position 126 is Gly, Ala, Glu or Asp; the amino acid at position 127 is Met, Gly or Ala; the amino acid at position 128 is Asn, Gln, Arg or Lys; the amino acid at position 131 is Val, Ile, Leu, Ser or Thr; the amino acid at position 133 is Ile, Leu or Val; the amino acid at position 134 is His or Tyr; the amino acid at position 135 is Ala or Gly; the amino acid at position 137 is Glu, Asp, Arg or Lys; the amino acid at position 139 is Gln, Asn, Asp or Glu; the amino acid at position 140 is Val, Arg, Ile, Lys or Leu; the amino acid at position 141 is Gly, Ala, Thr or Ser; the amino acid at position 142 is Val, Ile, Leu or Pro; the amino acid at position 144 is Thr, Leu, Phe, Ile, Val or Tyr; the amino acid at position 145 is Met, Pro, Gln or Asn; the amino acid at position 146 is Ser, Gly, Thr, Ala, Gln or Asn; the amino acid at position 147 is Trp, Gln, Tyr or Asn; the amino acid at position 148 is Ser, Ala, Thr, Gly or Pro; the amino acid at position 149 is Ser, Thr or deleted; the amino acid at position 150 is Val, Ile, Leu or Tyr; the amino acid at position 152 is Arg, Ala, Val, Ile, Leu, Lys or Gly; the amino acid at position 154 is Ser, Trp, Thr, Asp or Glu; the amino acid at position 156 is Leu, Asp, Ile, Val, Asn, Glu or Gln; the amino acid at position 158 is Ser, Thr or Cys; the amino acid at position 159 is Val, Thr, Leu or Ile; the amino acid at position 162 is Ser, Thr, Gly or Ala; the amino acid at position 163 is Gly, Ala or deleted; the amino acid at position 164 is Phe or deleted; the amino acid at position 165 is Arg, Lys, Gly or Ala; the amino acid at position 166 is Ala, Arg, Met, Lys or Phe; the amino acid at position 167 is Val, Ile, Leu or His; the amino acid at position 168 is Ser, Thr, Gln or Asn; the amino acid at position 169 is Val, His, Ile, Leu, Ser or Thr; the amino acid at position 170 is Phe, Ile, Leu or Val; the amino acid at position 171 is Glu, Asn, Gln or Asp; the amino acid at position 172 is Val, Ala, Arg, Ile, Leu, Gly, Lys, Asp or Glu; the amino acid at position 175 is Ser, Arg, Thr, Lys or Trp; the amino acid at position 176 is Val, Leu or Ile; the amino acid at position 177 is Arg, Lys, Leu, Val or Ile; the amino acid at position 179 is Thr, Ile, Val, Leu or Ser; the amino acid at position 180 is Leu, Phe, Ile, Val, Ser or Thr; the amino acid at position 181 is Gly, Thr, Gln, Asn or Ser; the amino acid at position 182 is Ala, Leu, Phe, Val or Ile; the amino acid at position 183 is Thr, Ser, Ala or Gly; the amino acid at position 184 is Leu, Thr, Ser, Ile, Val, Lys or Arg; the amino acid at position 185 is Arg, Gly, Asp, Lys, Glu or Ala; the amino acid at position 186 is Pro, Val, Ile, Leu, Asn or Gln; the amino acid at position 187 is Asp, Thr, Glu or Ser; the amino acid at position 188 is His, Gly or Ala; the amino acid at position 189 is Ala, Arg, Pro, Lys, Gly or deleted; the amino acid at position 190 is Leu, Asn, Ile, Val, Gln or deleted; the amino acid at position 191 is Tyr or deleted; the amino acid at position 192 is Ser, Ile, Val, Leu, Thr or Asn; the amino acid at position 193 is Thr, Ser, Glu or Asp; the amino acid at position 194 is Thr or Ser; the amino acid at position 195 is Met or Thr; the amino acid at position 196 is Gln, His, Leu, Asn, Ile, Val, Thr or Ser; the amino acid at position 197 is Ala, Gly, Ile, Val or Leu; the amino acid at position 198 is Thr, Glu, Ser, Asp, Gly or Ala; the amino acid at position 199 is Pro, Lys or Arg; the amino acid at position 200 is Asn, Ser, Thr, Gln, Ala or Gly; the amino acid at position 201 is Ala, Leu, Glu, Ile, Asp or Trp; the amino acid at position 202 is Ser, Asp, Phe, Ile, Val, Thr, Glu or Leu; the amino acid at position 203 is His, Pro, Gly, Ala, Thr or Ser; the amino acid at position 204 is Ile, Trp, His, Leu, Val, Ala or Gly; the amino acid at position 205 is Ser, Asn, Leu, Val, Thr, Gln or Ile; the amino acid at position 206 is Ala, Gly, Asp, Tyr, Glu, Lys or Arg; the amino acid at position 207 is Phe, Val, Ile or Leu; the amino acid at position 208 is Asn, Ser, Pro, Gln, Thr, Val, Ile or Leu; the amino acid at position 210 is Arg, Asp, Glu, Lys, Ser or Tyr; the amino acid at position 211 is Ile, Ser, Leu, Val or Thr; the amino acid at position 212 is Val, Ala, Ile, Leu, Glu, Gly or Asp; the amino acid at position 214 is Pro, Lys or Arg; the amino acid at position 215 is Ser or Thr; the amino acid at position 217 is Tyr or Phe; the amino acid at position 218 is Arg, Lys, Thr or Ser; the amino acid at position 219 is Val, Ile, Leu or Ala; the amino acid at position 220 is Cys, Leu, Ile, Val, Thr or Ser; the amino acid at position 221 is Pro or His; the amino acid at position 222 is Leu, Arg, Lys, Ile, Val, Thr or Ser; the amino acid at position 224 is Asn, Gln, Thr or Ser; the amino acid at position 225 is Asp, Arg, Glu, Lys, Ser or Thr; the amino acid at position 226 is Thr, Ser, Gln or Asn; the amino acid at position 227 is Asp, Leu, Glu, Ile, Val or deleted; the amino acid at position 228 is Thr, Ser or deleted; the amino acid at position 229 is Tyr or deleted; the amino acid at position 230 is Leu, Ile, Val or deleted; the amino acid at position 231 is Gly, Ala or deleted; the amino acid at position 232 is Ile, Leu, Val or deleted; the amino acid at position 233 is Pro or deleted; the amino acid at position 234 is Ala, Pro, Gly or deleted; the amino acid at position 235 is Asp, Ile, Leu, Glu or Val; the amino acid at position 236 is Val, Ser, Ile, Leu, Thr, Asp or Glu; the amino acid at position 237 is Ala, Phe or Tyr; the amino acid at position 238 is Ala, Gly, Ser or Thr; the amino acid at position 239 is Val, Ser, Ile, Leu, Thr, Ala or Gly; the amino acid at position 240 is Leu, Val or Ile; the amino acid at position 243 is Asp or Glu; the amino acid at position 249 is Asn, Gln, Thr or Ser; the amino acid at position 252 is Leu, Ile, Val or Met; the amino acid at position 257 is Thr or Ser; the amino acid at position 259 is His, Ile, Val or Leu; the amino acid at position 266 is Ala, Ile, Leu or Val; the amino acid at position 267 is Cys, Ala or Gly; the amino acid at position 268 is His, Arg, Lys or Tyr; the amino acid at position 272 is Asp or Glu; the amino acid at position 273 is Val, Met, Ile or Leu; the amino acid at position 274 is Val, Ile, Leu or Met; the amino acid at position 278 is Gly or Ala; the amino acid at position 279 is Glu, Asp, Gly or Val; the amino acid at position 281 is Leu, Ile, Val, Gly or Ala; the amino acid at position 282 is Asn, Leu or Ile; the amino acid at position 285 is Asn, Gln, Thr or Ser; the amino acid at position 286 is Lys, Asp, Arg or Glu; the amino acid at position 287 is Leu, Ile or Val; the amino acid at position 290 is Pro, Gln, Asn, Lys or Arg; the amino acid at position 291 is Leu, Ile or Val; the amino acid at position 292 is Lys, Arg, Ile, Leu or Val; the amino acid at position 293 is Glu, Asp, Asn or Gln; the amino acid at position 294 is Ser, Asn, Thr, Gln, Arg or Lys; the amino acid at position 295 is Thr or Ser; the amino acid at position 296 is Gln, Asn or His; the amino acid at position 297 is Leu, Ile, Val or Met; the amino acid at position 300 is Ser or Thr; the amino acid at position 301 is Glu, Asp, Gly or Ala; the amino acid at position 302 is Ser, Pro, Thr, Gly or Ala; the amino acid at position 304 is Lys, Arg, Gln or Asn; the amino acid at position 313 is Val, Leu or Ile; the amino acid at position 314 is His, Glu, Asn, Asp or Gln; the amino acid at position 315 is Ala, Cys, Gly, Thr or Ser; the amino acid at position 316 is Ala, Ile, Leu or Val; the amino acid at position 317 is Met, Leu, Val or Ile; the amino acid at position 319 is Met, Leu, Val or Ile; the amino acid at position 320 is Val, Ile, Leu, Ala or Gly; the amino acid at position 321 is Arg, Lys or Pro; the amino acid at position 322 is Ile, Leu, Val or Phe; the amino acid at position 323 is Gly, Ile, Leu or Val; the amino acid at position 324 is Leu, Ile, Val, Thr or Ser; the amino acid at position 336 is Ser, Thr, Gln or Asn; the amino acid at position 339 is Asn, Lys, Gln or Arg; the amino acid at position 350 is Arg, Lys, Asn or Gln; the amino acid at position 351 is Glu or Asp; the amino acid at position 353 is Lys or Arg; the amino acid at position 354 is Gln, Asn, Lys or Arg; the amino acid at position 355 is Phe, Ile, Leu or Leu; the amino acid at position 356 is Lys or Arg; the amino acid at position 360 is Ile, Val, Leu, Gly or Ala; the amino acid at position 365 is Leu, Ile, Val or Phe; the amino acid at position 371 is or Glu or Asp; the amino acid at position 372 is or Lys or Arg; the amino acid at position 374 is Arg or Lys; the amino acid at position 376 is Phe, Ile, Val or Leu; the amino acid at position 378 is Glu or Asp; the amino acid at position 381 is Leu, Ile or Val; the amino acid at position 388 is Ala, Thr, Gly or Ser; the amino acid at position 395 is Arg or Lys; the amino acid at position 396 is Glu, Gln, Asp, Asn, Ala or Gly; the amino acid at position 399 is Asp, Gln, Glu or Asn; the amino acid at position 400 is Asn, Thr, Ser, Glu, Gln or Asp; the amino acid at position 401 is Thr, Ser, Gly or Ala; the amino acid at position 402 is Phe, Ile, Val or Leu; the amino acid at position 406 is Asp or Glu; the amino acid at position 408 is Leu, Ile, Val or Met; the amino acid at position 410 is Gly, Ile, Val, Ala or Leu; the amino acid at position 414 is Ala, Gly, Asp or Glu; the amino acid at position 416 is Ser, Asn, Thr, Gln, Glu or Asp; the amino acid at position 417 is Ser, Arg, Lys, Thr, Ala or Gly; the amino acid at position 423 is Lys, Arg, Asn or Gln; the amino acid at position 431 is Arg or Lys; the amino acid at position 432 is Gln, Asn, Asp or Glu; the amino acid at position 436 is Arg, Lys, Asp or Glu; the amino acid at position 440 is Asn, Gln, Lys or Arg; the amino acid at position 442 is Leu, Ile or Val; the amino acid at position 447 is Ser, Lys, Thr or Arg; the amino acid at position 448 is Ala, Gly, Thr or Ser; the amino acid at position 451 is Gln, Asn or Met; the amino acid at position 453 is Gly or Ala; the amino acid at position 455 is Ala, Leu, Ile or Val; the amino acid at position 457 is Leu, Ile or Val; the amino acid at position 467 is Val, Ile, Leu, Gly or Ala; the amino acid at position 471 is Gly or Ala; the amino acid at position 475 is Ser, Thr, Gln or Asn; the amino acid at position 483 is Gly or Ala; the amino acid at position 493 is Gln, Asn or Gly; the amino acid at position 504 is Val, Leu or Ile; the amino acid at position 506 is Asp, Glu or His; the amino acid at position 509 is Asp, Glu, Gln or Asn; the amino acid at position 510 is Ser, Thr, Gly or Ala; the amino acid at position 512 is Glu or Asp; the amino acid at position 515 is Gly, Ala, Thr or Ser; the amino acid at position 516 is Gln, Asn or His; the amino acid at position 517 is Ile, Val or Leu; the amino acid at position 519 is Asp, Asn, Glu, Gly or Gln; the amino acid at position 522 is Val, Glu, Pro, Ile, Leu or Asp; the amino acid at position 525 is Glu or Asp; the amino acid at position 526 is Leu, Ile, Val or Met; the amino acid at position 539 is Val, Leu or Ile; the amino acid at position 555 is Val, Leu, Ile or Ala; the amino acid at position 557 is Arg or Lys; the amino acid at position 563 is Val, Leu, Ile or Met; the amino acid at position 571 is Ser, Thr or Cys; the amino acid at position 575 is Val, Leu, Ile, Asp or Glu; the amino acid at position 577 is Met, Leu, Val or Ile; the amino acid at position 579 is Glu, Asp, Asn or Gln; the amino acid at position 583 is Asp or Glu; the amino acid at position 589 is Met, Ile, Val or Leu; the amino acid at position 590 is Met, Ile, Val or Leu; the amino acid at position 593 is Met, Leu, Val or Ile; the amino acid at position 595 is Arg, Lys, Asn or Gln; the amino acid at position 596 is Ser or Thr; the amino acid at position 597 is Gln, Asn or His; the amino acid at position 607 is Ala, Gly, Ile, Leu or Val; the amino acid at position 608 is Asp, Glu, Gln or Asn; the amino acid at position 612 is Tyr, His or Phe; the amino acid at position 617 is Thr, Ser, Leu, Val or Ile; the amino acid at position 618 is Gln, Asn or His; the amino acid at position 625 is Arg, Lys, Thr or Ser; the amino acid at position 626 is Met, Leu, Val or Ile; the amino acid at position 628 is Leu, Val or Ile; the amino acid at position 633 is Ile, Leu, Val or Met; the amino acid at position 634 is Leu, Ile, Val or Met; the amino acid at position 642 is Arg, Lys or Met; the amino acid at position 648 is Met, Ser or Thr; the amino acid at position 651 is Glu, Asp, Asn or Gln; the amino acid at position 654 is Thr, Val, Ser, Ile, Leu, Gly or Ala; the amino acid at position 658 is Gly, Lys, Ala or Arg; the amino acid at position 663 is Gly or Ala; the amino acid at position 664 is Asp, Glu, Gln or Asn; the amino acid at position 668 is Ala, Gly, Ser or Thr; the amino acid at position 669 is Gln, Asn or His; the amino acid at position 671 is Asn, Gln, Thr or Ser the amino acid at position 675 is Ile, Val, Ile, Thr or Ser; the amino acid at position 678 is Met, Ile, Ala, Leu, Ser or Thr; the amino acid at position 682 is Pro, Asn or Gln; the amino acid at position 683 is Ser, Thr or Pro; the amino acid at position 685 is Asp, Glu, Asp or Asn; the amino acid at position 694 is Asp, Glu, Ala or Gly; the amino acid at position 697 is Asn, Gln, Thr or Ser; the amino acid at position 704 is Glu, Asp, Ala or Gly; the amino acid at position 714 is Ala or Gly; the amino acid at position 721 is Ser, Thr or Phe; the amino acid at position 722 is Ser, Thr, Gln or Asn; the amino acid at position 724 is Ser or Thr; the amino acid at position 734 is His, Asn or Gln; the amino acid at position 736 is Val, Leu, Ile or Ala; the amino acid at position 737 is Lys, Arg, Asn or Gln; the amino acid at position 739 is Ala, Gly, Thr or Ser; the amino acid at position 740 is Ser, Thr or Met; the amino acid at position 741 is Gly, Ala, Gln or Asn; the amino acid at position 742 is Ile, Leu, Val, Ala or Gly; the amino acid at position 743 is Gly or deleted; the amino acid at position 745 is Gly, Ala, Glu or Asp; the amino acid at position 751 is Thr, Ser, Gly or Ala; the amino acid at position 753 is Gln, Asn, Lys or Arg; the amino acid at position 754 is Thr or Ser; the amino acid at position 756 is Thr, Ser, Leu, Val or Ile; the amino acid at position 757 is Val, Leu or Ile; the amino acid at position 766 is Ile, Leu or Val; the amino acid at position 773 is Asp or Glu; the amino acid at position 774 is Gln, Asn, Asp or Glu; the amino acid at position 776 is Leu, Ile, Val or Met; the amino acid at position 777 is Pro, Ser or Thr; the amino acid at position 782 is Ala, Asp, Glu, Ile, Leu or Val; the amino acid at position 786 is Tyr or Phe; the amino acid at position 787 is His, Asn or Gln; the amino acid at position 788 is Tyr or Met; the amino acid at position 789 is Ala, Lys or Arg; the amino acid at position 790 is Tyr or Thr; the amino acid at position 791 is Arg, Lys, Gly or Ala; the amino acid at position 792 is Leu, Ile, Val, Thr or Ser; the amino acid at position 796 is Asp or Glu; the amino acid at position 797 is Ser, Thr or Ala the amino acid at position 802 is Glu, Lys, Asp, Asn or Gln; the amino acid at position 806 is Gln, Asp, Glu, Asn or His; the amino acid at position 810 is Lys, Arg or Thr; the amino acid at position 819 is Arg, Lys or His; the amino acid at position 829 is Lys, Ser, Ala or Pro; the amino acid at position 832 is Ala, Lys, Arg, Asp or Glu; the amino acid at position 833 is Gly, Ala, Asp or Glu; the amino acid at position 842 is Leu, Ile, Val or Pro; the amino acid at position 847 is Gln, Asn, Asp or Glu; the amino acid at position 848 is Ile, Leu or Val; the amino acid at position 849 is Val, Leu, Ile, Gly or Ala; the amino acid at position 855 is Thr, Ser or Met; the amino acid at position 860 is Ile, Leu or Val; the amino acid at position 864 is His, Asn or Gln; In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide variant of SEQ ID NO: 1, wherein the amino acid at position 1 is Met or deleted; the amino acid at position 2 is Ala or deleted; the amino acid at position 3 is Leu, Val, Ile or deleted; the amino acid at position 4 is Val, Met, Ile or Leu; the amino acid at position 7 is Gly, Thr or Ser; the amino acid at position 8 is Lys, Arg, Ser or Thr; the amino acid at position 10 is Phe, Trp or Tyr; the amino acid at position 11 is Glu, Asp, Lys or Arg; the amino acid at position 18 is Met, Val, Leu or Ile; the amino acid at position 19 is Gly, Pro or Ala; the amino acid at position 20 is Val, Ile, Leu or deleted; the amino acid at position 21 is Leu, Ile or Val; the amino acid at position 23 is Arg, Lys, Asn or Gln; the amino acid at position 37 is Val, Ile or Leu; the amino acid at position 38 is Arg, Lys, Gln or Asn; the amino acid at position 40 is Ala, Gly, Thr or Ser; the amino acid at position 43 is Asn, Gln, Glu or Asp; the amino acid at position 45 is Gly or Ala; the amino acid at position 46 is Gln, Asp, Asn or Glu; the amino acid at position 48 is Glu, Asp, Pro, Ile, Leu or Val; the amino acid at position 51 is Glu, Asp, Ala or Gly; the amino acid at position 52 is Lys, Arg, Ser or Thr; the amino acid at position 53 is Val, Ala, Cys or Thr; the amino acid at position 54 is Lys, Ala, Cys, Asp, Glu, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser or Thr; the amino acid at position 55 is Arg, Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 56 is Leu, Glu, Phe, Ile, Met, Thr or Val; the amino acid at position 57 is Tyr, Cys, Ile, Leu, Met, Thr or Val; the amino acid at position 58 is Val, Cys, Ile or Leu; the amino acid at position 59 is Phe, Leu, Met, Val or Tyr; the amino acid at position 60 is Ala, Cys, Gly, Ser, Thr or Val; the amino acid at position 61 is Asp, Glu, His or Ser; the amino acid at position 62 is Val, Ala, Cys, Ile, Leu or Thr; the amino acid at position 63 is Val, Ala, Cys, Ile, Leu, Met or Thr; the amino acid at position 64 is Glu, Ala, Cys, Phe, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 65 is Leu, Ala, Cys, Phe, His, Ile, Met, Asn, Gln, Thr, Val or Trp; the amino acid at position 66 is Pro, Asp, Gly, Met, Gln or Arg; the amino acid at position 67 is Val, Pro, Ile, Leu, Ser or Thr; the amino acid at position 68 is Val, Arg, Phe, Ile, Leu, Lys or Gly; the amino acid at position 69 is Glu, Ala, Asp, Gly, Arg or Lys; the amino acid at position 70 is Trp, Thr, His, Tyr, Lys or Arg; the amino acid at position 71 is Arg, Pro, Lys or deleted; the amino acid at position 72 is Trp, Asp, Leu, Ile, Val, Glu or deleted; the amino acid at position 73 is Pro, Gln, Asn, His or deleted; the amino acid at position 74 is Pro, Met, Ser or Thr; the amino acid at position 75 is Gln, His, Asn, Lys or Arg; the amino acid at position 76 is Ile, Met, Val or Leu; the amino acid at position 84 is Ile, Leu or Val; the amino acid at position 91 is Trp or Phe; the amino acid at position 93 is Thr, Ser, Leu, Val or Ile; the amino acid at position 94 is Asp, Glu, Ala or Gly; the amino acid at position 96 is Arg, Lys, Thr or Ser; the amino acid at position 97 is Gln, Phe, Asn, Lys or Arg; the amino acid at position 98 is Ser, Thr or deleted; the amino acid at position 99 is Asp, Glu, Gly or Ala; the amino acid at position 100 is Thr, Ser, Gly or Ala; the amino acid at position 101 is Glu, Thr, Asp, Ser or Trp the amino acid at position 103 is His, Arg, Lys, Glu or Gln; the amino acid at position 105 is Thr, Ser or Pro; the amino acid at position 108 is Lys, Arg, Asn, Asp, Gln or Glu; the amino acid at position 109 is Leu, Ile or Val; the amino acid at position 111 is Ala, Ser or Thr; the amino acid at position 112 is Ile, Arg, Thr, Leu, Val, Lys, Ser or deleted; the amino acid at position 113 is Gln, Ala, Gly, Asn or deleted; the amino acid at position 114 is Arg, Glu, Lys, Asp or Ile; the amino acid at position 115 is Glu, Asp, Asn or Gln; the amino acid at position 116 is Glu, Asn, Gln, Asp, Lys or Arg; the amino acid at position 117 is Asn, Val, Tyr, Ile, Leu, Gln, Trp or Phe; the amino acid at position 118 is Arg or Lys; the amino acid at position 119 is Trp, Thr or Ser; the amino acid at position 122 is Thr, Lys, Ser, Arg or Ala; the amino acid at position 124 is Ala, Gly, Ser or Thr; the amino acid at position 126 is Gly, Ala, Glu or Asp; the amino acid at position 127 is Met, Gly or Ala; the amino acid at position 128 is Asn, Gln, Arg or Lys; the amino acid at position 131 is Val, Ile, Leu, Ser or Thr; the amino acid at position 133 is Ile, Leu or Val; the amino acid at position 134 is His or Tyr; the amino acid at position 135 is Ala or Gly; the amino acid at position 137 is Glu, Asp, Arg or Lys; the amino acid at position 139 is Gln, Asn, Asp or Glu; the amino acid at position 140 is Val, Arg, Ile, Lys or Leu; the amino acid at position 141 is Gly, Ala, Thr or Ser; the amino acid at position 142 is Val, Ile, Leu or Pro; the amino acid at position 144 is Thr, Leu, Phe, Ile, Val or Tyr; the amino acid at position 145 is Met, Pro, Gln or Asn; the amino acid at position 146 is Ser, Gly, Thr, Ala, Gln or Asn; the amino acid at position 147 is Trp, Gln, Tyr or Asn; the amino acid at position 148 is Ser, Ala, Thr, Gly or Pro; the amino acid at position 149 is Ser, Thr or deleted; the amino acid at position 150 is Val, Ile, Leu or Tyr; the amino acid at position 152 is Arg, Ala, Val, Ile, Leu, Lys or Gly; the amino acid at position 154 is Ser, Trp, Thr, Asp or Glu; the amino acid at position 156 is Leu, Asp, Ile, Val, Asn, Glu or Gln; the amino acid at position 158 is Ser, Thr or Cys; the amino acid at position 159 is Val, Thr, Leu or Ile; the amino acid at position 162 is Ser, Thr, Gly or Ala; the amino acid at position 163 is Gly, Ala or deleted; the amino acid at position 164 is Phe or deleted; the amino acid at position 165 is Arg, Lys, Gly or Ala; the amino acid at position 166 is Ala, Arg, Met, Lys or Phe; the amino acid at position 167 is Val, Ile, Leu or His; the amino acid at position 168 is Ser, Thr, Gln or Asn; the amino acid at position 169 is Val, His, Ile, Leu, Ser or Thr; the amino acid at position 170 is Phe, Ile, Leu or Val; the amino acid at position 171 is Glu, Asn, Gln or Asp; the amino acid at position 172 is Val, Ala, Arg, Ile, Leu, Gly, Lys, Asp or Glu; the amino acid at position 175 is Ser, Arg, Thr, Lys or Trp; the amino acid at position 176 is Val, Leu or Ile; the amino acid at position 177 is Arg, Lys, Leu, Val or Ile; the amino acid at position 179 is Thr, Ile, Val, Leu or Ser; the amino acid at position 180 is Leu, Phe, Ile, Val, Ser or Thr; the amino acid at position 181 is Gly, Thr, Gln, Asn or Ser; the amino acid at position 182 is Ala, Leu, Phe, Val or Ile; the amino acid at position 183 is Thr, Ser, Ala or Gly; the amino acid at position 184 is Leu, Thr, Ser, Ile, Val, Lys or Arg; the amino acid at position 185 is Arg, Gly, Asp, Lys, Glu or Ala; the amino acid at position 186 is Pro, Val, Ile, Leu, Asn or Gln; the amino acid at position 187 is Asp, Thr, Glu or Ser; the amino acid at position 188 is His, Gly or Ala; the amino acid at position 189 is Ala, Arg, Pro, Lys, Gly or deleted; the amino acid at position 190 is Leu, Asn, Ile, Val, Gln or deleted; the amino acid at position 191 is Tyr or deleted; the amino acid at position 192 is Ser, Ile, Val, Leu, Thr or Asn; the amino acid at position 193 is Thr, Ser, Glu or Asp; the amino acid at position 194 is Thr or Ser; the amino acid at position 195 is Met or Thr; the amino acid at position 196 is Gln, His, Leu, Asn, Ile, Val, Thr or Ser; the amino acid at position 197 is Ala, Gly, Ile, Val or Leu; the amino acid at position 198 is Thr, Glu, Ser, Asp, Gly or Ala; the amino acid at position 199 is Pro, Lys or Arg; the amino acid at position 200 is Asn, Ser, Thr, Gln, Ala or Gly; the amino acid at position 201 is Ala, Leu, Glu, Ile, Asp or Trp; the amino acid at position 202 is Ser, Asp, Phe, Ile, Val, Thr, Glu or Leu; the amino acid at position 203 is His, Pro, Gly, Ala, Thr or Ser; the amino acid at position 204 is Ile, Trp, His, Leu, Val, Ala or Gly; the amino acid at position 205 is Ser, Asn, Leu, Val, Thr, Gln or Ile; the amino acid at position 206 is Ala, Gly, Asp, Tyr, Glu, Lys or Arg; the amino acid at position 207 is Phe, Val, Ile or Leu; the amino acid at position 208 is Asn, Ser, Pro, Gln, Thr, Val, Ile or Leu; the amino acid at position 210 is Arg, Asp, Glu, Lys, Ser or Tyr; the amino acid at position 211 is Ile, Ser, Leu, Val or Thr; the amino acid at position 212 is Val, Ala, Ile, Leu, Glu, Gly or Asp; the amino acid at position 214 is Pro, Lys or Arg; the amino acid at position 215 is Ser or Thr; the amino acid at position 217 is Tyr or Phe; the amino acid at position 218 is Arg, Lys, Thr or Ser; the amino acid at position 219 is Val, Ile, Leu or Ala; the amino acid at position 220 is Cys, Leu, Ile, Val, Thr or Ser; the amino acid at position 221 is Pro or His; the amino acid at position 222 is Leu, Arg, Lys, Ile, Val, Thr or Ser; the amino acid at position 224 is Asn, Gln, Thr or Ser; the amino acid at position 225 is Asp, Arg, Glu, Lys, Ser or Thr; the amino acid at position 226 is Thr, Ser, Gln or Asn; the amino acid at position 227 is Asp, Leu, Glu, Ile, Val or deleted; the amino acid at position 228 is Thr, Ser or deleted; the amino acid at position 229 is Tyr or deleted; the amino acid at position 230 is Leu, Ile, Val or deleted; the amino acid at position 231 is Gly, Ala or deleted; the amino acid at position 232 is Ile, Leu, Val or deleted; the amino acid at position 233 is Pro or deleted; the amino acid at position 234 is Ala, Pro, Gly or deleted; the amino acid at position 235 is Asp, Ile, Leu, Glu or Val; the amino acid at position 236 is Val, Ser, Ile, Leu, Thr, Asp or Glu; the amino acid at position 237 is Ala, Phe or Tyr; the amino acid at position 238 is Ala, Gly, Ser or Thr; the amino acid at position 239 is Val, Ser, Ile, Leu, Thr, Ala or Gly; the amino acid at position 240 is Leu, Val or Ile; the amino acid at position 243 is Asp or Glu; the amino acid at position 249 is Asn, Gln, Thr or Ser; the amino acid at position 252 is Leu, Ile, Val or Met; the amino acid at position 257 is Thr or Ser; the amino acid at position 259 is His, Ile, Val or Leu; the amino acid at position 266 is Ala, Ile, Leu or Val; the amino acid at position 267 is Cys, Ala or Gly; the amino acid at position 268 is His, Arg, Lys or Tyr; the amino acid at position 272 is Asp or Glu; the amino acid at position 273 is Val, Met, Ile or Leu; the amino acid at position 274 is Val, Ile, Leu or Met; the amino acid at position 278 is Gly or Ala; the amino acid at position 279 is Glu, Asp, Gly or Val; the amino acid at position 281 is Leu, Ile, Val, Gly or Ala; the amino acid at position 282 is Asn, Leu or Ile; the amino acid at position 285 is Asn, Gln, Thr or Ser; the amino acid at position 286 is Lys, Asp, Arg or Glu; the amino acid at position 287 is Leu, Ile or Val; the amino acid at position 290 is Pro, Gln, Asn, Lys or Arg; the amino acid at position 291 is Leu, Ile or Val; the amino acid at position 292 is Lys, Arg, Ile, Leu or Val; the amino acid at position 293 is Glu, Asp, Asn or Gln; the amino acid at position 294 is Ser, Asn, Thr, Gln, Arg or Lys; the amino acid at position 295 is Thr or Ser; the amino acid at position 296 is Gln, Asn or His; the amino acid at position 297 is Leu, Ile, Val or Met; the amino acid at position 300 is Ser or Thr; the amino acid at position 301 is Glu, Asp, Gly or Ala; the amino acid at position 302 is Ser, Pro, Thr, Gly or Ala; the amino acid at position 304 is Lys, Arg, Gln or Asn; the amino acid at position 313 is Val, Leu or Ile; the amino acid at position 314 is His, Glu, Asn, Asp or Gln; the amino acid at position 315 is Ala, Cys, Gly, Thr or Ser; the amino acid at position 316 is Ala, Ile, Leu or Val; the amino acid at position 317 is Met, Leu, Val or Ile; the amino acid at position 319 is Met, Leu, Val or Ile; the amino acid at position 320 is Val, Ile, Leu, Ala or Gly; the amino acid at position 321 is Arg, Lys or Pro; the amino acid at position 322 is Ile, Leu, Val or Phe; the amino acid at position 323 is Gly, Ile, Leu or Val; the amino acid at position 324 is Leu, Ile, Val, Thr or Ser; the amino acid at position 336 is Ser, Thr, Gln or Asn; the amino acid at position 339 is Asn, Lys, Gln or Arg; the amino acid at position 350 is Arg, Lys, Asn or Gln; the amino acid at position 351 is Glu or Asp; the amino acid at position 353 is Lys or Arg; the amino acid at position 354 is Gln, Asn, Lys or Arg; the amino acid at position 355 is Phe, Ile, Leu or Leu; the amino acid at position 356 is Lys or Arg; the amino acid at position 360 is Ile, Val, Leu, Gly or Ala; the amino acid at position 363 is Gln, Ala, Cys, Glu, Phe, Gly, His, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 364 is Ile, Ala, Cys, Glu, Phe, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 365 is Leu, Ala, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Arg, Val, Trp or Tyr; the amino acid at position 366 is Gly, Ala, Cys, Phe, His, Ile, Lys, Leu, Met, Asn, Ser, Thr or Val; the amino acid at position 367 is Ser, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val or Trp; the amino acid at position 368 is Tyr, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Trp; the amino acid at position 369 is Leu, Ala, Cys, Asp, Phe, Gly, Ile, Met, Thr or Val; the amino acid at position 370 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 371 is Gln, Ala, Cys, Asp, Glu, Phe, Gly, Ile, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 372 is Gln, Ala, Cys, Asp, Phe, Gly, His, Ile, Leu, Asn, Arg, Ser, Val or Tyr; the amino acid at position 373 is Asn, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Gln, Ser, Thr, Val or Trp; the amino acid at position 374 is Arg or Lys; the amino acid at position 376 is Phe, Ile, Val or Leu; the amino acid at position 378 is Glu or Asp; the amino acid at position 381 is Leu, Ile or Val; the amino acid at position 388 is Ala, Thr, Gly or Ser; the amino acid at position 395 is Arg or Lys; the amino acid at position 396 is Glu, Gln, Asp, Asn, Ala or Gly; the amino acid at position 399 is Asp, Gln, Glu or Asn; the amino acid at position 400 is Asn, Thr, Ser, Glu, Gln or Asp; the amino acid at position 401 is Thr, Ser, Gly or Ala; the amino acid at position 402 is Phe, Ile, Val or Leu; the amino acid at position 406 is Asp or Glu; the amino acid at position 408 is Leu, Ile, Val or Met; the amino acid at position 410 is Gly, Ile, Val, Ala or Leu; the amino acid at position 414 is Ala, Gly, Asp or Glu; the amino acid at position 416 is Ser, Asn, Thr, Gln, Glu or Asp; the amino acid at position 417 is Ser, Arg, Lys, Thr, Ala or Gly; the amino acid at position 423 is Lys, Arg, Asn or Gln; the amino acid at position 431 is Arg or Lys; the amino acid at position 432 is Gln, Asn, Asp or Glu; the amino acid at position 436 is Arg, Lys, Asp or Glu; the amino acid at position 440 is Asn, Gln, Lys or Arg; the amino acid at position 442 is Leu, Ile or Val; the amino acid at position 447 is Ser, Lys, Thr or Arg; the amino acid at position 448 is Ala, Gly, Thr or Ser; the amino acid at position 451 is Gln, Asn or Met; the amino acid at position 453 is Gly or Ala; the amino acid at position 455 is Ala, Leu, Ile or Val; the amino acid at position 457 is Leu, Ile or Val; the amino acid at position 467 is Val, Ile, Leu, Gly or Ala; the amino acid at position 471 is Gly or Ala; the amino acid at position 475 is Ser, Thr, Gln or Asn; the amino acid at position 483 is Gly or Ala; the amino acid at position 493 is Gln, Asn or Gly; the amino acid at position 504 is Val, Leu or Ile; the amino acid at position 506 is Asp, Glu or His; the amino acid at position 509 is Asp, Glu, Gln or Asn; the amino acid at position 510 is Ser, Thr, Gly or Ala; the amino acid at position 512 is Glu or Asp; the amino acid at position 515 is Gly, Ala, Thr or Ser; the amino acid at position 516 is Gln, Asn or His; the amino acid at position 517 is Ile, Val or Leu; the amino acid at position 519 is Asp, Asn, Glu, Gly or Gln; the amino acid at position 522 is Val, Glu, Pro, Ile, Leu or Asp; the amino acid at position 525 is Glu or Asp; the amino acid at position 526 is Leu, Ile, Val or Met; the amino acid at position 539 is Val, Leu or Ile; the amino acid at position 555 is Val, Leu, Ile or Ala; the amino acid at position 556 is Trp, Phe, Thr or Tyr; the amino acid at position 557 is Arg, Cys, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 558 is Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Val, Trp or Tyr; the amino acid at position 559 is Lys, Ala, Cys, Phe, Gly, His, Ile, Leu, Asn, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 560 is Cys, Ala, Phe, Gly, Ile, Met, Asn, Arg, Ser, Thr or Val; the amino acid at position 561 is Lys, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Arg, Ser, Thr, Val or Tyr; the amino acid at position 562 is Asn, Cys, Asp, Glu, Gly, His, Leu, Met, Arg, Ser, Thr, Val or Tyr; the amino acid at position 563 is Val, Ala, Cys, Asp, Phe, His, Ile, Leu, Met, Asn, Gln, Thr or Trp; the amino acid at position 564 is Ala, Cys, Gly, Met, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 571 is Ser, Thr or Cys; the amino acid at position 575 is Val, Leu, Ile, Asp or Glu; the amino acid at position 577 is Met, Leu, Val or Ile; the amino acid at position 579 is Glu, Asp, Asn or Gln; the amino acid at position 583 is Asp or Glu; the amino acid at position 589 is Met, Ile, Val or Leu; the amino acid at position 590 is Met, Ile, Val or Leu; the amino acid at position 593 is Met, Leu, Val or Ile; the amino acid at position 595 is Arg, Lys, Asn or Gln; the amino acid at position 596 is Ser or Thr; the amino acid at position 597 is Gln, Asn or His; the amino acid at position 607 is Ala, Gly, Ile, Leu or Val; the amino acid at position 608 is Asp, Glu, Gln or Asn; the amino acid at position 612 is Tyr, His or Phe; the amino acid at position 617 is Thr, Ser, Leu, Val or Ile; the amino acid at position 618 is Gln, Asn or His; the amino acid at position 625 is Arg, Lys, Thr or Ser; the amino acid at position 626 is Met, Leu, Val or Ile; the amino acid at position 628 is Leu, Val or Ile; the amino acid at position 633 is Ile, Leu, Val or Met; the amino acid at position 634 is Leu, Ile, Val or Met; the amino acid at position 642 is Arg, Lys or Met; the amino acid at position 646 is Leu, Ala, Cys, Gly, Ile, Met, Asn, Gln, Ser, Thr or Val; the amino acid at position 647 is Leu, Asp, Gly, Met, Asn, Gln or Thr; the amino acid at position 648 is Met, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 649 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Met, Asn, Gln, Arg, Ser, Thr, Trp or Tyr; the amino acid at position 650 is Thr, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Val or Tyr; the amino acid at position 651 is Glu, Ala, Cys, Asp, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 652 is Leu, Cys, Phe, Ile, Lys, Met, Pro, Arg, Ser, Thr or Val; the amino acid at position 653 is Thr, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Pro, Arg, Ser, Val or Trp; the amino acid at position 654 is Thr, Ala, Cys, Phe, Ile, Lys, Leu, Met, Pro, Arg, Ser, Val, Trp or Tyr; the amino acid at position 655 is Trp, Phe or Tyr; the amino acid at position 658 is Gly, Lys, Ala or Arg; the amino acid at position 663 is Gly or Ala; the amino acid at position 664 is Asp, Glu, Gln or Asn; the amino acid at position 668 is Ala, Gly, Ser or Thr; the amino acid at position 669 is Gln, Asn or His; the amino acid at position 671 is Asn, Gln, Thr or Ser the amino acid at position 675 is Ile, Val, Ile, Thr or Ser; the amino acid at position 678 is Met, Ile, Ala, Leu, Ser or Thr; the amino acid at position 682 is Pro, Asn or Gln; the amino acid at position 683 is Ser, Thr or Pro; the amino acid at position 685 is Asp, Glu, Asp or Asn; the amino acid at position 694 is Asp, Glu, Ala or Gly; the amino acid at position 697 is Asn, Gln, Thr or Ser; the amino acid at position 704 is Glu, Asp, Ala or Gly; the amino acid at position 714 is Ala or Gly; the amino acid at position 721 is Ser, Thr or Phe; the amino acid at position 722 is Ser, Thr, Gln or Asn; the amino acid at position 724 is Ser or Thr; the amino acid at position 734 is His, Asn or Gln; the amino acid at position 736 is Val, Leu, Ile or Ala; the amino acid at position 737 is Lys, Arg, Asn or Gln; the amino acid at position 739 is Ala, Gly, Thr or Ser; the amino acid at position 740 is Ser, Thr or Met; the amino acid at position 741 is Gly, Ala, Gln or Asn; the amino acid at position 742 is Ile, Leu, Val, Ala or Gly; the amino acid at position 743 is Gly or deleted; the amino acid at position 745 is Gly, Ala, Glu or Asp; the amino acid at position 751 is Thr, Ser, Gly or Ala; the amino acid at position 753 is Gln, Asn, Lys or Arg; the amino acid at position 754 is Thr or Ser; the amino acid at position 756 is Thr, Ser, Leu, Val or Ile; the amino acid at position 757 is Val, Leu or Ile; the amino acid at position 766 is Ile, Leu or Val; the amino acid at position 771 is Arg, Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Asn, Ser, Thr, Val, Trp or Tyr; the amino acid at position 772 is Arg, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 773 is Asp, Ala, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 774 is Gln, Ala, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 775 is Val, Ala, Cys, Asp, Glu, Gly, His, Ile, Asn, Pro, Gln, Arg, Ser, Thr or Tyr; the amino acid at position 776 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 777 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 778 is Phe, Ala, His, Ile, Leu, Met, Asn, Gln, Ser, Val, Trp or Tyr; the amino acid at position 779 is Gln, Ala, Cys, Asp, Glu, Gly, His, Lys, Leu, Asn, Pro, Arg, Ser, Thr or Val; the amino acid at position 780 is Ala, Cys, Asn, Pro, Gln or Ser; the amino acid at position 781 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 782 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 783 is Pro, Ala, Cys, Asp, Glu, Gly, His, Asn, Gln, Arg, Ser, Thr or Val; the amino acid at position 784 is Leu, Ala, Glu, Phe, His, Ile, Lys, Met, Asn, Pro, Gln, Ser, Thr, Val or Trp; the amino acid at position 785 is Asn, Ala, Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 786 is Tyr, Phe, Ile, Leu or Trp; the amino acid at position 787 is His, Asn or Gln; the amino acid at position 788 is Tyr or Met; the amino acid at position 789 is Ala, Lys or Arg; the amino acid at position 790 is Tyr or Thr; the amino acid at position 791 is Arg, Lys, Gly or Ala; the amino acid at position 792 is Leu, Ile, Val, Thr or Ser; the amino acid at position 796 is Asp or Glu; the amino acid at position 797 is Ser, Thr or Ala the amino acid at position 802 is Glu, Lys, Asp, Asn or Gln; the amino acid at position 806 is Gln, Asp, Glu, Asn or His; the amino acid at position 810 is Lys, Arg or Thr; the amino acid at position 819 is Arg, Lys or His; the amino acid at position 829 is Lys, Ser, Ala or Pro; the amino acid at position 832 is Ala, Lys, Arg, Asp or Glu; the amino acid at position 833 is Gly, Ala, Asp or Glu; the amino acid at position 842 is Leu, Ile, Val or Pro; the amino acid at position 847 is Gln, Asn, Asp or Glu; the amino acid at position 848 is Ile, Leu or Val; the amino acid at position 849 is Val, Leu, Ile, Gly or Ala; the amino acid at position 855 is Thr, Ser or Met; the amino acid at position 860 is Ile, Leu or Val; and the amino acid at position 864 is His, Asn or Gln. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Division Pteridophyta. The phylogeny of ferns as used herein is based on the classification for extant ferns by A. R. Smith et al, In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Psilotales. In some embodiments the the nucleic acid molecule encoding PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Ophioglossales. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Ophioglossales, Family Psilotaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Ophioglossales Family Ophioglossaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Class Polypodiopsida/Pteridopsida. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Osmundales (royal ferns); Family Osmundaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Hymenophyllales; Family Hymenophyllaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Gleicheniales; Family Gleicheniaceae, Family Dipteridaceae or Family Matoniaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Schizaeales; Family Lygodiaceae, Family Anemiaceae or Family Schizaeaceae. In some embodiments the nucleic acid encoding the PtIP-83 polypeptide is derived from a fern species in the Order Schizaeales; Family Schizaeaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales; Family Lindsaeaceae, Family Saccolomataceae, Family Cystodiaceae, Family Dennstaedtiaceae, Family Pteridaceae, Family Aspleniaceae, Family Thelypteridaceae, Family Woodsiaceae, Family Onocleaceae, Family Blechnaceae, Family Dryopteridaceae, Family Lomariopsidaceae, Family Tectariaceae, Family Oleandraceae, Family Davalliaceae or Family Polypodiaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Pteridaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Aspleniaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Aspleniaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Blechnaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Dryopteridaceae Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Dryopteridaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Dryopteridaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Division Lycophyta. The phylogeny of extant Lycopods as used herein is based on the classification by N. Wikstrom, In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Class Isoetopsida or Class Lycopodiopsida. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Class Isoetopsida, Order Selaginales. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Class Isoetopsida, Order Selaginales, Family Selaginellaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Genus In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Class Lycopodiopsida, Order Lycopodiales. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Class Lycopodiopsida, Order Lycopodiales Family Lycopodiaceae or Family Huperziaceae. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a species in the Genus In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 as represented by an amino acid sequence of the formula MP[DE]MPSEADWSIFVNE[IV]EAVAEGMPTEVSEVP[AV]WKAKCKN[MV]AALGREM[SC]I (SEQ ID NO: 646); an amino acid sequence MOTIF 2 as represented by an amino acid sequence of the formula PQLQYRMYG[NS]LI[KN]QMAQVAQNYDQ[ED]FKQ[FL]KLFI[IA]QNQI[LF]GSYLLQQN[KR]A F (SEQ ID NO: 647); an amino acid sequence MOTIF 3 as represented by an amino acid sequence of the formula NTFMQMTPFTRWRLRLSASASENA[EG]LAFPTATA[PL]DSTT[EQ][IV]VITFHVTAIR (SEQ ID NO: 648); an amino acid sequence MOTIF 4 as represented by an amino acid sequence of the formula [DN]FTSRHVVK[GD]IPVSLLLDGEDWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 649); an amino acid sequence MOTIF 5 as represented by an amino acid sequence of the formula IIHQP[SA]T[RQ][ST]G[IT]VYILLQGSTIFHDRRR[DE]EVMTFQAA[DA]PLN[FY][QH]YAYRLDT G (SEQ ID NO: 650); an amino acid sequence MOTIF 6 as represented by an amino acid sequence of the formula S[HQ]ADRLAAIQP[AV]DLTN[HY]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI]LRIQNAALMY EY (SEQ ID NO: 651); an amino acid sequence MOTIF 7 as represented by an amino acid sequence of the formula [VL]DRVEFSEVMVIHRMYVRL[SA]DL[ND]VGEL[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 652); an amino acid sequence MOTIF 8 as represented by an amino acid sequence of the formula A[DE]RELQMESFHSAVISQRRQEL[ND]TA[IF]AKM[DE]R[LM]SLQMEEE[NS]RAMEQAQKE M (SEQ ID NO: 653); an amino acid sequence MOTIF 9 as represented by an amino acid sequence of the formula FVTAGATAPGA[AV]ASAGQAVSIAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 654); an amino acid sequence MOTIF 10 as represented by an amino acid sequence of the formula DGMNWG[IT]YI[YH]GE[KE]V[EQ]RSPLLPSNAILAVWADRC[TI]ITSARHNH[VF]NAPGR[IV]I (SEQ ID NO: 655); an amino acid sequence MOTIF 11 as represented by an amino acid sequence of the formula [KV][VK][CA]RPPSPDM[MV]SAVAEHALWLNDVLLQVVQ[KN]ESQ[LM]QGT[AE]PYNECLAL LGR (SEQ ID NO: 656); an amino acid sequence MOTIF 12 as represented by an amino acid sequence of the formula PTELT[VA]WPLGMDTV[AG]NLLIAQENAAL[VL]GLIQLGPSS (SEQ ID NO: 657); an amino acid sequence MOTIF 13 as represented by an amino acid sequence of the formula RDQ[MT][HQ]MPGSVTVI[IV]LCRLLQFP[IT]DGSQA[TA]T (SEQ ID NO: 658); an amino acid sequence MOTIF 14 as represented by an amino acid sequence of the formula TSIPVEVVTDP[SN]ILLGMQTTV[LH]IAEL (SEQ ID NO: 659); an amino acid sequence MOTIF 15 as represented by an amino acid sequence of the formula EGLR[EQ]FQNRQVARA[VL]FAVLKAVA[MQ]I[AG] (SEQ ID NO: 660); an amino acid sequence MOTIF 16 as represented by an amino acid sequence of the formula W[TS]RVRIRHLEM[QH]F[AV]QEASG (SEQ ID NO: 661); an amino acid sequence MOTIF 17 as represented by an amino acid sequence of the formula QISELQY[ED]IWVQG[LM][ML]RDIA (SEQ ID NO: 662); an amino acid sequence MOTIF 18 as represented by an amino acid sequence of the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 as represented by an amino acid sequence of the formula MDYSTLYRDLNQIS (SEQ ID NO: 664); an amino acid sequence MOTIF 20 as represented by an amino acid sequence of the formula LRLPFM[QK]LHARVIEQN[VR]K[SE] (SEQ ID NO: 665); an amino acid sequence MOTIF 21 as represented by an amino acid sequence of the formula VDSLEQVG[QH][IL]V[GD]AP (SEQ ID NO: 666); an amino acid sequence MOTIF 22 as represented by an amino acid sequence of the formula [IV][EQ][CA]VMK[IM]GRF[VG][SL]VV (SEQ ID NO: 667); an amino acid sequence MOTIF 23 as represented by an amino acid sequence of the formula TLTNEPSE[EQ]F (SEQ ID NO: 668); and an amino acid sequence MOTIF 24 as represented by an amino acid sequence of the formula LPRQSRNISF (SEQ ID NO: 669). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 having at least 90% sequence identity to the amino acid sequence as represented by the formula MP[DE]MPSEADWSIFVNE[IV]EAVAEGMPTEVSEVP[AV]WKAKCKN[MV]AALGREM[SC]I (SEQ ID NO: 646); an amino acid sequence MOTIF 2 having at least 90% sequence identity to the amino acid sequence as represented by the formula PQLQYRMYG[NS]LI[KN]QMAQVAQNYDQ[ED]FKQ[FL]KLFI[IA]QNQI[LF]GSYLLQQN[KR]A F (SEQ ID NO: 647); an amino acid sequence MOTIF 3 having at least 90% sequence identity to the amino acid sequence as represented by the formula NTFMQMTPFTRWRLRLSASASENA[EG]LAFPTATA[PL]DSTT[EQ][IV]VITFHVTAIR (SEQ ID NO: 648); an amino acid sequence MOTIF 4 having at least 90% sequence identity to the amino acid sequence as represented by the formula [DN]FTSRHVVK[GD]IPVSLLLDGEDWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 649); an amino acid sequence MOTIF 5 having at least 90% sequence identity to the amino acid sequence as represented by the formula IIHQP[SA]T[RQ][ST]G[IT]VYILLQGSTIFHDRRR[DE]EVMTFQAA[DA]PLN[FY][QH]YAYRLDT G (SEQ ID NO: 650); an amino acid sequence MOTIF 6 having at least 90% sequence identity to the amino acid sequence as represented by the formula S[HQ]ADRLAAIQP[AV]DLTN[HY]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI]LRIQNAALMY EY (SEQ ID NO: 651); an amino acid sequence MOTIF 7 having at least 90% sequence identity to the amino acid sequence as represented by the formula [VL]DRVEFSEVMVIHRMYVRL[SA]DL[ND]VGEL[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 652); an amino acid sequence MOTIF 8 having at least 90% sequence identity to the amino acid sequence as represented by the formula A[DE]RELQMESFHSAVISQRRQEL[ND]TA[IF]AKM[DE]R[LM]SLQMEEE[NS]RAMEQAQKE M (SEQ ID NO: 653); an amino acid sequence MOTIF 9 having at least 90% sequence identity to the amino acid sequence as represented by the formula FVTAGATAPGA[AV]ASAGQAVSIAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 654); an amino acid sequence MOTIF 10 having at least 90% sequence identity to the amino acid sequence as represented by the formula DGMNWG[IT]YI[YH]GE[KE]V[EQ]RSPLLPSNAILAVWADRC[TI]ITSARHNH[VF]NAPGR[IV]I (SEQ ID NO: 655); an amino acid sequence MOTIF 11 having at least 90% sequence identity to the amino acid sequence as represented by the formula [KV][VK][CA]RPPSPDM[MV]SAVAEHALWLNDVLLQVVQ[KN]ESQ[LM]QGT[AE]PYNECLAL LGR (SEQ ID NO: 656); an amino acid sequence MOTIF 12 having at least 90% sequence identity to the amino acid sequence as represented by the formula PTELT[VA]WPLGMDTV[AG]NLLIAQENAAL[VL]GLIQLGPSS (SEQ ID NO: 657); an amino acid sequence MOTIF 13 having at least 90% sequence identity to the amino acid sequence as represented by the formula RDQ[MT][HQ]MPGSVTVI[IV]LCRLLQFP[IT]DGSQA[TA]T (SEQ ID NO: 658); an amino acid sequence MOTIF 14 having at least 90% sequence identity to the amino acid sequence as represented by the formula TSIPVEVVTDP[SN]ILLGMQTTV[LH]IAEL (SEQ ID NO: 659); an amino acid sequence MOTIF 15 having at least 90% sequence identity to the amino acid sequence as represented by the formula EGLR[EQ]FQNRQVARA[VL]FAVLKAVA[MQ]I[AG] (SEQ ID NO: 660); an amino acid sequence MOTIF 16 having at least 90% sequence identity to the amino acid sequence as represented by the formula W[TS]RVRIRHLEM[QH]F[AV]QEASG (SEQ ID NO: 661); an amino acid sequence MOTIF 17 having at least 90% sequence identity to the amino acid sequence as represented by the formula QISELQY[ED]IWVQG[LM][ML]RDIA (SEQ ID NO: 662); an amino acid sequence MOTIF 18 having at least 90% sequence identity to the amino acid sequence as represented by the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 having at least 90% sequence identity to the amino acid sequence as represented by the formula MDYSTLYRDLNQIS (SEQ ID NO: 664); an amino acid sequence MOTIF 20 having at least 90% sequence identity to the amino acid sequence as represented by the formula LRLPFM[QK]LHARVIEQN[VR]K[SE] (SEQ ID NO: 665); an amino acid sequence MOTIF 21 having at least 90% sequence identity to the amino acid sequence as represented by the formula VDSLEQVG[QH][IL]V[GD]AP (SEQ ID NO: 666); an amino acid sequence MOTIF 22 having at least 90% sequence identity to the amino acid sequence as represented by the formula [IV][EQ][CA]VMK[IM]GRF[VG][SL]VV (SEQ ID NO: 667); an amino acid sequence MOTIF 23 having at least 90% sequence identity to the amino acid sequence as represented by the formula TLTNEPSE[EQ]F (SEQ ID NO: 668); and an amino acid sequence MOTIF 24 having at least 90% sequence identity to the amino acid sequence as represented by the formula LPRQSRNISF (SEQ ID NO: 669). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 as represented by an amino acid sequence of the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AV]W[KR]AKCKN[MV]AALGRE M[SC]I (SEQ ID NO: 670); an amino acid sequence MOTIF 2 as represented by an amino acid sequence of the formula PQLQYRMYG[NS]LI[KRN]QMAQVAQNYD[QR][ED]FK[QR][FL][KR]LFI[IAVL]QNQI[LF]GSYL L[QE]QN[KR]AF (SEQ ID NO: 671); an amino acid sequence MOTIF 3 as represented by an amino acid sequence of the formula N[TK]FMQMTPFT[RH]WRLRLSASA[SPKA]EN[AK][EG]LAFPTATA[PL]DSTT[EQ][IV][VA]ITF HVTAIR (SEQ ID NO: 672); an amino acid sequence MOTIF 4 as represented by an amino acid sequence of the formula [DN]FTSRHVVK[GD]IPV[SN]LLLDG[EG]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 673); an amino acid sequence MOTIF 5 as represented by an amino acid sequence of the formula IIHQP[SA]T[RQ][ST]G[IT][VI]YILLQGST[IV]FHDRRR[DE][EQ]V[ML]T[FP]QAA[DAV]PLN[FY][QH]YAYRLDTG (SEQ ID NO: 674); an amino acid sequence MOTIF 6 as represented by an amino acid sequence of the formula S[HQ]ADRLAAIQP[AV][DN]LTN[HYF]LEMAT[HQ]MDMRTT[RS][MI]L [IL]GLLN[MI][LM]RIQN AAL[MR]YEY (SEQ ID NO: 675); an amino acid sequence MOTIF 7 as represented by an amino acid sequence of the formula [VL]D[RQ]VEFSEVMVIHRMYV[N]RL[SA]DL[ND]V[GA][EQ]L[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 676); an amino acid sequence MOTIF 8 as represented by an amino acid sequence of the formula A[DE]RELQMESFH[SA]AVISQ[RK]R[QGE]EL[ND][TD][AT][IF]AKM[DE]R[LM]SLQMEEE[NS D][RG]AMEQA[QR]KEM (SEQ ID NO: 677); an amino acid sequence MOTIF 9 as represented by an amino acid sequence of the formula F[VL]TAGATAPGA[AV]ASAGQAV[SN]IAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 678); an amino acid sequence MOTIF 10 as represented by an amino acid sequence of the formula D[GD][MA][NK]WG[IT]Y[IV][YH][GA]E[KE]V[EQ][RVL]SPL[LYF][PN][SNG][NW][ASP][IY]L[AG V]V[WE]A[DQ]R[CS][TI]IT[SA]A[RFM]HN[HVT][VF][ND][AER]PG[RW][IV][IR] (SEQ ID NO: 679); an amino acid sequence MOTIF 11 as represented by an amino acid sequence of the formula [KV][VK][CA][RGC][PHY]PSP[DE][MIL][MV]SAV[AG][EV]HA[LIN]WL[NS][DK]VLL[QR]VVQ[K N]ES[QH][LM]QGT[AE][PSA]YNECLALLGR (SEQ ID NO: 680); an amino acid sequence MOTIF 12 as represented by an amino acid sequence of the formula [PN]T[EQ]LT[VAT]WPL[GR]MDTV[AG][ND]LLI[AT][QH]E[NS]AAL[VLS]GL[ITMA]QLG[PQ][S P]S (SEQ ID NO: 681); an amino acid sequence MOTIF 13 as represented by an amino acid sequence of the formula [RLC][DLWK][QNPR][MTP][HQR][MIL]PGSVTVI[IV]LCRLLQFP[IT][DG]G[SR][QFR][AS][TAD][TW] (SEQ ID NO: 682); an amino acid sequence MOTIF 14 as represented by an amino acid sequence of the formula [TA][SGV][IL]PV[ED]VVTDP[SN]IL[LM]GMQT[TS]V[LH]IAEL (SEQ ID NO: 683); an amino acid sequence MOTIF 15 as represented by an amino acid sequence of the formula EGLR[EQ]FQN[RE]QVA[RN]A[VL]FAVL[KS][AS]VA[MQ]I[AG] (SEQ ID NO: 684); an amino acid sequence MOTIF 16 as represented by an amino acid sequence of the formula W[TS]RVRIRHLEM[QH]F[AV][QK]E[AS][SM][GN] (SEQ ID NO: 685); an amino acid sequence MOTIF 17 as represented by an amino acid sequence of the formula Q[IM]S[EQ]LQY[ED]IWVQG[LM][ML]RD[IM]A (SEQ ID NO: 686); an amino acid sequence MOTIF 18 as represented by an amino acid sequence of the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 as represented by an amino acid sequence of the formula [MLV]DY[SK][TSK]L[YF][RE]DLNQIS (SEQ ID NO: 687); an amino acid sequence MOTIF 20 as represented by an amino acid sequence of the formula L[RHQ]L[PT]FM[QK]LHA[RIT][VQL][IR]E[QER][NF][VR][KWS][SE] (SEQ ID NO: 688); an amino acid sequence MOTIF 21 as represented by an amino acid sequence of the formula V[DN][SA]L[ED]QV[GS][QH][IL]V[GD]AP (SEQ ID NO: 689); an amino acid sequence MOTIF 22 as represented by an amino acid sequence of the formula [IV][EQH][CAS][VA][MI]K[IM][GV][RP][FI][VG][SL]VV (SEQ ID NO: 690); an amino acid sequence MOTIF 23 as represented by an amino acid sequence of the formula TLTN[EQ]PSE[EQDH]F (SEQ ID NO: 691); and an amino acid sequence MOTIF 24 as represented by an amino acid sequence of the formula LP[RS]QS[RT]N[IV]SF (SEQ ID NO: 692). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 having at least 90% sequence identity to the amino acid sequence as represented by the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AV]W[KR]AKCKN[MV]AALGRE M[SC]I (SEQ ID NO: 670); an amino acid sequence MOTIF 2 having at least 90% sequence identity to the amino acid sequence as represented by the formula PQLQYRMYG[NS]LI[KRN]QMAQVAQNYD[QR][ED]FK[QR][FL][KR]LFI[IAVL]QNQI[LF]GSYL L[QE]QN[KR]AF (SEQ ID NO: 671); an amino acid sequence MOTIF 3 having at least 90% sequence identity to the amino acid sequence as represented by the formula N[TK]FMQMTPFT[RH]WRLRLSASA[SPKA]EN[AK][EG]LAFPTATA[PL]DSTT[EQ][IV][VA]ITF HVTAIR (SEQ ID NO: 672); an amino acid sequence MOTIF 4 having at least 90% sequence identity to the amino acid sequence as represented by the formula [DN]FTSRHVVK[GD]IPV[SN]LLLDG[EG]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 673); an amino acid sequence MOTIF 5 having at least 90% sequence identity to the amino acid sequence as represented by the formula IIHQP[SA]T[RQ][ST]G[IT][VI]YlLLQGST[IV]FHDRRR[DE][EQ]V[ML]T[FP]QAA[DAV]PLN[FY][QH]YAYRLDTG (SEQ ID NO: 674); an amino acid sequence MOTIF 6 having at least 90% sequence identity to the amino acid sequence as represented by the formula S[HQ]ADRLAAIQP[AV][DN]LTN[HYF]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI][LM]RIQN AAL[MR]YEY (SEQ ID NO: 675); an amino acid sequence MOTIF 7 having at least 90% sequence identity to the amino acid sequence as represented by the formula [VL]D[RQ]VEFSEVMVIHRMYV[N]RL[SA]DL[ND]V[GA][EQ]L[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 676); an amino acid sequence MOTIF 8 having at least 90% sequence identity to the amino acid sequence as represented by the formula A[DE]RELQMESFH[SA]AVISQ[RK]R[QGE]EL[ND][TD][AT][IF]AKM[DE]R[LM]SLQMEEE[NS D][RG]AMEQA[QR]KEM (SEQ ID NO: 677); an amino acid sequence MOTIF 9 having at least 90% sequence identity to the amino acid sequence as represented by the formula F[VL]TAGATAPGA[AV]ASAGQAV[SN]IAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 678); an amino acid sequence MOTIF 10 having at least 90% sequence identity to the amino acid sequence as represented by the formula D[GD][MA][NK]WG[IT]Y[IV][YH][GA]E[KE]V[EQ][RVL]SPL[LYF][PN][SNG][NW][ASP][IY]L[AG V]V[WE]A[DQ]R[CS][TI]IT[SA]A[RFM]HN[HVT][VF][ND][AER]PG[RW][IV][IR] (SEQ ID NO: 679); an amino acid sequence MOTIF 11 having at least 90% sequence identity to the amino acid sequence as represented by the formula [KV][VK][CA][RGC][PHY]PSP[DE][MIL][MV]SAV[AG][EV]HA[LIN]WL[NS][DK]VLL[QR]VVQ[K N]ES[QH][LM]QGT[AE][PSA]YNECLALLGR (SEQ ID NO: 680); an amino acid sequence MOTIF 12 having at least 90% sequence identity to the amino acid sequence as represented by the formula [PN]T[EQ]LT[VAT]WPL[GR]MDTV[AG][ND]LLI[AT][QH]E[NS]AAL[VLS]GL[ITMA]QLG[PQ][S P]S (SEQ ID NO: 681); an amino acid sequence MOTIF 13 having at least 90% sequence identity to the amino acid sequence as represented by the formula [RLC][DLWK][QNPR][MTP][HQR][MIL]PGSVTVI[IV]LCRLLQFP[IT][DG]G[SR][QFR][AS][TAD][TW] (SEQ ID NO: 682); an amino acid sequence MOTIF 14 having at least 90% sequence identity to the amino acid sequence as represented by the formula [TA][SGV][IL]PV[ED]VVTDP[SN]IL[LM]GMQT[TS]V[LH]IAEL (SEQ ID NO: 683); an amino acid sequence MOTIF 15 having at least 90% sequence identity to the amino acid sequence as represented by the formula EGLR[EQ]FQN[RE]QVA[RN]A[VL]FAVL[KS][AS]VA[MQ]I[AG] (SEQ ID NO: 684); an amino acid sequence MOTIF 16 having at least 90% sequence identity to the amino acid sequence as represented by the formula W[TS]RVRIRHLEM[QH]F[AV][QK]E[AS][SM][GN] (SEQ ID NO: 685); an amino acid sequence MOTIF 17 having at least 90% sequence identity to the amino acid sequence as represented by the formula Q[IM]S[EQ]LQY[ED]IWVQG[LM][ML]RD[IM]A (SEQ ID NO: 686); an amino acid sequence MOTIF 18 having at least 90% sequence identity to the amino acid sequence as represented by the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 having at least 90% sequence identity to the amino acid sequence as represented by the formula [MLV]DY[SK][TSK]L[YF][RE]DLNQIS (SEQ ID NO: 687); an amino acid sequence MOTIF 20 having at least 90% sequence identity to the amino acid sequence as represented by the formula L[RHQ]L[PT]FM[QK]LHA[RIT][VQL][IR]E[QER][NF][VR][KWS][SE] (SEQ ID NO: 688); an amino acid sequence MOTIF 21 having at least 90% sequence identity to the amino acid sequence as represented by the formula V[DN][SA]L[ED]QV[GS][QH][IL]V[GD]AP (SEQ ID NO: 689); an amino acid sequence MOTIF 22 having at least 90% sequence identity to the amino acid sequence as represented by the formula [IV][EQH][CAS][VA][MI]K[IM][GV][RP][FI][VG][SL]VV (SEQ ID NO: 690); an amino acid sequence MOTIF 23 having at least 90% sequence identity to the amino acid sequence as represented by the formula TLTN[EQ]PSE[EQDH]F (SEQ ID NO: 691); and an amino acid sequence MOTIF 24 having at least 90% sequence identity to the amino acid sequence as represented by the formula LP[RS]QS[RT]N[IV]SF (SEQ ID NO: 692). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 as represented by an amino acid sequence of the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AVIL]W[KR]AKCKN[MVIL]AAL GREM[SCT]I (SEQ ID NO: 693); an amino acid sequence MOTIF 2 as represented by an amino acid sequence of the formula PQLQYRMYG[NS]LI[KRNQ]QMAQVAQNYD[QRNK][ED]FK[QRNK][FL][KR]LFI[IAVL]QNQI[L FIV]GSYLL[QEND]QN[KR]AF (SEQ ID NO: 694); an amino acid sequence MOTIF 3 as represented by an amino acid sequence of the formula N[TKSR]FMQMTPFT[RHK]WRLRLSASA[SPKATR]EN[AKR][EG]LAFPTATA[PLIV]DSTT[EQ ND][IVL][VAIL]ITFHVTAIR (SEQ ID NO: 695); an amino acid sequence MOTIF 4 as represented by an amino acid sequence of the formula [DNQE]FTSRHVVK[GDE]IPV[SNTQ]LLLDG[EGD]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 696); an amino acid sequence MOTIF 5 as represented by an amino acid sequence of the formula IIHQP[SAT]T[RQKN][ST]G[ITLVS][VIL]YILLQGST[IVL]FHDRRR[DE][EQDN]V[MLIV]T[FP]QA A[DAVEIL]PLN[FY][QHN]YAYRLDTG (SEQ ID NO: 697); an amino acid sequence MOTIF 6 as represented by an amino acid sequence of the formula S[HQN]ADRLAAIQP[AVIL][DN]LTN[HYF]LEMAT[HQN]MDMRTT[RSKT][MILV]L[ILV]GLLN[M ILV][LMIV]RIQNAAL[MRILVK]YEY (SEQ ID NO: 698); an amino acid sequence MOTIF 7 as represented by an amino acid sequence of the formula [VLI]D[RQKN]VEFSEVMVIHRMYV[N]RL[SAT]DL[NDQE]V[GA][EQND]L[PED]GA[EGD][RK]VKR[VLI]YV[FLIV]ADVVE (SEQ ID NO: 699); an amino acid sequence MOTIF 8 as represented by an amino acid sequence of the formula A[DE]RELQMESFH[SAT]AVISQ[RK]R[QGEND]EL[NDQE][TDSE][ATS][IFLV]AKM[DE]R[LMI V]SLQMEEE[NSDQET][RGK]AMEQA[QRNK]KEM (SEQ ID NO: 700); an amino acid sequence MOTIF 9 as represented by an amino acid sequence of the formula F[VLI]TAGATAPGA[AVIL]ASAGQAV[SNTQ]IAGQAAQ[AG]LRRVVEILE[GQN]LEAVMEVVA A[VIL]K (SEQ ID NO: 701); an amino acid sequence MOTIF 10 as represented by an amino acid sequence of the formula D[GDE][MA][NKQK]WG[ITLVS]Y[IVL][YH][GA]E[KERD]V[EQND][RVLKI]SPL[LYFIV][PNQ][S NGTQ][NWQ][ASPT][IYLV]L[AGVIL]V[WED]A[DQNE]R[CST][TISLV]IT[SAT]A[RFMK]HN[HV TILS][VFIL][NDQE][AERDK]PG[RWK][IVL][IRLVK] (SEQ ID NO: 702); an amino acid sequence MOTIF 11 as represented by an amino acid sequence of the formula [KVRIL][VKRIL][CA][RGCK][PHY]PSP[DE][MILV][MVIL]SAV[AG][EVDIL]HA[LINVQ]WL[NSQ T][DKER]VLL[QRNK]VVQ[KNRQ]ES[QHN][LMIV]QGT[AED][PSAT]YNECLALLGR (SEQ ID NO: 703); an amino acid sequence MOTIF 12 as represented by an amino acid sequence of the formula [PNQ]T[EQDN]LT[VATILS]WPL[GRK]MDTV[AG][NDQE]LLI[ATS][QHN]E[NSQT]AAL[VLSIT]GL[ITMALVS]QLG[PQN][SPT]S (SEQ ID NO: 704); an amino acid sequence MOTIF 13 as represented by an amino acid sequence of the formula [RLCKIV][DLWKEIVR][QNPRK][MTP][HQR][MILV]PGSVTVI[IVL]LCRLLQFP[ITLVS][DGE]G[SRTK][QFRNK][AST][TADES][TWS] (SEQ ID NO: 705); an amino acid sequence MOTIF 14 as represented by an amino acid sequence of the formula [TA][SGVTIL][ILV]PV[ED]VVTDP[SNTQ]IL[LMIV]GMQT[TS]V[LHIV]IAEL (SEQ ID NO: 706); an amino acid sequence MOTIF 15 as represented by an amino acid sequence of the formula EGLR[EQND]FQN[REKD]QVA[RNKQ]A[VLI]FAVL[KSRT][AST]VA[MQN]I[AG] (SEQ ID NO: 707); an amino acid sequence MOTIF 16 as represented by an amino acid sequence of the formula W[TS]RVRIRHLEM[QHN]F[AVIL][QKNR]E[AST][SMT][GNQ] (SEQ ID NO: 708); an amino acid sequence MOTIF 17 as represented by an amino acid sequence of the formula Q[IMLV]S[EQND]LQY[ED]IWVQG[LMIV][MLIV]RD[IMLV]A (SEQ ID NO: 709); an amino acid sequence MOTIF 18 as represented by an amino acid sequence of the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 as represented by an amino acid sequence of the formula [MLVI]DY[SKTR][TSKR]L[YF][REKD]DLNQIS (SEQ ID NO: 710); an amino acid sequence MOTIF 20 as represented by an amino acid sequence of the formula L[RHQKN]L[PTS]FM[QKNR]LHA[RITKLVS][VQLIN][IRLVK]E[QERNDK][NFQ][VRI LK][KWSR T][SETD] (SEQ ID NO: 711); an amino acid sequence MOTIF 21 as represented by an amino acid sequence of the formula V[DNQE][SAT]L[ED]QV[GST][QHN][ILV]V[GDE]AP (SEQ ID NO: 712); an amino acid sequence MOTIF 22 as represented by an amino acid sequence of the formula [IVL][EQHND][CAST][VAIL][MILV]K[IMLV][GVIL][RPK][FILV][VGIL][SLTIV]VV (SEQ ID NO: 713); an amino acid sequence MOTIF 23 as represented by an amino acid sequence of the formula TLTN[EQDN]PSE[EQDHN]F (SEQ ID NO: 714); and an amino acid sequence MOTIF 24 as represented by an amino acid sequence of the formula LP[RSKT]QS[RTKS]N[IVL]SF (SEQ ID NO: 715). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 having at least 90% sequence identity to the amino acid sequence as represented by the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AVIL]W[KR]AKCKN[MVIL]AAL GREM[SCT]I (SEQ ID NO: 693); an amino acid sequence MOTIF 2 having at least 90% sequence identity to the amino acid sequence as represented by the formula PQLQYRMYG[NS]LI[KRNQ]QMAQVAQNYD[QRNK][ED]FK[QRNK][FL][KR]LFI[IAVL]QNQI[L FIV]GSYLL[QEND]QN[KR]AF (SEQ ID NO: 694); an amino acid sequence MOTIF 3 having at least 90% sequence identity to the amino acid sequence as represented by the formula N[TKSR]FMQMTPFT[RHK]WRLRLSASA[SPKATR]EN[AKR][EG]LAFPTATA[PLIV]DSTT[EQ ND][IVL][VAIL]ITFHVTAIR (SEQ ID NO: 695); an amino acid sequence MOTIF 4 having at least 90% sequence identity to the amino acid sequence as represented by the formula [DNQE]FTSRHVVK[GDE]IPV[SNTQ]LLLDG[EGD]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 696); an amino acid sequence MOTIF 5 having at least 90% sequence identity to the amino acid sequence as represented by the formula IIHQP[SAT]T[RQKN][ST]G[ITLVS][VIL]YILLQGST[IVL]FHDRRR[DE][EQDN]V[MLIV]T[FP]QA A[DAVEIL]PLN[FY][QHN]YAYRLDTG (SEQ ID NO: 697); an amino acid sequence MOTIF 6 having at least 90% sequence identity to the amino acid sequence as represented by the formula S[HQN]ADRLAAIQP[AVIL][DN]LTN[HYF]LEMAT[HQN]MDMRTT[RSKT][MILV]L[ILV]GLLN[M ILV][LMIV]RIQNAAL[MRILVK]YEY (SEQ ID NO: 698); an amino acid sequence MOTIF 7 having at least 90% sequence identity to the amino acid sequence as represented by the formula [VLI]D[RQKN]VEFSEVMVIHRMYV[N]RL[SAT]DL[NDQE]V[GA][EQND]L[PED]GA[EGD][RK]VKR[VLI]YV[FLIV]ADVVE (SEQ ID NO: 699); an amino acid sequence MOTIF 8 having at least 90% sequence identity to the amino acid sequence as represented by the formula A[DE]RELQMESFH[SAT]AVISQ[RK]R[QGEND]EL[NDQE][TDSE][ATS][IFLV]AKM[DE]R[LMI V]SLQMEEE[NSDQET][RGK]AMEQA[QRNK]KEM (SEQ ID NO: 700); an amino acid sequence MOTIF 9 having at least 90% sequence identity to the amino acid sequence as represented by the formula F[VLI]TAGATAPGA[AVIL]ASAGQAV[SNTQ]IAGQAAQ[AG]LRRVVEILE[GQN]LEAVMEVVA A[VIL]K (SEQ ID NO: 701); an amino acid sequence MOTIF 10 having at least 90% sequence identity to the amino acid sequence as represented by the formula D[GDE][MA][NKQK]WG[ITLVS]Y[IVL][YH][GA]E[KERD]V[EQND][RVLKI]SPL[LYFIV][PNQ][S NGTQ][NWQ][ASPT][IYLV]L[AGVIL]V[WED]A[DQNE]R[CST][TISLV]IT[SAT]A[RFMK]HN[HV TILS][VFIL][NDQE][AERDK]PG[RWK][IVL][IRLVK] (SEQ ID NO: 702); an amino acid sequence MOTIF 11 having at least 90% sequence identity to the amino acid sequence as represented by the formula [KVRIL][VKRIL][CA][RGCK][PHY]PSP[DE][MILV][MVIL]SAV[AG][EVDIL]HA[LINVQ]WL[NSQ T][DKER]VLL[QRNK]VVQ[KNRQ]ES[QHN][LMIV]QGT[AED][PSAT]YNECLALLGR (SEQ ID NO: 703); an amino acid sequence MOTIF 12 having at least 90% sequence identity to the amino acid sequence as represented by the formula [PNQ]T[EQDN]LT[VATILS]WPL[GRK]MDTV[AG][NDQE]LLI[ATS][QHN]E[NSQT]AAL[VLSIT]GL[ITMALVS]QLG[PQN][SPT]S (SEQ ID NO: 704); an amino acid sequence MOTIF 13 having at least 90% sequence identity to the amino acid sequence as represented by the formula [RLCKIV][DLWKEIVR][QNPRK][MTP][HQR][MILV]PGSVTVI[IVL]LCRLLQFP[ITLVS][DGE]G[SRTK][QFRNK][AST][TADES][TWS] (SEQ ID NO: 705); an amino acid sequence MOTIF 14 having at least 90% sequence identity to the amino acid sequence as represented by the formula [TA][SGVTIL][ILV]PV[ED]VVTDP[SNTQ]IL[LMIV]GMQT[TS]V[LHIV]IAEL (SEQ ID NO: 706); an amino acid sequence MOTIF 15 having at least 90% sequence identity to the amino acid sequence as represented by the formula EGLR[EQND]FQN[REKD]QVA[RNKQ]A[VLI]FAVL[KSRT][AST]VA[MQN]I[AG] (SEQ ID NO: 707); an amino acid sequence MOTIF 16 having at least 90% sequence identity to the amino acid sequence as represented by the formula W[TS]RVRIRHLEM[QHN]F[AVIL][QKNR]E[AST][SMT][GNQ] (SEQ ID NO: 708); an amino acid sequence MOTIF 17 having at least 90% sequence identity to the amino acid sequence as represented by the formula Q[IMLV]S[EQND]LQY[ED]IWVQG[LMIV][MLIV]RD[IMLV]A (SEQ ID NO: 709); an amino acid sequence MOTIF 18 having at least 90% sequence identity to the amino acid sequence as represented by the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 having at least 90% sequence identity to the amino acid sequence as represented by the formula [MLVI]DY[SKTR][TSKR]L[YF][REKD]DLNQIS (SEQ ID NO: 710); an amino acid sequence MOTIF 20 having at least 90% sequence identity to the amino acid sequence as represented by the formula L[RHQKN]L[PTS]FM[QKNR]LHA[RITKLVS][VQLIN][IRLVK]E[QERNDK][NFQ][VRILK][KWSR T][SETD] (SEQ ID NO: 711); an amino acid sequence MOTIF 21 having at least 90% sequence identity to the amino acid sequence as represented by the formula V[DNQE][SAT]L[ED]QV[GST][QHN][ILV]V[GDE]AP (SEQ ID NO: 712); an amino acid sequence MOTIF 22 having at least 90% sequence identity to the amino acid sequence as represented by the formula [IVL][EQHND][CAST][VAIL][MILV]K[IMLV][GVIL][RPK][FILV][VGIL][SLTIV]VV (SEQ ID NO: 713); an amino acid sequence MOTIF 23 having at least 90% sequence identity to the amino acid sequence as represented by the formula TLTN[EQDN]PSE[EQDHN]F (SEQ ID NO: 714); and an amino acid sequence MOTIF 24 having at least 90% sequence identity to the amino acid sequence as represented by the formula LP[RSKT]QS[RTKS]N[IVL]SF (SEQ ID NO: 715). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising, sequentially from the N-terminus to the C-terminus, an amino acid sequence MOTIF selected from: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 10 (SEQ ID NO: 655, SEQ ID NO: 679 or SEQ ID NO: 702), MOTIF 18 (SEQ ID NO: 663), MOTIF 24 (SEQ ID NO: 669, SEQ ID NO: 692 or SEQ ID NO: 715), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 11 (SEQ ID NO: 656, SEQ ID NO: 680 or SEQ ID NO: 703), MOTIF 22 (SEQ ID NO: 667, SEQ ID NO: 690 or SEQ ID NO: 713), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising, sequentially from the N-terminus to the C-terminus, an amino acid sequence MOTIF selected from: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising, sequentially from the N-terminus to the C-terminus, the amino acid sequence motifs: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 10 (SEQ ID NO: 655, SEQ ID NO: 679 or SEQ ID NO: 702), MOTIF 18 (SEQ ID NO: 663), MOTIF 24 (SEQ ID NO: 669, SEQ ID NO: 692 or SEQ ID NO: 715), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 11 (SEQ ID NO: 656, SEQ ID NO: 680 or SEQ ID NO: 703), MOTIF 22 (SEQ ID NO: 667, SEQ ID NO: 690 or SEQ ID NO: 713), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising, sequentially from the N-terminus to the C-terminus, the amino acid sequence motifs: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length comprising an amino acid sequence MOTIF of: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 10 (SEQ ID NO: 655, SEQ ID NO: 679 or SEQ ID NO: 702), MOTIF 18 (SEQ ID NO: 663), MOTIF 24 (SEQ ID NO: 669, SEQ ID NO: 692 or SEQ ID NO: 715), and/or MOTIF 14 having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length comprising an amino acid sequence MOTIF of MOTIF 22 (SEQ ID NO: 667, SEQ ID NO: 690 or SEQ ID NO: 713), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), and/or MOTIF 12 and having a predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length comprising an amino acid sequence MOTIF of MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and/or MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695), having a consensus secondary structure comprising predominately beta strand structure. In some embodiments the PtIP-83 polypeptide comprises an amino acid sequence MOTIF at the positions as shown in Table 2. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising 8 to 10 segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising 6 to 8 segments of predominately beta strand structure. As used herein “predominantly nonconserved secondary structure” means that the regions of secondary structure don't consistently align within the family of PtIP polypeptides. As used herein “predominately alpha helical structure” means that secondary structure prediction may have one or more gap of between 1 to 6 amino acids of coil and/or beta strand structure intervening in the alpha helix structure. As used herein “predominately beta strand structure” means that secondary structure prediction may have one or more gap of between 1 to 6 amino acids of coil and/or alpha helix structure intervening in the beta strand structure. In some embodiments the secondary structure is generated by the PSIPRED, top ranked secondary structure prediction method (Jones D T. (1999) In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure, wherein the Region A comprises a conserved beta strand 1 (β1a) of between about 4 and about 12 amino acids in length within about amino acid residue 30 to about amino acid residue 130 from the N-terminus of the PtIP-83 polypeptide; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a flexible consensus secondary structure, wherein the Region A comprises a conserved beta strand 1 (β1a) of between about 4 and about 12 amino acids in length, a coil of between about 3 and and about 18 amino acids in length and a beta strand 2 (β1b) of between about 4 and about 32 amino acids in length, within about amino acid residue 50 to about amino acid residue 165 from the N-terminus of the PtIP-83 polypeptide; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising sequentially: i) an alpha helix-1 of between about 10 and about 26 amino acids in length; ii) a coil-1 of between about 2 and about 8 amino acids in length flanked by alpha helix-1 and alpha helix-2; iii) an alpha helix-2 of between about 15 and about 24 amino acids in length; iv) a coil-2 of between about 4 and about 14 amino acids in length flanked by alpha helix-2 and alpha helix-3; v) an alpha helix 3 of between about 15 and about 27 amino acids in length; vi) a coil-3 of between about 11 and about 13 amino acids in length flanked by alpha helix-3 and alpha helix-4; vii) an alpha helix-4 of about 24 180 amino acids in length; viii) a coil-4 of between about 4 and about 5 amino acids in length flanked by alpha helix-4 and alpha helix-5; ix) an alpha helix-5 of between about 50 and about 54 amino acids in length; x) a coil-5 of between about 11 and about 17 amino acids in length flanked by alpha helix-5 and alpha helix-6; xi) an alpha helix-6 of between about 15 and about 16 amino acids in length; xii) a coil-6 of between about 6 and about 9 amino acids in length flanked by alpha helix-6 and alpha helix-7; xiii) an alpha helix-7 of between about 49 and about 55 amino acids in length; xiv) a coil-7 of between about 3 and about 8 amino acids in length flanked by alpha helix-7 and alpha helix-8; xv) an alpha helix-8 of between about 33 and about 36 amino acids in length; xvi) a coil-8 of between about 14 and about 16 amino acids in length flanked by alpha helix-8 and alpha helix-9; xvii) an alpha helix-9 of between about 16 and about 23 amino acids in length; xviii) a coil-9 of between about 21 and about 28 amino acids in length flanked by alpha helix-9 and Region C; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising sequentially: i) a beta strand-1 (β1) of between about 3 amino acids and about 5 amino acids in length; ii) a coil of between about 13 amino acids and about 17 amino acids in length; iii) a beta strand-2 (β2) of between about 7 amino acids and about 11 amino acids in length; iv) a coil of between about 17 amino acids and about 23 amino acids in length; v) a beta strand-3 (β3) of between about 5 amino acids and about 7 amino acids in length; vi) a coil of between about 12 amino acids and about 14 amino acids in length; vii) a beta strand-4 (β4) of between about 5 amino acids and about 6 amino acids in length; viii) a coil of between about 2 amino acids and about 7 amino acids in length; ix) a beta strand-5 (β5) of between about 5 amino acids and about 7 amino acids in length; x) a coil of between about 26 amino acids and about 28 amino acids in length; xi) a beta strand-6 (β6) of between about 5 amino acids and about 7 amino acids in length; xii) a coil of between about 16 amino acids and about 20 amino acids in length; and xiii) a beta strand-1 (β7) of between about 13 amino acids and about 17 amino acids in length. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising sequentially: i) an alpha helix-1 of between about 10 and about 26 amino acids in length; ii) a coil-1 of between about 2 and about 8 amino acids in length flanked by alpha helix-1 and alpha helix-2; iii) an alpha helix-2 of between about 15 and about 24 amino acids in length; iv) a coil-2 of between about 4 and about 14 amino acids in length flanked by alpha helix-2 and alpha helix-3; v) an alpha helix 3 of between about 15 and about 27 amino acids in length; vi) a coil-3 of between about 11 and about 13 amino acids in length flanked by alpha helix-3 and alpha helix-4; vii) an alpha helix-4 of about 24 180 amino acids in length; viii) a coil-4 of between about 4 and about 5 amino acids in length flanked by alpha helix-4 and alpha helix-5; ix) an alpha helix-5 of between about 50 and about 54 amino acids in length; x) a coil-5 of between about 11 and about 17 amino acids in length flanked by alpha helix-5 and alpha helix-6; xi) an alpha helix-6 of between about 15 and about 16 amino acids in length; xii) a coil-6 of between about 6 and about 9 amino acids in length flanked by alpha helix-6 and alpha helix-7; xiii) an alpha helix-7 of between about 49 and about 55 amino acids in length; xiv) a coil-7 of between about 3 and about 8 amino acids in length flanked by alpha helix-7 and alpha helix-8; xv) an alpha helix-8 of between about 33 and about 36 amino acids in length; xvi) a coil-8 of between about 14 and about 16 amino acids in length flanked by alpha helix-8 and alpha helix-9; xvii) an alpha helix-9 of between about 16 and about 23 amino acids in length; xviii) a coil-9 of between about 21 and about 28 amino acids in length flanked by alpha helix-9 and Region C; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising sequentially: i) a beta strand-1 (β1) of between about 3 amino acids and about 5 amino acids in length; ii) a coil of between about 13 amino acids and about 17 amino acids in length; iii) a beta strand-2 (β2) of between about 7 amino acids and about 11 amino acids in length; iv) a coil of between about 17 amino acids and about 23 amino acids in length; v) a beta strand-3 (β3) of between about 5 amino acids and about 7 amino acids in length; vi) a coil of between about 12 amino acids and about 14 amino acids in length; vii) a beta strand-4 (β4) of between about 5 amino acids and about 6 amino acids in length; viii) a coil of between about 2 amino acids and about 7 amino acids in length; ix) a beta strand-5 (β5) of between about 5 amino acids and about 7 amino acids in length; x) a coil of between about 26 amino acids and about 28 amino acids in length; xi) a beta strand-6 (β6) of between about 5 amino acids and about 7 amino acids in length; xii) a coil of between about 16 amino acids and about 20 amino acids in length; and xiii) a beta strand-1 (β7) of between about 13 amino acids and about 17 amino acids in length. In some embodiments the nucleic acid molecule encodes a PtIP-83 polypeptide comprising sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a flexible consensus secondary structure, wherein the Region A comprises a conserved beta strand 1 (β1a) of between about 4 and about 12 amino acids in length within about amino acid residue 30 to about amino acid residue 130 from the N-terminus of the PtIP-83 polypeptide; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising sequentially: i) an alpha helix-1 of between about 10 and about 26 amino acids in length; ii) a coil-1 of between about 2 and about 8 amino acids in length flanked by alpha helix-1 and alpha helix-2; iii) an alpha helix-2 of between about 15 and about 24 amino acids in length; iv) a coil-2 of between about 4 and about 14 amino acids in length flanked by alpha helix-2 and alpha helix-3; v) an alpha helix 3 of between about 15 and about 27 amino acids in length; vi) a coil-3 of between about 11 and about 13 amino acids in length flanked by alpha helix-3 and alpha helix-4; vii) an alpha helix-4 of about 24 180 amino acids in length; viii) a coil-4 of between about 4 and about 5 amino acids in length flanked by alpha helix-4 and alpha helix-5; ix) an alpha helix-5 of between about 50 and about 54 amino acids in length; x) a coil-5 of between about 11 and about 17 amino acids in length flanked by alpha helix-5 and alpha helix-6; xi) an alpha helix-6 of between about 15 and about 16 amino acids in length; xii) a coil-6 of between about 6 and about 9 amino acids in length flanked by alpha helix-6 and alpha helix-7; xiii) an alpha helix-7 of between about 49 and about 55 amino acids in length; xiv) a coil-7 of between about 3 and about 8 amino acids in length flanked by alpha helix-7 and alpha helix-8; xv) an alpha helix-8 of between about 33 and about 36 amino acids in length; xvi) a coil-8 of between about 14 and about 16 amino acids in length flanked by alpha helix-8 and alpha helix-9; xvii) an alpha helix-9 of between about 16 and about 23 amino acids in length; xviii) a coil-9 of between about 21 and about 28 amino acids in length flanked by alpha helix-9 and Region C; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary comprising sequentially: i) a beta strand-1 (β1) of between about 3 amino acids and about 5 amino acids in length; ii) a coil of between about 13 amino acids and about 17 amino acids in length; iii) a beta strand-2 (β2) of between about 7 amino acids and about 11 amino acids in length; iv) a coil of between about 17 amino acids and about 23 amino acids in length; v) a beta strand-3 (β3) of between about 5 amino acids and about 7 amino acids in length; vi) a coil of between about 12 amino acids and about 14 amino acids in length; vii) a beta strand-4 (β4) of between about 5 amino acids and about 6 amino acids in length; viii) a coil of between about 2 amino acids and about 7 amino acids in length; ix) a beta strand-5 (β5) of between about 5 amino acids and about 7 amino acids in length; x) a coil of between about 26 amino acids and about 28 amino acids in length; xi) a beta strand-6 (β6) of between about 5 amino acids and about 7 amino acids in length; xii) a coil of between about 16 amino acids and about 20 amino acids in length; and xiii) a beta strand-1 (β7) of between about 13 amino acids and about 17 amino acids in length. Also provided are nucleic acid molecules that encode transcription and/or translation products that are subsequently spliced to ultimately produce functional PtIP-83 polypeptides. Splicing can be accomplished in vitro or in vivo, and can involve cis- or trans-splicing. The substrate for splicing can be polynucleotides (e.g., RNA transcripts) or polypeptides. An example of cis-splicing of a polynucleotide is where an intron inserted into a coding sequence is removed and the two flanking exon regions are spliced to generate a PtIP-83 polypeptide encoding sequence. An example of trans splicing would be where a polynucleotide is encrypted by separating the coding sequence into two or more fragments that can be separately transcribed and then spliced to form the full-length pesticidal encoding sequence. The use of a splicing enhancer sequence, which can be introduced into a construct, can facilitate splicing either in cis or trans-splicing of polypeptides (U.S. Pat. Nos. 6,365,377 and 6,531,316). Thus, in some embodiments the polynucleotides do not directly encode a full-length PtIP-83 polypeptide, but rather encode a fragment or fragments of a PtIP-83 polypeptide. These polynucleotides can be used to express a functional PtIP-83 polypeptide through a mechanism involving splicing, where splicing can occur at the level of polynucleotide (e.g., intron/exon) and/or polypeptide (e.g., intein/extein). This can be useful, for example, in controlling expression of pesticidal activity, since a functional pesticidal polypeptide will only be expressed if all required fragments are expressed in an environment that permits splicing processes to generate functional product. In another example, introduction of one or more insertion sequences into a polynucleotide can facilitate recombination with a low homology polynucleotide; use of an intron or intein for the insertion sequence facilitates the removal of the intervening sequence, thereby restoring function of the encoded variant. Nucleic acid molecules that are fragments of these nucleic acid sequences encoding PtIP-83 polypeptides are also encompassed by the embodiments. “Fragment” as used herein refers to a portion of the nucleic acid sequence encoding a PtIP-83 polypeptide. A fragment of a nucleic acid sequence may encode a biologically active portion of a PtIP-83 polypeptide or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. Nucleic acid molecules that are fragments of a nucleic acid sequence encoding a PtIP-83 polypeptide comprise at least about 150, 180, 210, 240, 270, 300, 330 or 360, contiguous nucleotides or up to the number of nucleotides present in a full-length nucleic acid sequence encoding a PtIP-83 polypeptide disclosed herein, depending upon the intended use. “Contiguous nucleotides” is used herein to refer to nucleotide residues that are immediately adjacent to one another. Fragments of the nucleic acid sequences of the embodiments will encode protein fragments that retain the biological activity of the PtIP-83 polypeptide and, hence, retain insecticidal activity. “Retains insecticidal activity” is used herein to refer to a polypeptide having at least about 10%, at least about 30%, at least about 50%, at least about 70%, 80%, 90%, 95% or higher of the insecticidal activity of the full-length PtIP-83Aa polypeptide (SEQ ID NO: 1). In some embodiments, the insecticidal activity is Lepidoptera activity. In one embodiment, the insecticidal activity is against a Coleopteran species. In some embodiments, the insecticidal activity is against one or more insect pests of the corn rootworm complex: western corn rootworm, In some embodiments a fragment of a nucleic acid sequence encoding a PtIP-83 polypeptide encoding a biologically active portion of a protein will encode at least about 15, 20, 30, 50, 75, 100, 125, contiguous amino acids or up to the total number of amino acids present in a full-length PtIP-83 polypeptide of the embodiments. In some embodiments, the fragment is an N-terminal and/or a C-terminal truncation of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or more amino acids from the N-terminus and/or C-terminus relative to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or SEQ ID NOs: 958-1026, variants thereof, e.g., by proteolysis, insertion of a start codon, deletion of the codons encoding the deleted amino acids with the concomitant insertion of a stop codon or by insertion of a stop codon in the coding sequence. In some embodiments, the fragments encompassed herein result from the removal of the N-terminal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more amino acids from the N-terminus relative to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, SEQ ID NOs: 958-1026, or variants thereof, e.g., by proteolysis or by insertion of a start codon in the coding sequence. In some embodiments, the fragments encompassed herein result from the removal of the N-terminal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 amino acids relative to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, or variants thereof, e.g., by proteolysis or by insertion of a start codon in the coding sequence. In some embodiments the PtIP-83 polypeptide is encoded by a nucleic acid sequence sufficiently homologous to the nucleic acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 717, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752, SEQ ID NO: 753, or SEQ ID NOs: 958-1026. “Sufficiently homologous” is used herein to refer to an amino acid or nucleic acid sequence that has at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence homology compared to a reference sequence using one of the alignment programs described herein using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding homology of proteins encoded by two nucleic acid sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like. In some embodiments the sequence homology is against the full length sequence of the polynucleotide encoding a PtIP-83 polypeptide or against the full length sequence of a PtIP-83 polypeptide. In some embodiments the nucleic acid encoding a PtIP-83 polypeptide is selected from SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 28, SEQ ID NO: 29, any one of SEQ ID NO: 172-235, any one of SEQ ID NO: 300-333, any one of SEQ ID NO: 368-397, any one of SEQ ID NO: 428-517, SEQ ID NO: 717, any one of SEQ ID NO: 718-727, and any one of SEQ ID NO: 738-753. In some embodiments the nucleic acid encodes a PtIP-83 polypeptide having at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity compared to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768 or SEQ ID NO: 769. In some embodiments the sequence identity is calculated using ClustalW algorithm in the ALIGNX® module of the Vector NTI® Program Suite (Invitrogen Corporation, Carlsbad, Calif.) with all default parameters. In some embodiments the sequence identity is across the entire length of polypeptide calculated using ClustalW algorithm in the ALIGNX module of the Vector NTI Program Suite (Invitrogen Corporation, Carlsbad, Calif.) with all default parameters. To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., percent identity=number of identical positions/total number of positions (e.g., overlapping positions)×100). In one embodiment, the two sequences are the same length. In another embodiment, the comparison is across the entirety of the reference sequence (e.g., across the entirety of SEQ ID NO: 1). The percent identity between two sequences can be determined using techniques similar to those described below, with or without allowing gaps. In calculating percent identity, typically exact matches are counted. The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, (1990) Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the ClustalW algorithm (Higgins, et al., (1994) Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Needleman and Wunsch, (1970) The embodiments also encompass nucleic acid molecules encoding PtIP-83 polypeptide variants. “Variants” of the PtIP-83 polypeptide encoding nucleic acid sequences include those sequences that encode the PtIP-83 polypeptides disclosed herein but that differ conservatively because of the degeneracy of the genetic code as well as those that are sufficiently identical as discussed above. Naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleic acid sequences also include synthetically derived nucleic acid sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the PtIP-83 polypeptides disclosed as discussed below. The present disclosure provides isolated or recombinant polynucleotides that encode any of the PtIP-83 polypeptides disclosed herein. Those having ordinary skill in the art will readily appreciate that due to the degeneracy of the genetic code, a multitude of nucleotide sequences encoding PtIP-83 polypeptides of the present disclosure exist. Table 1 is a codon table that provides the synonymous codons for each amino acid. For example, the codons AGA, AGG, CGA, CGC, CGG, and CGU all encode the amino acid arginine. Thus, at every position in the nucleic acids of the disclosure where an arginine is specified by a codon, the codon can be altered to any of the corresponding codons described above without altering the encoded polypeptide. It is understood that U in an RNA sequence corresponds to T in a DNA sequence. The skilled artisan will further appreciate that changes can be introduced by mutation of the nucleic acid sequences thereby leading to changes in the amino acid sequence of the encoded PtIP-83 polypeptides, without altering the biological activity of the proteins. Thus, variant nucleic acid molecules can be created by introducing one or more nucleotide substitutions, additions and/or deletions into the corresponding nucleic acid sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleic acid sequences are also encompassed by the present disclosure. Alternatively, variant nucleic acid sequences can be made by introducing mutations randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for ability to confer pesticidal activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques. The polynucleotides of the disclosure and fragments thereof are optionally used as substrates for a variety of recombination and recursive recombination reactions, in addition to standard cloning methods as set forth in, e.g., Ausubel, Berger and Sambrook, i.e., to produce additional pesticidal polypeptide homologues and fragments thereof with desired properties. A variety of such reactions are known, including those developed by the inventors and their co-workers. Methods for producing a variant of any nucleic acid listed herein comprising recursively recombining such polynucleotide with a second (or more) polynucleotide, thus forming a library of variant polynucleotides are also embodiments of the disclosure, as are the libraries produced, the cells comprising the libraries and any recombinant polynucleotide produces by such methods. Additionally, such methods optionally comprise selecting a variant polynucleotide from such libraries based on pesticidal activity, as is wherein such recursive recombination is done in vitro or in vivo. A variety of diversity generating protocols, including nucleic acid recursive recombination protocols are available and fully described in the art. The procedures can be used separately, and/or in combination to produce one or more variants of a nucleic acid or set of nucleic acids, as well as variants of encoded proteins. Individually and collectively, these procedures provide robust, widely applicable ways of generating diversified nucleic acids and sets of nucleic acids (including, e.g., nucleic acid libraries) useful, e.g., for the engineering or rapid evolution of nucleic acids, proteins, pathways, cells and/or organisms with new and/or improved characteristics. While distinctions and classifications are made in the course of the ensuing discussion for clarity, it will be appreciated that the techniques are often not mutually exclusive. Indeed, the various methods can be used singly or in combination, in parallel or in series, to access diverse sequence variants. The result of any of the diversity generating procedures described herein can be the generation of one or more nucleic acids, which can be selected or screened for nucleic acids with or which confer desirable properties or that encode proteins with or which confer desirable properties. Following diversification by one or more of the methods herein or otherwise available to one of skill, any nucleic acids that are produced can be selected for a desired activity or property, e.g. pesticidal activity or, such activity at a desired pH, etc. This can include identifying any activity that can be detected, for example, in an automated or automatable format, by any of the assays in the art, see, e.g., discussion of screening of insecticidal activity, infra. A variety of related (or even unrelated) properties can be evaluated, in serial or in parallel, at the discretion of the practitioner. Descriptions of a variety of diversity generating procedures for generating modified nucleic acid sequences, e.g., those coding for polypeptides having pesticidal activity or fragments thereof, are found in the following publications and the references cited therein: Soong, et al., (2000) Mutational methods of generating diversity include, for example, site-directed mutagenesis (Ling, et al., (1997) Additional suitable methods include point mismatch repair (Kramer, et al., (1984) The nucleotide sequences of the embodiments can also be used to isolate corresponding sequences from ferns or other primitive plant, particularly a In a PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook, et al., (1989) Alternatively, mass spectrometry based protein identification method can be used to identify homologs of PtIP-83 polypeptides using protocols in the literatures (Scott Patterson, (1998), 10.22, 1-24, Current Protocol in Molecular Biology published by John Wiley & Son Inc). Specifically, LC-MS/MS based protein identification method is used to associate the MS data of given cell lysate or desired molecular weight enriched samples (excised from SDS-PAGE gel of relevant molecular weight bands to PtIP-83 polypeptides) with sequence information of PtIP-83 polypeptides SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768 or SEQ ID NO: 769 and their homologs. Any match in peptide sequences indicates the potential of having the homologous proteins in the samples. Additional techniques (protein purification and molecular biology) can be used to isolate the protein and identify the sequences of the homologs. In hybridization methods, all or part of the pesticidal nucleic acid sequence can be used to screen cDNA or genomic libraries. Methods for construction of such cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook and Russell, (2001), supra. The so-called hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments or other oligonucleotides and may be labeled with a detectable group such as 32P or any other detectable marker, such as other radioisotopes, a fluorescent compound, an enzyme or an enzyme co-factor. Probes for hybridization can be made by labeling synthetic oligonucleotides based on the known PtIP-83 polypeptide-encoding nucleic acid sequence disclosed herein. Degenerate primers designed on the basis of conserved nucleotides or amino acid residues in the nucleic acid sequence or encoded amino acid sequence can additionally be used. The probe typically comprises a region of nucleic acid sequence that hybridizes under stringent conditions to at least about 12, at least about 25, at least about 50, 75, 100, 125, 150, 175 or 200 consecutive nucleotides of nucleic acid sequence encoding a PtIP-83 polypeptide of the disclosure or a fragment or variant thereof. Methods for the preparation of probes for hybridization are generally known in the art and are disclosed in Sambrook and Russell, (2001), supra, herein incorporated by reference. For example, an entire nucleic acid sequence, encoding a PtIP-83 polypeptide, disclosed herein or one or more portions thereof may be used as a probe capable of specifically hybridizing to corresponding nucleic acid sequences encoding PtIP-83 polypeptide-like sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique and are preferably at least about 10 nucleotides in length or at least about 20 nucleotides in length. Such probes may be used to amplify corresponding pesticidal sequences from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook, et al., (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Hybridization of such sequences may be carried out under stringent conditions. “Stringent conditions” or “stringent hybridization conditions” is used herein to refer to conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length. Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37° C., and a wash in 1× to 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55° C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37° C., and a wash in 0.5× to 1×SSC at 55 to 60° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1×SSC at 60 to 65° C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the Tm can be approximated from the equation of Meinkoth and Wahl, (1984) In some embodiments polynucleotides are provided encoding a PtIP-83 polypeptide comprising an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity to any one of SEQ ID NO: 786-888. In some embodiments polynucleotides are provided encoding a PtIP-83 polypeptide comprising the amino acid sequence of any one of SEQ ID NO: 786-888. In some embodiments the polynucleotide encoding the PtIP-83 polypeptide comprising the amino acid sequence of any one of SEQ ID NO: 786-888 is a non-genomic sequence. In some embodiments the polynucleotide encoding the PtIP-83 polypeptide comprising the amino acid sequence of any one of SEQ ID NO: 786-888 is a cDNA. PtIP-83 polypeptides are also encompassed by the disclosure. “ “Sufficiently homologous” is used herein to refer to an amino acid sequence that has at least about 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence homology compared to a reference sequence using one of the alignment programs described herein using standard parameters. In some embodiments the sequence homology is against the full length sequence of a PtIP-83 polypeptide. In some embodiments the PtIP-83 polypeptide has at least about 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity compared to SEQ ID NO: 1. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding homology of proteins taking into account amino acid similarity and the like. As used herein, the terms “protein,” “peptide molecule,” or “polypeptide” includes any molecule that comprises five or more amino acids. It is well known in the art that protein, peptide or polypeptide molecules may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation or oligomerization. Thus, as used herein, the terms “protein,” “peptide molecule” or “polypeptide” includes any protein that is modified by any biological or non-biological process. The terms “amino acid” and “amino acids” refer to all naturally occurring L-amino acids. A “recombinant protein” or “recombinant polypeptide” is used herein to refer to a protein that is no longer in its natural environment, for example in vitro or in a recombinant bacterial or plant host cell. A “purified protein” or “purified polypeptide” is used herein to refer to a protein that is substantially free of cellular material. A PtIP-83 polypeptide that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10% or 5% (by dry weight) of non-pesticidal protein (also referred to herein as a “contaminating protein”). “Fragments” or “biologically active portions” include polypeptide fragments comprising amino acid sequences sufficiently identical to a PtIP-83 polypeptide and that exhibit insecticidal activity. “Fragments” or “biologically active portions” of PtIP-83 polypeptides includes fragments comprising amino acid sequences sufficiently identical to the amino acid sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, wherein the PtIP-83 polypeptide has insecticidal activity. Such biologically active portions can be prepared by recombinant techniques and evaluated for insecticidal activity. In some embodiments, the PtIP-83 polypeptide fragment is an N-terminal and/or a C-terminal truncation of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or more amino acids from the N-terminus and/or C-terminus relative to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768 or SEQ ID NO: 769, e.g., by proteolysis, by insertion of a start codon, by deletion of the codons encoding the deleted amino acids and concomitant insertion of a start codon, and/or insertion of a stop codon. In some embodiments, the PtP-83 polypeptide fragments encompassed herein result from the removal of the N-terminal 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more amino acids relative to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, SEQ ID NOs: 958-1026, or variants thereof, e.g., by proteolysis or by insertion of a start codon, by deletion of the codons encoding the deleted amino acids and concomitant insertion of a start codon. “Variants” as used herein refers to proteins or polypeptides having an amino acid sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the parental amino acid sequence. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence having at least 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, wherein the PtIP-83 polypeptide has insecticidal activity. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity across the entire length of the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or SEQ ID NOs: 958-1026. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity across the entire length of the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, and has at least one amino acid substitution, deletion, insertion, and/or addition at the N-terminus or C-terminus compared to the native sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or SEQ ID NOs: 958-1026. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 or more amino acid substitutions compared to the native amino acid at the corresponding position of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60 amino acid substitutions, in any combination, compared to the native amino acid at the corresponding position of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 amino acid substitutions, in any combination, compared to the native amino acid at the corresponding position of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments the PtIP-83 polypeptide comprises an amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments the PtIP-83 polypeptide comprises a non-naturally occurring amino acid sequence. As used herein the term “non-naturally occurring amino acid sequence” means an amino acid sequence not found in nature. In some embodiments the PtIP-83 polypeptide is not the polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments the PtIP-83 polypeptide is a variant of the polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, wherein the PtIP-83 polypeptide variant has at least one amino acid substitution, deletion, insertion, and/or addition at the N-terminus or C-terminus compared to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments PtIP-83 polypeptide comprising an amino acid sequence of any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737. In some embodiments the PtIP-83 polypeptide is a variant of SEQ ID NO: 1, wherein the amino acid at position 53 is Val, Ala, Cys or Thr; the amino acid at position 54 is Lys, Ala, Cys, Asp, Glu, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser or Thr; the amino acid at position 55 is Arg, Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 56 is Leu, Glu, Phe, Ile, Met, Thr or Val; the amino acid at position 57 is Tyr, Cys, Ile, Leu, Met, Thr or Val; the amino acid at position 58 is Val, Cys, Ile or Leu; the amino acid at position 59 is Phe, Leu, Met, Val or Tyr; the amino acid at position 60 is Ala, Cys, Gly, Ser, Thr or Val; the amino acid at position 61 is Asp, Glu, His or Ser; the amino acid at position 62 is Val, Ala, Cys, Ile, Leu or Thr; the amino acid at position 63 is Val, Ala, Cys, Ile, Leu, Met or Thr; the amino acid at position 64 is Glu, Ala, Cys, Phe, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 65 is Leu, Ala, Cys, Phe, His, Ile, Met, Asn, Gln, Thr, Val or Trp; the amino acid at position 66 is Pro, Asp, Gly, Met, Gln or Arg; the amino acid at position 363 is Gln, Ala, Cys, Glu, Phe, Gly, His, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 364 is Ile, Ala, Cys, Glu, Phe, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 365 is Leu, Ala, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Arg, Val, Trp or Tyr; the amino acid at position 366 is Gly, Ala, Cys, Phe, His, Ile, Lys, Leu, Met, Asn, Ser, Thr or Val; the amino acid at position 367 is Ser, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val or Trp; the amino acid at position 368 is Tyr, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Trp; the amino acid at position 369 is Leu, Ala, Cys, Asp, Phe, Gly, Ile, Met, Thr or Val; the amino acid at position 370 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 371 is Gln, Ala, Cys, Asp, Glu, Phe, Gly, Ile, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 372 is Gln, Ala, Cys, Asp, Phe, Gly, His, Ile, Leu, Asn, Arg, Ser, Val or Tyr; the amino acid at position 373 is Asn, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Gln, Ser, Thr, Val or Trp; the amino acid at position 556 is Trp, Phe, Thr or Tyr; the amino acid at position 557 is Arg, Cys, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 558 is Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Val, Trp or Tyr; the amino acid at position 559 is Lys, Ala, Cys, Phe, Gly, His, Ile, Leu, Asn, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 560 is Cys, Ala, Phe, Gly, Ile, Met, Asn, Arg, Ser, Thr or Val; the amino acid at position 561 is Lys, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Arg, Ser, Thr, Val or Tyr; the amino acid at position 562 is Asn, Cys, Asp, Glu, Gly, His, Leu, Met, Arg, Ser, Thr, Val or Tyr; the amino acid at position 563 is Val, Ala, Cys, Asp, Phe, His, Ile, Leu, Met, Asn, Gln, Thr or Trp; the amino acid at position 564 is Ala, Cys, Gly, Met, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 646 is Leu, Ala, Cys, Gly, Ile, Met, Asn, Gln, Ser, Thr or Val; the amino acid at position 647 is Leu, Asp, Gly, Met, Asn, Gln or Thr; the amino acid at position 648 is Met, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 649 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Met, Asn, Gln, Arg, Ser, Thr, Trp or Tyr; the amino acid at position 650 is Thr, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Val or Tyr; the amino acid at position 651 is Glu, Ala, Cys, Asp, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 652 is Leu, Cys, Phe, Ile, Lys, Met, Pro, Arg, Ser, Thr or Val; the amino acid at position 653 is Thr, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Pro, Arg, Ser, Val or Trp; the amino acid at position 654 is Thr, Ala, Cys, Phe, Ile, Lys, Leu, Met, Pro, Arg, Ser, Val, Trp or Tyr; the amino acid at position 655 is Trp, Phe or Tyr; the amino acid at position 771 is Arg, Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Asn, Ser, Thr, Val, Trp or Tyr; the amino acid at position 772 is Arg, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 773 is Asp, Ala, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 774 is Gln, Ala, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 775 is Val, Ala, Cys, Asp, Glu, Gly, His, Ile, Asn, Pro, Gln, Arg, Ser, Thr or Tyr; the amino acid at position 776 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 777 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 778 is Phe, Ala, His, Ile, Leu, Met, Asn, Gln, Ser, Val, Trp or Tyr; the amino acid at position 779 is Gln, Ala, Cys, Asp, Glu, Gly, His, Lys, Leu, Asn, Pro, Arg, Ser, Thr or Val; the amino acid at position 780 is Ala, Cys, Asn, Pro, Gln or Ser; the amino acid at position 781 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 782 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 783 is Pro, Ala, Cys, Asp, Glu, Gly, His, Asn, Gln, Arg, Ser, Thr or Val; the amino acid at position 784 is Leu, Ala, Glu, Phe, His, Ile, Lys, Met, Asn, Pro, Gln, Ser, Thr, Val or Trp; the amino acid at position 785 is Asn, Ala, Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; and the amino acid at position 786 is Tyr, Phe, Ile, Leu or Trp. In some embodiments the PtIP-83 polypeptide is a variant of SEQ ID NO: 1, wherein the amino acid at position 1 is Met or deleted; the amino acid at position 2 is Ala or deleted; the amino acid at position 3 is Leu, Val or deleted; the amino acid at position 4 is Val, Met or Leu; the amino acid at position 7 is Gly or Ser; the amino acid at position 8 is Lys or Thr; the amino acid at position 10 is Phe or Tyr; the amino acid at position 11 is Glu or Arg; the amino acid at position 18 is Met or Ile; the amino acid at position 19 is Gly, Pro or Ala; the amino acid at position 20 is Val or deleted; the amino acid at position 21 is Leu or Val; the amino acid at position 23 is Arg or Gln; the amino acid at position 37 is Val or Leu; the amino acid at position 38 is Arg or Asn; the amino acid at position 40 is Ala or Ser; the amino acid at position 43 is Asn or Asp; the amino acid at position 45 is Gly or Ala; the amino acid at position 46 is Gln or Glu; the amino acid at position 48 is Glu, Pro or Val; the amino acid at position 51 is Glu or Gly; the amino acid at position 52 is Lys, Arg or Thr; the amino acid at position 56 is Leu or Val; the amino acid at position 59 is Phe or Leu; the amino acid at position 66 is Pro or Ala; the amino acid at position 67 is Val, Pro or Thr; the amino acid at position 68 is Val, Arg, Phe or Gly; the amino acid at position 69 is Glu, Ala or Lys; the amino acid at position 70 is Trp, Thr, His, Tyr or Arg; the amino acid at position 71 is Arg, Pro or deleted; the amino acid at position 72 is Trp, Asp, Leu or deleted; the amino acid at position 73 is Pro, Gln, Asn, His or deleted; the amino acid at position 74 is Pro, Met or Thr; the amino acid at position 75 is Gln, His or Arg; the amino acid at position 76 is Ile, Met or Leu; the amino acid at position 84 is Ile or Val; the amino acid at position 91 is Trp or Phe; the amino acid at position 93 is Thr or Ile; the amino acid at position 94 is Asp or Gly; the amino acid at position 96 is Arg or Ser; the amino acid at position 97 is Gln, Phe or Arg; the amino acid at position 98 is Ser or deleted; the amino acid at position 99 is Asp or Ala; the amino acid at position 100 is Thr or Ala; the amino acid at position 101 is Glu, Thr or Trp the amino acid at position 103 is His, Arg, Glu or Gln; the amino acid at position 105 is Thr or Pro; the amino acid at position 108 is Lys, Gln or Glu; the amino acid at position 109 is Leu or Val; the amino acid at position 111 is Ala or Thr; the amino acid at position 112 is Ile, Arg, Thr or deleted; the amino acid at position 113 is Gln, Ala, Gly or deleted; the amino acid at position 114 is Arg, Glu or Ile; the amino acid at position 115 is Glu or Gln; the amino acid at position 116 is Glu, Asn, Gln or Arg; the amino acid at position 117 is Asn, Val, Tyr or Phe; the amino acid at position 118 is Arg or Lys; the amino acid at position 119 is Trp or Ser; the amino acid at position 122 is Thr, Lys or Ala; the amino acid at position 124 is Ala or Thr; the amino acid at position 126 is Gly or Asp; the amino acid at position 127 is Met or Ala; the amino acid at position 128 is Asn or Lys; the amino acid at position 131 is Val, Ile or Thr; the amino acid at position 133 is Ile or Val; the amino acid at position 134 is His or Tyr; the amino acid at position 135 is Ala or Gly; the amino acid at position 137 is Glu or Lys; the amino acid at position 139 is Gln or Glu; the amino acid at position 140 is Val, Arg or Leu; the amino acid at position 141 is Gly or Ser; the amino acid at position 142 is Val or Pro; the amino acid at position 144 is Thr, Leu, Phe or Tyr; the amino acid at position 145 is Met, Pro or Asn; the amino acid at position 146 is Ser, Gly or Asn; the amino acid at position 147 is Trp or Asn; the amino acid at position 148 is Ser, Ala or Pro; the amino acid at position 149 is Ser or deleted; the amino acid at position 150 is Val, Ile or Tyr; the amino acid at position 152 is Arg, Ala, Val or Gly; the amino acid at position 154 is Ser, Trp or Glu; the amino acid at position 156 is Leu, Asp or Gln; the amino acid at position 158 is Ser or Cys; the amino acid at position 159 is Val, Thr or Ile; the amino acid at position 162 is Ser or Ala; the amino acid at position 163 is Gly or deleted; the amino acid at position 164 is Phe or deleted; the amino acid at position 165 is Arg or Ala; the amino acid at position 166 is Ala, Arg, Met or Phe; the amino acid at position 167 is Val or His; the amino acid at position 168 is Ser or Asn; the amino acid at position 169 is Val, His or Thr; the amino acid at position 170 is Phe or Val; the amino acid at position 171 is Glu, Asn or Asp; the amino acid at position 172 is Val, Ala, Arg or Glu; the amino acid at position 175 is Ser, Arg or Trp; the amino acid at position 176 is Val or Ile; the amino acid at position 177 is Arg or Ile; the amino acid at position 179 is Thr, Ile, Val or Ser; the amino acid at position 180 is Leu, Phe or Thr; the amino acid at position 181 is Gly, Thr, Gln or Ser; the amino acid at position 182 is Ala, Leu, Phe or Ile; the amino acid at position 183 is Thr or Gly; the amino acid at position 184 is Leu, Thr, Ser or Arg; the amino acid at position 185 is Arg, Gly, Asp or Ala; the amino acid at position 186 is Pro, Val or Gln; the amino acid at position 187 is Asp, Thr or Ser; the amino acid at position 188 is His, Gly or Ala; the amino acid at position 189 is Ala, Arg, Pro or deleted; the amino acid at position 190 is Leu, Asn or deleted; the amino acid at position 191 is Tyr or deleted; the amino acid at position 192 is Ser, Ile, Val or Asn; the amino acid at position 193 is Thr or Asp; the amino acid at position 194 is Thr or Ser; the amino acid at position 195 is Met or Thr; the amino acid at position 196 is Gln, His, Leu or Ser; the amino acid at position 197 is Ala, Gly or Leu; the amino acid at position 198 is Thr, Glu or Ala; the amino acid at position 199 is Pro or Arg; the amino acid at position 200 is Asn, Ser, Thr or Gly; the amino acid at position 201 is Ala, Leu, Glu or Trp; the amino acid at position 202 is Ser, Asp, Phe or Leu; the amino acid at position 203 is His, Pro, Gly or Ser; the amino acid at position 204 is Ile, Trp, His or Gly; the amino acid at position 205 is Ser, Asn or Ile; the amino acid at position 206 is Ala, Gly, Asp, Tyr or Arg; the amino acid at position 207 is Phe, Val or Leu; the amino acid at position 208 is Asn, Ser, Pro or Leu; the amino acid at position 210 is Arg, Asp, Glu or Tyr; the amino acid at position 211 is Ile, Ser or Thr; the amino acid at position 212 is Val, Ala or Asp; the amino acid at position 214 is Pro or Arg; the amino acid at position 215 is Ser or Thr; the amino acid at position 217 is Tyr or Phe; the amino acid at position 218 is Arg or Ser; the amino acid at position 219 is Val or Ala; the amino acid at position 220 is Cys, Leu or Ser; the amino acid at position 221 is Pro or His; the amino acid at position 222 is Leu, Arg or Ser; the amino acid at position 224 is Asn or Ser; the amino acid at position 225 is Asp, Arg or Thr; the amino acid at position 226 is Thr or Asn; the amino acid at position 227 is Asp, Leu or deleted; the amino acid at position 228 is Thr or deleted; the amino acid at position 229 is Tyr or deleted; the amino acid at position 230 is Leu or deleted; the amino acid at position 231 is Gly or deleted; the amino acid at position 232 is Ile or deleted; the amino acid at position 233 is Pro or deleted; the amino acid at position 234 is Ala, Pro or deleted; the amino acid at position 235 is Asp, Ile or Val; the amino acid at position 236 is Val, Ser or Glu; the amino acid at position 237 is Ala, Phe or Tyr; the amino acid at position 238 is Ala or Thr; the amino acid at position 239 is Val, Ser or Gly; the amino acid at position 240 is Leu or Ile; the amino acid at position 243 is Asp or Glu; the amino acid at position 249 is Asn or Ser; the amino acid at position 252 is Leu or Met; the amino acid at position 257 is Thr or Ser; the amino acid at position 259 is His or Leu; the amino acid at position 266 is Ala or Val; the amino acid at position 267 is Cys or Gly; the amino acid at position 268 is His, Arg or Tyr; the amino acid at position 272 is Asp or Glu; the amino acid at position 273 is Val, Met, Ile or Leu; the amino acid at position 274 is Val or Met; the amino acid at position 278 is Gly or Ala; the amino acid at position 279 is Glu or Val; the amino acid at position 281 is Leu or Ala; the amino acid at position 282 is Asn, Leu or Ile; the amino acid at position 285 is Asn or Ser; the amino acid at position 286 is Lys, Asp or Glu; the amino acid at position 287 is Leu or Val; the amino acid at position 290 is Pro, Gln or Arg; the amino acid at position 291 is Leu or Val; the amino acid at position 292 is Lys or Val; the amino acid at position 293 is Glu or Gln; the amino acid at position 294 is Ser, Asn or Lys; the amino acid at position 295 is Thr or Ser; the amino acid at position 296 is Gln or His; the amino acid at position 297 is Leu or Met; the amino acid at position 300 is Ser or Thr; the amino acid at position 301 is Glu or Ala; the amino acid at position 302 is Ser, Pro or Ala; the amino acid at position 304 is Lys or Asn; the amino acid at position 313 is Val or Ile; the amino acid at position 314 is His, Glu or Gln; the amino acid at position 315 is Ala, Cys or Ser; the amino acid at position 316 is Ala or Val; the amino acid at position 317 is Met or Ile; the amino acid at position 319 is Met or Ile; the amino acid at position 320 is Val or Gly; the amino acid at position 321 is Arg or Pro; the amino acid at position 322 is Ile or Phe; the amino acid at position 323 is Gly or Val; the amino acid at position 324 is Leu or Ser; the amino acid at position 336 is Ser or Asn; the amino acid at position 339 is Asn, Lys or Arg; the amino acid at position 350 is Arg or Gln; the amino acid at position 351 is Glu or Asp; the amino acid at position 353 is Lys or Arg; the amino acid at position 354 is Gln or Arg; the amino acid at position 355 is Phe or Leu; the amino acid at position 356 is Lys or Arg; the amino acid at position 360 is Ile, Val or Ala; the amino acid at position 365 is Leu or Phe; the amino acid at position 371 is or Glu; the amino acid at position 372 is or Lys; the amino acid at position 374 is Arg or Lys; the amino acid at position 376 is Phe or Leu; the amino acid at position 378 is Glu or Asp; the amino acid at position 381 is Leu or Val; the amino acid at position 388 is Ala or Ser; the amino acid at position 395 is Arg or Lys; the amino acid at position 396 is Glu, Gln or Gly; the amino acid at position 399 is Asp or Asn; the amino acid at position 400 is Asn, Thr or Asp; the amino acid at position 401 is Thr or Ala; the amino acid at position 402 is Phe, Ile or Leu; the amino acid at position 406 is Asp or Glu; the amino acid at position 408 is Leu or Met; the amino acid at position 410 is Gly or Leu; the amino acid at position 414 is Ala or Glu; the amino acid at position 416 is Ser, Asn or Asp; the amino acid at position 417 is Ser, Arg or Gly; the amino acid at position 423 is Lys or Gln; the amino acid at position 431 is Arg or Lys; the amino acid at position 432 is Gln or Glu; the amino acid at position 436 is Arg or Glu; the amino acid at position 440 is Asn or Arg; the amino acid at position 442 is Leu or Val; the amino acid at position 447 is Ser, Lys or Arg; the amino acid at position 448 is Ala or Ser; the amino acid at position 451 is Gln or Met; the amino acid at position 453 is Gly or Ala; the amino acid at position 455 is Ala or Val; the amino acid at position 457 is Leu or Val; the amino acid at position 467 is Val or Ala; the amino acid at position 471 is Gly or Ala; the amino acid at position 475 is Ser or Asn; the amino acid at position 483 is Gly or Ala; the amino acid at position 493 is Gln or Gly; the amino acid at position 504 is Val or Ile; the amino acid at position 506 is Asp or His; the amino acid at position 509 is Asp or Asn; the amino acid at position 510 is Ser or Ala; the amino acid at position 512 is Glu or Asp; the amino acid at position 515 is Gly or Ser; the amino acid at position 516 is Gln or His; the amino acid at position 517 is Ile or Leu; the amino acid at position 519 is Asp, Gly or Gln; the amino acid at position 522 is Val, Glu, Pro or Val; the amino acid at position 525 is Glu or Asp; the amino acid at position 526 is Leu or Met; the amino acid at position 539 is Val or Ile; the amino acid at position 555 is Val or Ala; the amino acid at position 557 is Arg or Lys; the amino acid at position 563 is Val or Met; the amino acid at position 571 is Ser or Cys; the amino acid at position 575 is Val or Glu; the amino acid at position 577 is Met or Ile; the amino acid at position 579 is Glu or Gln; the amino acid at position 583 is Asp or Glu; the amino acid at position 589 is Met or Leu; the amino acid at position 590 is Met or Leu; the amino acid at position 593 is Met or Ile; the amino acid at position 595 is Arg or Gln; the amino acid at position 596 is Ser or Thr; the amino acid at position 597 is Gln or His; the amino acid at position 607 is Ala or Val; the amino acid at position 608 is Asp or Asn; the amino acid at position 612 is Tyr, His or Phe; the amino acid at position 617 is Thr or Ile; the amino acid at position 618 is Gln or His; the amino acid at position 625 is Arg or Ser; the amino acid at position 626 is Met or Ile; the amino acid at position 628 is Leu or Ile; the amino acid at position 633 is Ile or Met; the amino acid at position 634 is Leu or Met; the amino acid at position 642 is Arg or Met; the amino acid at position 648 is Met or Thr; the amino acid at position 651 is Glu or Gln; the amino acid at position 654 is Thr, Val or Ala; the amino acid at position 658 is Gly or Arg; the amino acid at position 663 is Gly or Ala; the amino acid at position 664 is Asp or Asn; the amino acid at position 668 is Ala or Thr; the amino acid at position 669 is Gln or His; the amino acid at position 671 is Asn or Ser the amino acid at position 675 is Ile, Val or Ser; the amino acid at position 678 is Met, Ile, Ala or Thr; the amino acid at position 682 is Pro or Gln; the amino acid at position 683 is Ser or Pro; the amino acid at position 685 is Asp or Asn; the amino acid at position 694 is Asp or Gly; the amino acid at position 697 is Asn or Ser; the amino acid at position 704 is Glu or Gly; the amino acid at position 714 is Ala or Gly; the amino acid at position 721 is Ser or Phe; the amino acid at position 722 is Ser or Asn; the amino acid at position 724 is Ser or Thr; the amino acid at position 734 is His or Gln; the amino acid at position 736 is Val or Ala; the amino acid at position 737 is Lys or Gln; the amino acid at position 739 is Ala or Ser; the amino acid at position 740 is Ser or Met; the amino acid at position 741 is Gly or Asn; the amino acid at position 742 is Ile or Gly; the amino acid at position 743 is Gly or deleted; the amino acid at position 745 is Gly or Asp; the amino acid at position 751 is Thr, Ser or Ala; the amino acid at position 753 is Gln or Arg; the amino acid at position 754 is Thr or Ser; the amino acid at position 756 is Thr or Ile; the amino acid at position 757 is Val or Ile; the amino acid at position 766 is Ile or Val; the amino acid at position 773 is Asp or Glu; the amino acid at position 774 is Gln or Glu; the amino acid at position 776 is Leu or Met; the amino acid at position 777 is Pro or Thr; the amino acid at position 782 is Ala, Asp or Val; the amino acid at position 786 is Tyr or Phe; the amino acid at position 787 is His or Gln; the amino acid at position 788 is Tyr or Met; the amino acid at position 789 is Ala or Arg; the amino acid at position 790 is Tyr or Thr; the amino acid at position 791 is Arg or Ala; the amino acid at position 792 is Leu or Ser; the amino acid at position 796 is Asp or Glu; the amino acid at position 797 is Ser, Thr or Ala the amino acid at position 802 is Glu or Gln; the amino acid at position 806 is Gln, Asp, Glu or His; the amino acid at position 810 is Lys or Thr; the amino acid at position 819 is Arg or His; the amino acid at position 829 is Lys, Ser, Ala or Pro; the amino acid at position 832 is Ala, Lys or Glu; the amino acid at position 833 is Gly or Glu; the amino acid at position 842 is Leu or Pro; the amino acid at position 847 is Gln or Glu; the amino acid at position 848 is Ile or Val; the amino acid at position 849 is Val or Ala; the amino acid at position 855 is Thr or Met; the amino acid at position 860 is Ile or Val; and the amino acid at position 864 is His or Gln. In some embodiments the PtIP-83 polypeptide is a variant of SEQ ID NO: 1, wherein the amino acid at position 1 is Met or deleted; the amino acid at position 2 is Ala or deleted; the amino acid at position 3 is Leu, Val, Ile or deleted; the amino acid at position 4 is Val, Met, Ile or Leu; the amino acid at position 7 is Gly, Thr or Ser; the amino acid at position 8 is Lys, Arg, Ser or Thr; the amino acid at position 10 is Phe, Trp or Tyr; the amino acid at position 11 is Glu, Asp, Lys or Arg; the amino acid at position 18 is Met, Val, Leu or Ile; the amino acid at position 19 is Gly, Pro or Ala; the amino acid at position 20 is Val, Ile, Leu or deleted; the amino acid at position 21 is Leu, Ile or Val; the amino acid at position 23 is Arg, Lys, Asn or Gln; the amino acid at position 37 is Val, Ile or Leu; the amino acid at position 38 is Arg, Lys, Gln or Asn; the amino acid at position 40 is Ala, Gly, Thr or Ser; the amino acid at position 43 is Asn, Gln, Glu or Asp; the amino acid at position 45 is Gly or Ala; the amino acid at position 46 is Gln, Asp, Asn or Glu; the amino acid at position 48 is Glu, Asp, Pro, Ile, Leu or Val; the amino acid at position 51 is Glu, Asp, Ala or Gly; the amino acid at position 52 is Lys, Arg, Ser or Thr; the amino acid at position 56 is Leu, Ile or Val; the amino acid at position 59 is Phe, Ile, Val or Leu; the amino acid at position 66 is Pro, Gly or Ala; the amino acid at position 67 is Val, Pro, Ile, Leu, Ser or Thr; the amino acid at position 68 is Val, Arg, Phe, Ile, Leu, Lys or Gly; the amino acid at position 69 is Glu, Ala, Asp, Gly, Arg or Lys; the amino acid at position 70 is Trp, Thr, His, Tyr, Lys or Arg; the amino acid at position 71 is Arg, Pro, Lys or deleted; the amino acid at position 72 is Trp, Asp, Leu, Ile, Val, Glu or deleted; the amino acid at position 73 is Pro, Gln, Asn, His or deleted; the amino acid at position 74 is Pro, Met, Ser or Thr; the amino acid at position 75 is Gln, His, Asn, Lys or Arg; the amino acid at position 76 is Ile, Met, Val or Leu; the amino acid at position 84 is Ile, Leu or Val; the amino acid at position 91 is Trp or Phe; the amino acid at position 93 is Thr, Ser, Leu, Val or Ile; the amino acid at position 94 is Asp, Glu, Ala or Gly; the amino acid at position 96 is Arg, Lys, Thr or Ser; the amino acid at position 97 is Gln, Phe, Asn, Lys or Arg; the amino acid at position 98 is Ser, Thr or deleted; the amino acid at position 99 is Asp, Glu, Gly or Ala; the amino acid at position 100 is Thr, Ser, Gly or Ala; the amino acid at position 101 is Glu, Thr, Asp, Ser or Trp the amino acid at position 103 is His, Arg, Lys, Glu or Gln; the amino acid at position 105 is Thr, Ser or Pro; the amino acid at position 108 is Lys, Arg, Asn, Asp, Gln or Glu; the amino acid at position 109 is Leu, Ile or Val; the amino acid at position 111 is Ala, Ser or Thr; the amino acid at position 112 is Ile, Arg, Thr, Leu, Val, Lys, Ser or deleted; the amino acid at position 113 is Gln, Ala, Gly, Asn or deleted; the amino acid at position 114 is Arg, Glu, Lys, Asp or Ile; the amino acid at position 115 is Glu, Asp, Asn or Gln; the amino acid at position 116 is Glu, Asn, Gln, Asp, Lys or Arg; the amino acid at position 117 is Asn, Val, Tyr, Ile, Leu, Gln, Trp or Phe; the amino acid at position 118 is Arg or Lys; the amino acid at position 119 is Trp, Thr or Ser; the amino acid at position 122 is Thr, Lys, Ser, Arg or Ala; the amino acid at position 124 is Ala, Gly, Ser or Thr; the amino acid at position 126 is Gly, Ala, Glu or Asp; the amino acid at position 127 is Met, Gly or Ala; the amino acid at position 128 is Asn, Gln, Arg or Lys; the amino acid at position 131 is Val, Ile, Leu, Ser or Thr; the amino acid at position 133 is Ile, Leu or Val; the amino acid at position 134 is His or Tyr; the amino acid at position 135 is Ala or Gly; the amino acid at position 137 is Glu, Asp, Arg or Lys; the amino acid at position 139 is Gln, Asn, Asp or Glu; the amino acid at position 140 is Val, Arg, Ile, Lys or Leu; the amino acid at position 141 is Gly, Ala, Thr or Ser; the amino acid at position 142 is Val, Ile, Leu or Pro; the amino acid at position 144 is Thr, Leu, Phe, Ile, Val or Tyr; the amino acid at position 145 is Met, Pro, Gln or Asn; the amino acid at position 146 is Ser, Gly, Thr, Ala, Gln or Asn; the amino acid at position 147 is Trp, Gln, Tyr or Asn; the amino acid at position 148 is Ser, Ala, Thr, Gly or Pro; the amino acid at position 149 is Ser, Thr or deleted; the amino acid at position 150 is Val, Ile, Leu or Tyr; the amino acid at position 152 is Arg, Ala, Val, Ile, Leu, Lys or Gly; the amino acid at position 154 is Ser, Trp, Thr, Asp or Glu; the amino acid at position 156 is Leu, Asp, Ile, Val, Asn, Glu or Gln; the amino acid at position 158 is Ser, Thr or Cys; the amino acid at position 159 is Val, Thr, Leu or Ile; the amino acid at position 162 is Ser, Thr, Gly or Ala; the amino acid at position 163 is Gly, Ala or deleted; the amino acid at position 164 is Phe or deleted; the amino acid at position 165 is Arg, Lys, Gly or Ala; the amino acid at position 166 is Ala, Arg, Met, Lys or Phe; the amino acid at position 167 is Val, Ile, Leu or His; the amino acid at position 168 is Ser, Thr, Gln or Asn; the amino acid at position 169 is Val, His, Ile, Leu, Ser or Thr; the amino acid at position 170 is Phe, Ile, Leu or Val; the amino acid at position 171 is Glu, Asn, Gln or Asp; the amino acid at position 172 is Val, Ala, Arg, Ile, Leu, Gly, Lys, Asp or Glu; the amino acid at position 175 is Ser, Arg, Thr, Lys or Trp; the amino acid at position 176 is Val, Leu or Ile; the amino acid at position 177 is Arg, Lys, Leu, Val or Ile; the amino acid at position 179 is Thr, Ile, Val, Leu or Ser; the amino acid at position 180 is Leu, Phe, Ile, Val, Ser or Thr; the amino acid at position 181 is Gly, Thr, Gln, Asn or Ser; the amino acid at position 182 is Ala, Leu, Phe, Val or Ile; the amino acid at position 183 is Thr, Ser, Ala or Gly; the amino acid at position 184 is Leu, Thr, Ser, Ile, Val, Lys or Arg; the amino acid at position 185 is Arg, Gly, Asp, Lys, Glu or Ala; the amino acid at position 186 is Pro, Val, Ile, Leu, Asn or Gln; the amino acid at position 187 is Asp, Thr, Glu or Ser; the amino acid at position 188 is His, Gly or Ala; the amino acid at position 189 is Ala, Arg, Pro, Lys, Gly or deleted; the amino acid at position 190 is Leu, Asn, Ile, Val, Gln or deleted; the amino acid at position 191 is Tyr or deleted; the amino acid at position 192 is Ser, Ile, Val, Leu, Thr or Asn; the amino acid at position 193 is Thr, Ser, Glu or Asp; the amino acid at position 194 is Thr or Ser; the amino acid at position 195 is Met or Thr; the amino acid at position 196 is Gln, His, Leu, Asn, Ile, Val, Thr or Ser; the amino acid at position 197 is Ala, Gly, Ile, Val or Leu; the amino acid at position 198 is Thr, Glu, Ser, Asp, Gly or Ala; the amino acid at position 199 is Pro, Lys or Arg; the amino acid at position 200 is Asn, Ser, Thr, Gln, Ala or Gly; the amino acid at position 201 is Ala, Leu, Glu, Ile, Asp or Trp; the amino acid at position 202 is Ser, Asp, Phe, Ile, Val, Thr, Glu or Leu; the amino acid at position 203 is His, Pro, Gly, Ala, Thr or Ser; the amino acid at position 204 is Ile, Trp, His, Leu, Val, Ala or Gly; the amino acid at position 205 is Ser, Asn, Leu, Val, Thr, Gln or Ile; the amino acid at position 206 is Ala, Gly, Asp, Tyr, Glu, Lys or Arg; the amino acid at position 207 is Phe, Val, Ile or Leu; the amino acid at position 208 is Asn, Ser, Pro, Gln, Thr, Val, Ile or Leu; the amino acid at position 210 is Arg, Asp, Glu, Lys, Ser or Tyr; the amino acid at position 211 is Ile, Ser, Leu, Val or Thr; the amino acid at position 212 is Val, Ala, Ile, Leu, Glu, Gly or Asp; the amino acid at position 214 is Pro, Lys or Arg; the amino acid at position 215 is Ser or Thr; the amino acid at position 217 is Tyr or Phe; the amino acid at position 218 is Arg, Lys, Thr or Ser; the amino acid at position 219 is Val, Ile, Leu or Ala; the amino acid at position 220 is Cys, Leu, Ile, Val, Thr or Ser; the amino acid at position 221 is Pro or His; the amino acid at position 222 is Leu, Arg, Lys, Ile, Val, Thr or Ser; the amino acid at position 224 is Asn, Gln, Thr or Ser; the amino acid at position 225 is Asp, Arg, Glu, Lys, Ser or Thr; the amino acid at position 226 is Thr, Ser, Gln or Asn; the amino acid at position 227 is Asp, Leu, Glu, Ile, Val or deleted; the amino acid at position 228 is Thr, Ser or deleted; the amino acid at position 229 is Tyr or deleted; the amino acid at position 230 is Leu, Ile, Val or deleted; the amino acid at position 231 is Gly, Ala or deleted; the amino acid at position 232 is Ile, Leu, Val or deleted; the amino acid at position 233 is Pro or deleted; the amino acid at position 234 is Ala, Pro, Gly or deleted; the amino acid at position 235 is Asp, Ile, Leu, Glu or Val; the amino acid at position 236 is Val, Ser, Ile, Leu, Thr, Asp or Glu; the amino acid at position 237 is Ala, Phe or Tyr; the amino acid at position 238 is Ala, Gly, Ser or Thr; the amino acid at position 239 is Val, Ser, Ile, Leu, Thr, Ala or Gly; the amino acid at position 240 is Leu, Val or Ile; the amino acid at position 243 is Asp or Glu; the amino acid at position 249 is Asn, Gln, Thr or Ser; the amino acid at position 252 is Leu, Ile, Val or Met; the amino acid at position 257 is Thr or Ser; the amino acid at position 259 is His, Ile, Val or Leu; the amino acid at position 266 is Ala, Ile, Leu or Val; the amino acid at position 267 is Cys, Ala or Gly; the amino acid at position 268 is His, Arg, Lys or Tyr; the amino acid at position 272 is Asp or Glu; the amino acid at position 273 is Val, Met, Ile or Leu; the amino acid at position 274 is Val, Ile, Leu or Met; the amino acid at position 278 is Gly or Ala; the amino acid at position 279 is Glu, Asp, Gly or Val; the amino acid at position 281 is Leu, Ile, Val, Gly or Ala; the amino acid at position 282 is Asn, Leu or Ile; the amino acid at position 285 is Asn, Gln, Thr or Ser; the amino acid at position 286 is Lys, Asp, Arg or Glu; the amino acid at position 287 is Leu, Ile or Val; the amino acid at position 290 is Pro, Gln, Asn, Lys or Arg; the amino acid at position 291 is Leu, Ile or Val; the amino acid at position 292 is Lys, Arg, Ile, Leu or Val; the amino acid at position 293 is Glu, Asp, Asn or Gln; the amino acid at position 294 is Ser, Asn, Thr, Gln, Arg or Lys; the amino acid at position 295 is Thr or Ser; the amino acid at position 296 is Gln, Asn or His; the amino acid at position 297 is Leu, Ile, Val or Met; the amino acid at position 300 is Ser or Thr; the amino acid at position 301 is Glu, Asp, Gly or Ala; the amino acid at position 302 is Ser, Pro, Thr, Gly or Ala; the amino acid at position 304 is Lys, Arg, Gln or Asn; the amino acid at position 313 is Val, Leu or Ile; the amino acid at position 314 is His, Glu, Asn, Asp or Gln; the amino acid at position 315 is Ala, Cys, Gly, Thr or Ser; the amino acid at position 316 is Ala, Ile, Leu or Val; the amino acid at position 317 is Met, Leu, Val or Ile; the amino acid at position 319 is Met, Leu, Val or Ile; the amino acid at position 320 is Val, Ile, Leu, Ala or Gly; the amino acid at position 321 is Arg, Lys or Pro; the amino acid at position 322 is Ile, Leu, Val or Phe; the amino acid at position 323 is Gly, Ile, Leu or Val; the amino acid at position 324 is Leu, Ile, Val, Thr or Ser; the amino acid at position 336 is Ser, Thr, Gln or Asn; the amino acid at position 339 is Asn, Lys, Gln or Arg; the amino acid at position 350 is Arg, Lys, Asn or Gln; the amino acid at position 351 is Glu or Asp; the amino acid at position 353 is Lys or Arg; the amino acid at position 354 is Gln, Asn, Lys or Arg; the amino acid at position 355 is Phe, Ile, Leu or Leu; the amino acid at position 356 is Lys or Arg; the amino acid at position 360 is Ile, Val, Leu, Gly or Ala; the amino acid at position 365 is Leu, Ile, Val or Phe; the amino acid at position 371 is or Glu or Asp; the amino acid at position 372 is or Lys or Arg; the amino acid at position 374 is Arg or Lys; the amino acid at position 376 is Phe, Ile, Val or Leu; the amino acid at position 378 is Glu or Asp; the amino acid at position 381 is Leu, Ile or Val; the amino acid at position 388 is Ala, Thr, Gly or Ser; the amino acid at position 395 is Arg or Lys; the amino acid at position 396 is Glu, Gln, Asp, Asn, Ala or Gly; the amino acid at position 399 is Asp, Gln, Glu or Asn; the amino acid at position 400 is Asn, Thr, Ser, Glu, Gln or Asp; the amino acid at position 401 is Thr, Ser, Gly or Ala; the amino acid at position 402 is Phe, Ile, Val or Leu; the amino acid at position 406 is Asp or Glu; the amino acid at position 408 is Leu, Ile, Val or Met; the amino acid at position 410 is Gly, Ile, Val, Ala or Leu; the amino acid at position 414 is Ala, Gly, Asp or Glu; the amino acid at position 416 is Ser, Asn, Thr, Gln, Glu or Asp; the amino acid at position 417 is Ser, Arg, Lys, Thr, Ala or Gly; the amino acid at position 423 is Lys, Arg, Asn or Gln; the amino acid at position 431 is Arg or Lys; the amino acid at position 432 is Gln, Asn, Asp or Glu; the amino acid at position 436 is Arg, Lys, Asp or Glu; the amino acid at position 440 is Asn, Gln, Lys or Arg; the amino acid at position 442 is Leu, Ile or Val; the amino acid at position 447 is Ser, Lys, Thr or Arg; the amino acid at position 448 is Ala, Gly, Thr or Ser; the amino acid at position 451 is Gln, Asn or Met; the amino acid at position 453 is Gly or Ala; the amino acid at position 455 is Ala, Leu, Ile or Val; the amino acid at position 457 is Leu, Ile or Val; the amino acid at position 467 is Val, Ile, Leu, Gly or Ala; the amino acid at position 471 is Gly or Ala; the amino acid at position 475 is Ser, Thr, Gln or Asn; the amino acid at position 483 is Gly or Ala; the amino acid at position 493 is Gln, Asn or Gly; the amino acid at position 504 is Val, Leu or Ile; the amino acid at position 506 is Asp, Glu or His; the amino acid at position 509 is Asp, Glu, Gln or Asn; the amino acid at position 510 is Ser, Thr, Gly or Ala; the amino acid at position 512 is Glu or Asp; the amino acid at position 515 is Gly, Ala, Thr or Ser; the amino acid at position 516 is Gln, Asn or His; the amino acid at position 517 is Ile, Val or Leu; the amino acid at position 519 is Asp, Asn, Glu, Gly or Gln; the amino acid at position 522 is Val, Glu, Pro, Ile, Leu or Asp; the amino acid at position 525 is Glu or Asp; the amino acid at position 526 is Leu, Ile, Val or Met; the amino acid at position 539 is Val, Leu or Ile; the amino acid at position 555 is Val, Leu, Ile or Ala; the amino acid at position 557 is Arg or Lys; the amino acid at position 563 is Val, Leu, Ile or Met; the amino acid at position 571 is Ser, Thr or Cys; the amino acid at position 575 is Val, Leu, Ile, Asp or Glu; the amino acid at position 577 is Met, Leu, Val or Ile; the amino acid at position 579 is Glu, Asp, Asn or Gln; the amino acid at position 583 is Asp or Glu; the amino acid at position 589 is Met, Ile, Val or Leu; the amino acid at position 590 is Met, Ile, Val or Leu; the amino acid at position 593 is Met, Leu, Val or Ile; the amino acid at position 595 is Arg, Lys, Asn or Gln; the amino acid at position 596 is Ser or Thr; the amino acid at position 597 is Gln, Asn or His; the amino acid at position 607 is Ala, Gly, Ile, Leu or Val; the amino acid at position 608 is Asp, Glu, Gln or Asn; the amino acid at position 612 is Tyr, His or Phe; the amino acid at position 617 is Thr, Ser, Leu, Val or Ile; the amino acid at position 618 is Gln, Asn or His; the amino acid at position 625 is Arg, Lys, Thr or Ser; the amino acid at position 626 is Met, Leu, Val or Ile; the amino acid at position 628 is Leu, Val or Ile; the amino acid at position 633 is Ile, Leu, Val or Met; the amino acid at position 634 is Leu, Ile, Val or Met; the amino acid at position 642 is Arg, Lys or Met; the amino acid at position 648 is Met, Ser or Thr; the amino acid at position 651 is Glu, Asp, Asn or Gln; the amino acid at position 654 is Thr, Val, Ser, Ile, Leu, Gly or Ala; the amino acid at position 658 is Gly, Lys, Ala or Arg; the amino acid at position 663 is Gly or Ala; the amino acid at position 664 is Asp, Glu, Gln or Asn; the amino acid at position 668 is Ala, Gly, Ser or Thr; the amino acid at position 669 is Gln, Asn or His; the amino acid at position 671 is Asn, Gln, Thr or Ser the amino acid at position 675 is Ile, Val, Ile, Thr or Ser; the amino acid at position 678 is Met, Ile, Ala, Leu, Ser or Thr; the amino acid at position 682 is Pro, Asn or Gln; the amino acid at position 683 is Ser, Thr or Pro; the amino acid at position 685 is Asp, Glu, Asp or Asn; the amino acid at position 694 is Asp, Glu, Ala or Gly; the amino acid at position 697 is Asn, Gln, Thr or Ser; the amino acid at position 704 is Glu, Asp, Ala or Gly; the amino acid at position 714 is Ala or Gly; the amino acid at position 721 is Ser, Thr or Phe; the amino acid at position 722 is Ser, Thr, Gln or Asn; the amino acid at position 724 is Ser or Thr; the amino acid at position 734 is His, Asn or Gln; the amino acid at position 736 is Val, Leu, Ile or Ala; the amino acid at position 737 is Lys, Arg, Asn or Gln; the amino acid at position 739 is Ala, Gly, Thr or Ser; the amino acid at position 740 is Ser, Thr or Met; the amino acid at position 741 is Gly, Ala, Gln or Asn; the amino acid at position 742 is Ile, Leu, Val, Ala or Gly; the amino acid at position 743 is Gly or deleted; the amino acid at position 745 is Gly, Ala, Glu or Asp; the amino acid at position 751 is Thr, Ser, Gly or Ala; the amino acid at position 753 is Gln, Asn, Lys or Arg; the amino acid at position 754 is Thr or Ser; the amino acid at position 756 is Thr, Ser, Leu, Val or Ile; the amino acid at position 757 is Val, Leu or Ile; the amino acid at position 766 is Ile, Leu or Val; the amino acid at position 773 is Asp or Glu; the amino acid at position 774 is Gln, Asn, Asp or Glu; the amino acid at position 776 is Leu, Ile, Val or Met; the amino acid at position 777 is Pro, Ser or Thr; the amino acid at position 782 is Ala, Asp, Glu, Ile, Leu or Val; the amino acid at position 786 is Tyr or Phe; the amino acid at position 787 is His, Asn or Gln; the amino acid at position 788 is Tyr or Met; the amino acid at position 789 is Ala, Lys or Arg; the amino acid at position 790 is Tyr or Thr; the amino acid at position 791 is Arg, Lys, Gly or Ala; the amino acid at position 792 is Leu, Ile, Val, Thr or Ser; the amino acid at position 796 is Asp or Glu; the amino acid at position 797 is Ser, Thr or Ala the amino acid at position 802 is Glu, Lys, Asp, Asn or Gln; the amino acid at position 806 is Gln, Asp, Glu, Asn or His; the amino acid at position 810 is Lys, Arg or Thr; the amino acid at position 819 is Arg, Lys or His; the amino acid at position 829 is Lys, Ser, Ala or Pro; the amino acid at position 832 is Ala, Lys, Arg, Asp or Glu; the amino acid at position 833 is Gly, Ala, Asp or Glu; the amino acid at position 842 is Leu, Ile, Val or Pro; the amino acid at position 847 is Gln, Asn, Asp or Glu; the amino acid at position 848 is Ile, Leu or Val; the amino acid at position 849 is Val, Leu, Ile, Gly or Ala; the amino acid at position 855 is Thr, Ser or Met; the amino acid at position 860 is Ile, Leu or Val; the amino acid at position 864 is His, Asn or Gln; In some embodiments the PtIP-83 polypeptide is a variant of SEQ ID NO: 1, wherein the amino acid at position 1 is Met or deleted; the amino acid at position 2 is Ala or deleted; the amino acid at position 3 is Leu, Val, Ile or deleted; the amino acid at position 4 is Val, Met, Ile or Leu; the amino acid at position 7 is Gly, Thr or Ser; the amino acid at position 8 is Lys, Arg, Ser or Thr; the amino acid at position 10 is Phe, Trp or Tyr; the amino acid at position 11 is Glu, Asp, Lys or Arg; the amino acid at position 18 is Met, Val, Leu or Ile; the amino acid at position 19 is Gly, Pro or Ala; the amino acid at position 20 is Val, Ile, Leu or deleted; the amino acid at position 21 is Leu, Ile or Val; the amino acid at position 23 is Arg, Lys, Asn or Gln; the amino acid at position 37 is Val, Ile or Leu; the amino acid at position 38 is Arg, Lys, Gln or Asn; the amino acid at position 40 is Ala, Gly, Thr or Ser; the amino acid at position 43 is Asn, Gln, Glu or Asp; the amino acid at position 45 is Gly or Ala; the amino acid at position 46 is Gln, Asp, Asn or Glu; the amino acid at position 48 is Glu, Asp, Pro, Ile, Leu or Val; the amino acid at position 51 is Glu, Asp, Ala or Gly; the amino acid at position 52 is Lys, Arg, Ser or Thr; the amino acid at position 53 is Val, Ala, Cys or Thr; the amino acid at position 54 is Lys, Ala, Cys, Asp, Glu, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser or Thr; the amino acid at position 55 is Arg, Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 56 is Leu, Glu, Phe, Ile, Met, Thr or Val; the amino acid at position 57 is Tyr, Cys, Ile, Leu, Met, Thr or Val; the amino acid at position 58 is Val, Cys, Ile or Leu; the amino acid at position 59 is Phe, Leu, Met, Val or Tyr; the amino acid at position 60 is Ala, Cys, Gly, Ser, Thr or Val; the amino acid at position 61 is Asp, Glu, His or Ser; the amino acid at position 62 is Val, Ala, Cys, Ile, Leu or Thr; the amino acid at position 63 is Val, Ala, Cys, Ile, Leu, Met or Thr; the amino acid at position 64 is Glu, Ala, Cys, Phe, Gly, His, Ile, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 65 is Leu, Ala, Cys, Phe, His, Ile, Met, Asn, Gln, Thr, Val or Trp; the amino acid at position 66 is Pro, Asp, Gly, Met, Gln or Arg; the amino acid at position 67 is Val, Pro, Ile, Leu, Ser or Thr; the amino acid at position 68 is Val, Arg, Phe, Ile, Leu, Lys or Gly; the amino acid at position 69 is Glu, Ala, Asp, Gly, Arg or Lys; the amino acid at position 70 is Trp, Thr, His, Tyr, Lys or Arg; the amino acid at position 71 is Arg, Pro, Lys or deleted; the amino acid at position 72 is Trp, Asp, Leu, Ile, Val, Glu or deleted; the amino acid at position 73 is Pro, Gln, Asn, His or deleted; the amino acid at position 74 is Pro, Met, Ser or Thr; the amino acid at position 75 is Gln, His, Asn, Lys or Arg; the amino acid at position 76 is Ile, Met, Val or Leu; the amino acid at position 84 is Ile, Leu or Val; the amino acid at position 91 is Trp or Phe; the amino acid at position 93 is Thr, Ser, Leu, Val or Ile; the amino acid at position 94 is Asp, Glu, Ala or Gly; the amino acid at position 96 is Arg, Lys, Thr or Ser; the amino acid at position 97 is Gln, Phe, Asn, Lys or Arg; the amino acid at position 98 is Ser, Thr or deleted; the amino acid at position 99 is Asp, Glu, Gly or Ala; the amino acid at position 100 is Thr, Ser, Gly or Ala; the amino acid at position 101 is Glu, Thr, Asp, Ser or Trp the amino acid at position 103 is His, Arg, Lys, Glu or Gln; the amino acid at position 105 is Thr, Ser or Pro; the amino acid at position 108 is Lys, Arg, Asn, Asp, Gln or Glu; the amino acid at position 109 is Leu, Ile or Val; the amino acid at position 111 is Ala, Ser or Thr; the amino acid at position 112 is Ile, Arg, Thr, Leu, Val, Lys, Ser or deleted; the amino acid at position 113 is Gln, Ala, Gly, Asn or deleted; the amino acid at position 114 is Arg, Glu, Lys, Asp or Ile; the amino acid at position 115 is Glu, Asp, Asn or Gln; the amino acid at position 116 is Glu, Asn, Gln, Asp, Lys or Arg; the amino acid at position 117 is Asn, Val, Tyr, Ile, Leu, Gln, Trp or Phe; the amino acid at position 118 is Arg or Lys; the amino acid at position 119 is Trp, Thr or Ser; the amino acid at position 122 is Thr, Lys, Ser, Arg or Ala; the amino acid at position 124 is Ala, Gly, Ser or Thr; the amino acid at position 126 is Gly, Ala, Glu or Asp; the amino acid at position 127 is Met, Gly or Ala; the amino acid at position 128 is Asn, Gln, Arg or Lys; the amino acid at position 131 is Val, Ile, Leu, Ser or Thr; the amino acid at position 133 is Ile, Leu or Val; the amino acid at position 134 is His or Tyr; the amino acid at position 135 is Ala or Gly; the amino acid at position 137 is Glu, Asp, Arg or Lys; the amino acid at position 139 is Gln, Asn, Asp or Glu; the amino acid at position 140 is Val, Arg, Ile, Lys or Leu; the amino acid at position 141 is Gly, Ala, Thr or Ser; the amino acid at position 142 is Val, Ile, Leu or Pro; the amino acid at position 144 is Thr, Leu, Phe, Ile, Val or Tyr; the amino acid at position 145 is Met, Pro, Gln or Asn; the amino acid at position 146 is Ser, Gly, Thr, Ala, Gln or Asn; the amino acid at position 147 is Trp, Gln, Tyr or Asn; the amino acid at position 148 is Ser, Ala, Thr, Gly or Pro; the amino acid at position 149 is Ser, Thr or deleted; the amino acid at position 150 is Val, Ile, Leu or Tyr; the amino acid at position 152 is Arg, Ala, Val, Ile, Leu, Lys or Gly; the amino acid at position 154 is Ser, Trp, Thr, Asp or Glu; the amino acid at position 156 is Leu, Asp, Ile, Val, Asn, Glu or Gln; the amino acid at position 158 is Ser, Thr or Cys; the amino acid at position 159 is Val, Thr, Leu or Ile; the amino acid at position 162 is Ser, Thr, Gly or Ala; the amino acid at position 163 is Gly, Ala or deleted; the amino acid at position 164 is Phe or deleted; the amino acid at position 165 is Arg, Lys, Gly or Ala; the amino acid at position 166 is Ala, Arg, Met, Lys or Phe; the amino acid at position 167 is Val, Ile, Leu or His; the amino acid at position 168 is Ser, Thr, Gln or Asn; the amino acid at position 169 is Val, His, Ile, Leu, Ser or Thr; the amino acid at position 170 is Phe, Ile, Leu or Val; the amino acid at position 171 is Glu, Asn, Gln or Asp; the amino acid at position 172 is Val, Ala, Arg, Ile, Leu, Gly, Lys, Asp or Glu; the amino acid at position 175 is Ser, Arg, Thr, Lys or Trp; the amino acid at position 176 is Val, Leu or Ile; the amino acid at position 177 is Arg, Lys, Leu, Val or Ile; the amino acid at position 179 is Thr, Ile, Val, Leu or Ser; the amino acid at position 180 is Leu, Phe, Ile, Val, Ser or Thr; the amino acid at position 181 is Gly, Thr, Gln, Asn or Ser; the amino acid at position 182 is Ala, Leu, Phe, Val or Ile; the amino acid at position 183 is Thr, Ser, Ala or Gly; the amino acid at position 184 is Leu, Thr, Ser, Ile, Val, Lys or Arg; the amino acid at position 185 is Arg, Gly, Asp, Lys, Glu or Ala; the amino acid at position 186 is Pro, Val, Ile, Leu, Asn or Gln; the amino acid at position 187 is Asp, Thr, Glu or Ser; the amino acid at position 188 is His, Gly or Ala; the amino acid at position 189 is Ala, Arg, Pro, Lys, Gly or deleted; the amino acid at position 190 is Leu, Asn, Ile, Val, Gln or deleted; the amino acid at position 191 is Tyr or deleted; the amino acid at position 192 is Ser, Ile, Val, Leu, Thr or Asn; the amino acid at position 193 is Thr, Ser, Glu or Asp; the amino acid at position 194 is Thr or Ser; the amino acid at position 195 is Met or Thr; the amino acid at position 196 is Gln, His, Leu, Asn, Ile, Val, Thr or Ser; the amino acid at position 197 is Ala, Gly, Ile, Val or Leu; the amino acid at position 198 is Thr, Glu, Ser, Asp, Gly or Ala; the amino acid at position 199 is Pro, Lys or Arg; the amino acid at position 200 is Asn, Ser, Thr, Gln, Ala or Gly; the amino acid at position 201 is Ala, Leu, Glu, Ile, Asp or Trp; the amino acid at position 202 is Ser, Asp, Phe, Ile, Val, Thr, Glu or Leu; the amino acid at position 203 is His, Pro, Gly, Ala, Thr or Ser; the amino acid at position 204 is Ile, Trp, His, Leu, Val, Ala or Gly; the amino acid at position 205 is Ser, Asn, Leu, Val, Thr, Gln or Ile; the amino acid at position 206 is Ala, Gly, Asp, Tyr, Glu, Lys or Arg; the amino acid at position 207 is Phe, Val, Ile or Leu; the amino acid at position 208 is Asn, Ser, Pro, Gln, Thr, Val, Ile or Leu; the amino acid at position 210 is Arg, Asp, Glu, Lys, Ser or Tyr; the amino acid at position 211 is Ile, Ser, Leu, Val or Thr; the amino acid at position 212 is Val, Ala, Ile, Leu, Glu, Gly or Asp; the amino acid at position 214 is Pro, Lys or Arg; the amino acid at position 215 is Ser or Thr; the amino acid at position 217 is Tyr or Phe; the amino acid at position 218 is Arg, Lys, Thr or Ser; the amino acid at position 219 is Val, Ile, Leu or Ala; the amino acid at position 220 is Cys, Leu, Ile, Val, Thr or Ser; the amino acid at position 221 is Pro or His; the amino acid at position 222 is Leu, Arg, Lys, Ile, Val, Thr or Ser; the amino acid at position 224 is Asn, Gln, Thr or Ser; the amino acid at position 225 is Asp, Arg, Glu, Lys, Ser or Thr; the amino acid at position 226 is Thr, Ser, Gln or Asn; the amino acid at position 227 is Asp, Leu, Glu, Ile, Val or deleted; the amino acid at position 228 is Thr, Ser or deleted; the amino acid at position 229 is Tyr or deleted; the amino acid at position 230 is Leu, Ile, Val or deleted; the amino acid at position 231 is Gly, Ala or deleted; the amino acid at position 232 is Ile, Leu, Val or deleted; the amino acid at position 233 is Pro or deleted; the amino acid at position 234 is Ala, Pro, Gly or deleted; the amino acid at position 235 is Asp, Ile, Leu, Glu or Val; the amino acid at position 236 is Val, Ser, Ile, Leu, Thr, Asp or Glu; the amino acid at position 237 is Ala, Phe or Tyr; the amino acid at position 238 is Ala, Gly, Ser or Thr; the amino acid at position 239 is Val, Ser, Ile, Leu, Thr, Ala or Gly; the amino acid at position 240 is Leu, Val or Ile; the amino acid at position 243 is Asp or Glu; the amino acid at position 249 is Asn, Gln, Thr or Ser; the amino acid at position 252 is Leu, Ile, Val or Met; the amino acid at position 257 is Thr or Ser; the amino acid at position 259 is His, Ile, Val or Leu; the amino acid at position 266 is Ala, Ile, Leu or Val; the amino acid at position 267 is Cys, Ala or Gly; the amino acid at position 268 is His, Arg, Lys or Tyr; the amino acid at position 272 is Asp or Glu; the amino acid at position 273 is Val, Met, Ile or Leu; the amino acid at position 274 is Val, Ile, Leu or Met; the amino acid at position 278 is Gly or Ala; the amino acid at position 279 is Glu, Asp, Gly or Val; the amino acid at position 281 is Leu, Ile, Val, Gly or Ala; the amino acid at position 282 is Asn, Leu or Ile; the amino acid at position 285 is Asn, Gln, Thr or Ser; the amino acid at position 286 is Lys, Asp, Arg or Glu; the amino acid at position 287 is Leu, Ile or Val; the amino acid at position 290 is Pro, Gln, Asn, Lys or Arg; the amino acid at position 291 is Leu, Ile or Val; the amino acid at position 292 is Lys, Arg, Ile, Leu or Val; the amino acid at position 293 is Glu, Asp, Asn or Gln; the amino acid at position 294 is Ser, Asn, Thr, Gln, Arg or Lys; the amino acid at position 295 is Thr or Ser; the amino acid at position 296 is Gln, Asn or His; the amino acid at position 297 is Leu, Ile, Val or Met; the amino acid at position 300 is Ser or Thr; the amino acid at position 301 is Glu, Asp, Gly or Ala; the amino acid at position 302 is Ser, Pro, Thr, Gly or Ala; the amino acid at position 304 is Lys, Arg, Gln or Asn; the amino acid at position 313 is Val, Leu or Ile; the amino acid at position 314 is His, Glu, Asn, Asp or Gln; the amino acid at position 315 is Ala, Cys, Gly, Thr or Ser; the amino acid at position 316 is Ala, Ile, Leu or Val; the amino acid at position 317 is Met, Leu, Val or Ile; the amino acid at position 319 is Met, Leu, Val or Ile; the amino acid at position 320 is Val, Ile, Leu, Ala or Gly; the amino acid at position 321 is Arg, Lys or Pro; the amino acid at position 322 is Ile, Leu, Val or Phe; the amino acid at position 323 is Gly, Ile, Leu or Val; the amino acid at position 324 is Leu, Ile, Val, Thr or Ser; the amino acid at position 336 is Ser, Thr, Gln or Asn; the amino acid at position 339 is Asn, Lys, Gln or Arg; the amino acid at position 350 is Arg, Lys, Asn or Gln; the amino acid at position 351 is Glu or Asp; the amino acid at position 353 is Lys or Arg; the amino acid at position 354 is Gln, Asn, Lys or Arg; the amino acid at position 355 is Phe, Ile, Leu or Leu; the amino acid at position 356 is Lys or Arg; the amino acid at position 360 is Ile, Val, Leu, Gly or Ala; the amino acid at position 363 is Gln, Ala, Cys, Glu, Phe, Gly, His, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 364 is Ile, Ala, Cys, Glu, Phe, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 365 is Leu, Ala, Glu, Phe, Gly, His, Ile, Lys, Met, Asn, Arg, Val, Trp or Tyr; the amino acid at position 366 is Gly, Ala, Cys, Phe, His, Ile, Lys, Leu, Met, Asn, Ser, Thr or Val; the amino acid at position 367 is Ser, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Thr, Val or Trp; the amino acid at position 368 is Tyr, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Trp; the amino acid at position 369 is Leu, Ala, Cys, Asp, Phe, Gly, Ile, Met, Thr or Val; the amino acid at position 370 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 371 is Gln, Ala, Cys, Asp, Glu, Phe, Gly, Ile, Lys, Leu, Asn, Arg, Ser, Thr, Val or Trp; the amino acid at position 372 is Gln, Ala, Cys, Asp, Phe, Gly, His, Ile, Leu, Asn, Arg, Ser, Val or Tyr; the amino acid at position 373 is Asn, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Gln, Ser, Thr, Val or Trp; the amino acid at position 374 is Arg or Lys; the amino acid at position 376 is Phe, Ile, Val or Leu; the amino acid at position 378 is Glu or Asp; the amino acid at position 381 is Leu, Ile or Val; the amino acid at position 388 is Ala, Thr, Gly or Ser; the amino acid at position 395 is Arg or Lys; the amino acid at position 396 is Glu, Gln, Asp, Asn, Ala or Gly; the amino acid at position 399 is Asp, Gln, Glu or Asn; the amino acid at position 400 is Asn, Thr, Ser, Glu, Gln or Asp; the amino acid at position 401 is Thr, Ser, Gly or Ala; the amino acid at position 402 is Phe, Ile, Val or Leu; the amino acid at position 406 is Asp or Glu; the amino acid at position 408 is Leu, Ile, Val or Met; the amino acid at position 410 is Gly, Ile, Val, Ala or Leu; the amino acid at position 414 is Ala, Gly, Asp or Glu; the amino acid at position 416 is Ser, Asn, Thr, Gln, Glu or Asp; the amino acid at position 417 is Ser, Arg, Lys, Thr, Ala or Gly; the amino acid at position 423 is Lys, Arg, Asn or Gln; the amino acid at position 431 is Arg or Lys; the amino acid at position 432 is Gln, Asn, Asp or Glu; the amino acid at position 436 is Arg, Lys, Asp or Glu; the amino acid at position 440 is Asn, Gln, Lys or Arg; the amino acid at position 442 is Leu, Ile or Val; the amino acid at position 447 is Ser, Lys, Thr or Arg; the amino acid at position 448 is Ala, Gly, Thr or Ser; the amino acid at position 451 is Gln, Asn or Met; the amino acid at position 453 is Gly or Ala; the amino acid at position 455 is Ala, Leu, Ile or Val; the amino acid at position 457 is Leu, Ile or Val; the amino acid at position 467 is Val, Ile, Leu, Gly or Ala; the amino acid at position 471 is Gly or Ala; the amino acid at position 475 is Ser, Thr, Gln or Asn; the amino acid at position 483 is Gly or Ala; the amino acid at position 493 is Gln, Asn or Gly; the amino acid at position 504 is Val, Leu or Ile; the amino acid at position 506 is Asp, Glu or His; the amino acid at position 509 is Asp, Glu, Gln or Asn; the amino acid at position 510 is Ser, Thr, Gly or Ala; the amino acid at position 512 is Glu or Asp; the amino acid at position 515 is Gly, Ala, Thr or Ser; the amino acid at position 516 is Gln, Asn or His; the amino acid at position 517 is Ile, Val or Leu; the amino acid at position 519 is Asp, Asn, Glu, Gly or Gln; the amino acid at position 522 is Val, Glu, Pro, Ile, Leu or Asp; the amino acid at position 525 is Glu or Asp; the amino acid at position 526 is Leu, Ile, Val or Met; the amino acid at position 539 is Val, Leu or Ile; the amino acid at position 555 is Val, Leu, Ile or Ala; the amino acid at position 556 is Trp, Phe, Thr or Tyr; the amino acid at position 557 is Arg, Cys, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 558 is Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Val, Trp or Tyr; the amino acid at position 559 is Lys, Ala, Cys, Phe, Gly, His, Ile, Leu, Asn, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 560 is Cys, Ala, Phe, Gly, Ile, Met, Asn, Arg, Ser, Thr or Val; the amino acid at position 561 is Lys, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Leu, Met, Asn, Arg, Ser, Thr, Val or Tyr; the amino acid at position 562 is Asn, Cys, Asp, Glu, Gly, His, Leu, Met, Arg, Ser, Thr, Val or Tyr; the amino acid at position 563 is Val, Ala, Cys, Asp, Phe, His, Ile, Leu, Met, Asn, Gln, Thr or Trp; the amino acid at position 564 is Ala, Cys, Gly, Met, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 571 is Ser, Thr or Cys; the amino acid at position 575 is Val, Leu, Ile, Asp or Glu; the amino acid at position 577 is Met, Leu, Val or Ile; the amino acid at position 579 is Glu, Asp, Asn or Gln; the amino acid at position 583 is Asp or Glu; the amino acid at position 589 is Met, Ile, Val or Leu; the amino acid at position 590 is Met, Ile, Val or Leu; the amino acid at position 593 is Met, Leu, Val or Ile; the amino acid at position 595 is Arg, Lys, Asn or Gln; the amino acid at position 596 is Ser or Thr; the amino acid at position 597 is Gln, Asn or His; the amino acid at position 607 is Ala, Gly, Ile, Leu or Val; the amino acid at position 608 is Asp, Glu, Gln or Asn; the amino acid at position 612 is Tyr, His or Phe; the amino acid at position 617 is Thr, Ser, Leu, Val or Ile; the amino acid at position 618 is Gln, Asn or His; the amino acid at position 625 is Arg, Lys, Thr or Ser; the amino acid at position 626 is Met, Leu, Val or Ile; the amino acid at position 628 is Leu, Val or Ile; the amino acid at position 633 is Ile, Leu, Val or Met; the amino acid at position 634 is Leu, Ile, Val or Met; the amino acid at position 642 is Arg, Lys or Met; the amino acid at position 646 is Leu, Ala, Cys, Gly, Ile, Met, Asn, Gln, Ser, Thr or Val; the amino acid at position 647 is Leu, Asp, Gly, Met, Asn, Gln or Thr; the amino acid at position 648 is Met, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 649 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Met, Asn, Gln, Arg, Ser, Thr, Trp or Tyr; the amino acid at position 650 is Thr, Ala, Cys, Asp, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Val or Tyr; the amino acid at position 651 is Glu, Ala, Cys, Asp, Gly, His, Ile, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 652 is Leu, Cys, Phe, Ile, Lys, Met, Pro, Arg, Ser, Thr or Val; the amino acid at position 653 is Thr, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Pro, Arg, Ser, Val or Trp; the amino acid at position 654 is Thr, Ala, Cys, Phe, Ile, Lys, Leu, Met, Pro, Arg, Ser, Val, Trp or Tyr; the amino acid at position 655 is Trp, Phe or Tyr; the amino acid at position 658 is Gly, Lys, Ala or Arg; the amino acid at position 663 is Gly or Ala; the amino acid at position 664 is Asp, Glu, Gln or Asn; the amino acid at position 668 is Ala, Gly, Ser or Thr; the amino acid at position 669 is Gln, Asn or His; the amino acid at position 671 is Asn, Gln, Thr or Ser the amino acid at position 675 is Ile, Val, Ile, Thr or Ser; the amino acid at position 678 is Met, Ile, Ala, Leu, Ser or Thr; the amino acid at position 682 is Pro, Asn or Gln; the amino acid at position 683 is Ser, Thr or Pro; the amino acid at position 685 is Asp, Glu, Asp or Asn; the amino acid at position 694 is Asp, Glu, Ala or Gly; the amino acid at position 697 is Asn, Gln, Thr or Ser; the amino acid at position 704 is Glu, Asp, Ala or Gly; the amino acid at position 714 is Ala or Gly; the amino acid at position 721 is Ser, Thr or Phe; the amino acid at position 722 is Ser, Thr, Gln or Asn; the amino acid at position 724 is Ser or Thr; the amino acid at position 734 is His, Asn or Gln; the amino acid at position 736 is Val, Leu, Ile or Ala; the amino acid at position 737 is Lys, Arg, Asn or Gln; the amino acid at position 739 is Ala, Gly, Thr or Ser; the amino acid at position 740 is Ser, Thr or Met; the amino acid at position 741 is Gly, Ala, Gln or Asn; the amino acid at position 742 is Ile, Leu, Val, Ala or Gly; the amino acid at position 743 is Gly or deleted; the amino acid at position 745 is Gly, Ala, Glu or Asp; the amino acid at position 751 is Thr, Ser, Gly or Ala; the amino acid at position 753 is Gln, Asn, Lys or Arg; the amino acid at position 754 is Thr or Ser; the amino acid at position 756 is Thr, Ser, Leu, Val or Ile; the amino acid at position 757 is Val, Leu or Ile; the amino acid at position 766 is Ile, Leu or Val; the amino acid at position 771 is Arg, Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Asn, Ser, Thr, Val, Trp or Tyr; the amino acid at position 772 is Arg, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 773 is Asp, Ala, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 774 is Gln, Ala, Asp, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 775 is Val, Ala, Cys, Asp, Glu, Gly, His, Ile, Asn, Pro, Gln, Arg, Ser, Thr or Tyr; the amino acid at position 776 is Leu, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Asn, Pro, Gln, Arg, Ser, Thr, Val or Tyr; the amino acid at position 777 is Pro, Ala, Cys, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Gln, Ser, Thr, Val, Trp or Tyr; the amino acid at position 778 is Phe, Ala, His, Ile, Leu, Met, Asn, Gln, Ser, Val, Trp or Tyr; the amino acid at position 779 is Gln, Ala, Cys, Asp, Glu, Gly, His, Lys, Leu, Asn, Pro, Arg, Ser, Thr or Val; the amino acid at position 780 is Ala, Cys, Asn, Pro, Gln or Ser; the amino acid at position 781 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Asn, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 782 is Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 783 is Pro, Ala, Cys, Asp, Glu, Gly, His, Asn, Gln, Arg, Ser, Thr or Val; the amino acid at position 784 is Leu, Ala, Glu, Phe, His, Ile, Lys, Met, Asn, Pro, Gln, Ser, Thr, Val or Trp; the amino acid at position 785 is Asn, Ala, Cys, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Gln, Arg, Ser, Thr, Val, Trp or Tyr; the amino acid at position 786 is Tyr, Phe, Ile, Leu or Trp; the amino acid at position 787 is His, Asn or Gln; the amino acid at position 788 is Tyr or Met; the amino acid at position 789 is Ala, Lys or Arg; the amino acid at position 790 is Tyr or Thr; the amino acid at position 791 is Arg, Lys, Gly or Ala; the amino acid at position 792 is Leu, Ile, Val, Thr or Ser; the amino acid at position 796 is Asp or Glu; the amino acid at position 797 is Ser, Thr or Ala the amino acid at position 802 is Glu, Lys, Asp, Asn or Gln; the amino acid at position 806 is Gln, Asp, Glu, Asn or His; the amino acid at position 810 is Lys, Arg or Thr; the amino acid at position 819 is Arg, Lys or His; the amino acid at position 829 is Lys, Ser, Ala or Pro; the amino acid at position 832 is Ala, Lys, Arg, Asp or Glu; the amino acid at position 833 is Gly, Ala, Asp or Glu; the amino acid at position 842 is Leu, Ile, Val or Pro; the amino acid at position 847 is Gln, Asn, Asp or Glu; the amino acid at position 848 is Ile, Leu or Val; the amino acid at position 849 is Val, Leu, Ile, Gly or Ala; the amino acid at position 855 is Thr, Ser or Met; the amino acid at position 860 is Ile, Leu or Val; and the amino acid at position 864 is His, Asn or Gln. In some embodiments the nucleic acid molecule encoding the PtIP-83 polypeptide is derived from a fern species in the Division Pteridophyta. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Psilotales. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Ophioglossales. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Ophioglossales, Family Psilotaceae. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Psilotopsida, Order Ophioglossales Family Ophioglossaceae. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Salviniales; Family Marsileaceae or Family Salviniaceae. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Cyatheales; Family Thyrsopteridaceae, Family Loxsomataceae, Family Culcitaceae, Family Plagiogyriaceae, Family Cibotiaceae, Family Cyatheaceae, Family Dicksoniaceae or Family Metaxyaceae. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales; Family Lindsaeaceae, Family Saccolomataceae, Family Cystodiaceae, Family Dennstaedtiaceae, Family Pteridaceae, Family Aspleniaceae, Family Thelypteridaceae, Family Woodsiaceae, Family Onocleaceae, Family Blechnaceae, Family Dryopteridaceae, Family Lomariopsidaceae, Family Tectariaceae, Family Oleandraceae, Family Davalliaceae or Family Polypodiaceae. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Pteridaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Aspleniaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Aspleniaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Blechnaceae, Genus In some embodiments the the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Dryopteridaceae Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Dryopteridaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Dryopteridaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Lomariopsidaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Order Polypodiales, Family Polypodiaceae, Genus In some embodiments the PtIP-83 polypeptide is derived from a species in the Division Lycophyta. In some embodiments the PtIP-83 polypeptide is derived from a species in the Class Isoetopsida or Class Lycopodiopsida. In some embodiments the PtIP-83 polypeptide is derived from a species in the Class Isoetopsida Order Selaginales. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Isoetopsida, Order Selaginales, Family Selaginellaceae. In some embodiments the PtIP-83 polypeptide is derived from a species in the Genus Selaginella. In some embodiments the PtIP-83 polypeptide is derived from a species in the Class Lycopodiopsida, Order Lycopodiales. In some embodiments the PtIP-83 polypeptide is derived from a fern species in the Class Lycopodiopsida, Order Lycopodiales Family Lycopodiaceae or Family Huperziaceae. In some embodiments the PtIP-83 polypeptide is derived from a species in the Genus In some embodiments the PtIP-83 polypeptide is derived from a species in the Genus In some embodiments the PtIP-83 polypeptide is derived from a species in the Genus The sequence and structure analysis method employed is composed of four components: phylogenetic tree construction, protein sequence motifs finding, secondary structure prediction, and alignment of protein sequences and secondary structures. Details about each component are illustrated below. The phylogenetic analysis was performed using the software MEGA5. Protein sequences were subjected to ClustalW version 2 analysis (Larkin M. A et al (2007) Protein sequences were re-ordered according to the phylogenetic tree built previously, and fed to the MOTIF analysis tool MEME (Multiple EM for MOTIF Elicitation) (Bailey T. L., and Elkan C., PSIPRED, top ranked secondary structure prediction method (Jones D T. (1999) A customized script was developed to generate gapped secondary structure alignment according to the multiple protein sequence alignment from step 1 for all proteins. All aligned protein sequences and structures were concatenated into a single FASTA file, and then imported into MEGA for visualization and identification of conserved structures. In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 as represented by an amino acid sequence of the formula MP[DE]MPSEADWSIFVNE[IV]EAVAEGMPTEVSEVP[AV]WKAKCKN[MV]AALGREM[SC]I (SEQ ID NO: 646); an amino acid sequence MOTIF 2 as represented by an amino acid sequence of the formula PQLQYRMYG[NS]LI[KN]QMAQVAQNYDQ[ED]FKQ[FL]KLFI[IA]QNQI[LF]GSYLLQQN[KR]A F (SEQ ID NO: 647); an amino acid sequence MOTIF 3 as represented by an amino acid sequence of the formula NTFMQMTPFTRWRLRLSASASENA[EG]LAFPTATA[PL]DSTT[EQ][IV]VITFHVTAIR (SEQ ID NO: 648); an amino acid sequence MOTIF 4 as represented by an amino acid sequence of the formula [DN]FTSRHVVK[GD]IPVSLLLDGEDWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 649); an amino acid sequence MOTIF 5 as represented by an amino acid sequence of the formula IIHQP[SA]T[RQ][ST]G[IT]VYILLQGSTIFHDRRR[DE]EVMTFQAA[DA]PLN[FY][QH]YAYRLDT G (SEQ ID NO: 650); an amino acid sequence MOTIF 6 as represented by an amino acid sequence of the formula S[HQ]ADRLAAIQP[AV]DLTN[HY]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI]LRIQNAALMY EY (SEQ ID NO: 651); an amino acid sequence MOTIF 7 as represented by an amino acid sequence of the formula [VL]DRVEFSEVMVIHRMYVRL[SA]DL[ND]VGEL[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 652); an amino acid sequence MOTIF 8 as represented by an amino acid sequence of the formula A[DE]RELQMESFHSAVISQRRQEL[ND]TA[IF]AKM[DE]R[LM]SLQMEEE[NS]RAMEQAQKE M (SEQ ID NO: 653); an amino acid sequence MOTIF 9 as represented by an amino acid sequence of the formula FVTAGATAPGA[AV]ASAGQAVSIAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 654); an amino acid sequence MOTIF 10 as represented by an amino acid sequence of the formula DGMNWG[IT]YI[YH]GE[KE]V[EQ]RSPLLPSNAILAVWADRC[TI]ITSARHNH[VF]NAPGR[IV]I (SEQ ID NO: 655); an amino acid sequence MOTIF 11 as represented by an amino acid sequence of the formula [KV][VK][CA]RPPSPDM[MV]SAVAEHALWLNDVLLQVVQ[KN]ESQ[LM]QGT[AE]PYNECLAL LGR (SEQ ID NO: 656); an amino acid sequence MOTIF 12 as represented by an amino acid sequence of the formula PTELT[VA]WPLGMDTV[AG]NLLIAQENAAL[VL]GLIQLGPSS (SEQ ID NO: 657); an amino acid sequence MOTIF 13 as represented by an amino acid sequence of the formula RDQ[MT][HQ]MPGSVTVI[IV]LCRLLQFP[IT]DGSQA[TA]T (SEQ ID NO: 658); an amino acid sequence MOTIF 14 as represented by an amino acid sequence of the formula TSIPVEVVTDP[SN]ILLGMQTTV[LH]IAEL (SEQ ID NO: 659); an amino acid sequence MOTIF as represented by an amino acid sequence of the formula EGLR[EQ]FQNRQVARA[VL]FAVLKAVA[MQ]I[AG] (SEQ ID NO: 660); an amino acid sequence MOTIF 16 as represented by an amino acid sequence of the formula W[TS]RVRIRHLEM[QH]F[AV]QEASG (SEQ ID NO: 661); an amino acid sequence MOTIF 17 as represented by an amino acid sequence of the formula QISELQY[ED]IWVQG[LM][ML]RDIA (SEQ ID NO: 662); an amino acid sequence MOTIF 18 as represented by an amino acid sequence of the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 as represented by an amino acid sequence of the formula MDYSTLYRDLNQIS (SEQ ID NO: 664); an amino acid sequence MOTIF 20 as represented by an amino acid sequence of the formula LRLPFM[QK]LHARVIEQN[VR]K[SE] (SEQ ID NO: 665); an amino acid sequence MOTIF 21 as represented by an amino acid sequence of the formula VDSLEQVG[QH][IL]V[GD]AP (SEQ ID NO: 666); an amino acid sequence MOTIF 22 as represented by an amino acid sequence of the formula [IV][EQ][CA]VMK[IM]GRF[VG][SL]VV (SEQ ID NO: 667); an amino acid sequence MOTIF 23 as represented by an amino acid sequence of the formula TLTNEPSE[EQ]F (SEQ ID NO: 668); and an amino acid sequence MOTIF 24 as represented by an amino acid sequence of the formula LPRQSRNISF (SEQ ID NO: 669). In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 having at least 90% sequence identity to the amino acid sequence as represented by the formula MP[DE]MPSEADWSIFVNE[IV]EAVAEGMPTEVSEVP[AV]WKAKCKN[MV]AALGREM[SC]I (SEQ ID NO: 646); an amino acid sequence MOTIF 2 having at least 90% sequence identity to the amino acid sequence as represented by the formula PQLQYRMYG[NS]LI[KN]QMAQVAQNYDQ[ED]FKQ[FL]KLFI[IA]QNQI[LF]GSYLLQQN[KR]A F (SEQ ID NO: 647); an amino acid sequence MOTIF 3 having at least 90% sequence identity to the amino acid sequence as represented by the formula NTFMQMTPFTRWRLRLSASASENA[EG]LAFPTATA[PL]DSTT[EQ][IV]VITFHVTAIR (SEQ ID NO: 648); an amino acid sequence MOTIF 4 having at least 90% sequence identity to the amino acid sequence as represented by the formula [DN]FTSRHVVK[GD]IPVSLLLDGEDWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 649); an amino acid sequence MOTIF 5 having at least 90% sequence identity to the amino acid sequence as represented by the formula IIHQP[SA]T[RQ][ST]G[IT]VYILLQGSTIFHDRRR[DE]EVMTFQAA[DA]PLN[FY][QH]YAYRLDT G (SEQ ID NO: 650); an amino acid sequence MOTIF 6 having at least 90% sequence identity to the amino acid sequence as represented by the formula S[HQ]ADRLAAIQP[AV]DLTN[HY]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI]LRIQNAALMY EY (SEQ ID NO: 651); an amino acid sequence MOTIF 7 having at least 90% sequence identity to the amino acid sequence as represented by the formula [VL]DRVEFSEVMVIHRMYVRL[SA]DL[ND]VGEL[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 652); an amino acid sequence MOTIF 8 having at least 90% sequence identity to the amino acid sequence as represented by the formula A[DE]RELQMESFHSAVISQRRQEL[ND]TA[IF]AKM[DE]R[LM]SLQMEEE[NS]RAMEQAQKE M (SEQ ID NO: 653); an amino acid sequence MOTIF 9 having at least 90% sequence identity to the amino acid sequence as represented by the formula FVTAGATAPGA[AV]ASAGQAVSIAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 654); an amino acid sequence MOTIF 10 having at least 90% sequence identity to the amino acid sequence as represented by the formula DGMNWG[IT]YI[YH]GE[KE]V[EQ]RSPLLPSNAILAVWADRC[TI]ITSARHNH[VF]NAPGR[IV]I (SEQ ID NO: 655); an amino acid sequence MOTIF 11 having at least 90% sequence identity to the amino acid sequence as represented by the formula [KV][VK][CA]RPPSPDM[MV]SAVAEHALWLNDVLLQVVQ[KN]ESQ[LM]QGT[AE]PYNECLAL LGR (SEQ ID NO: 656); an amino acid sequence MOTIF 12 having at least 90% sequence identity to the amino acid sequence as represented by the formula PTELT[VA]WPLGMDTV[AG]NLLIAQENAAL[VL]GLIQLGPSS (SEQ ID NO: 657); an amino acid sequence MOTIF 13 having at least 90% sequence identity to the amino acid sequence as represented by the formula RDQ[MT][HQ]MPGSVTVI[IV]LCRLLQFP[IT]DGSQA[TA]T (SEQ ID NO: 658); an amino acid sequence MOTIF 14 having at least 90% sequence identity to the amino acid sequence as represented by the formula TSIPVEVVTDP[SN]ILLGMQTTV[LH]IAEL (SEQ ID NO: 659); an amino acid sequence MOTIF 15 having at least 90% sequence identity to the amino acid sequence as represented by the formula EGLR[EQ]FQNRQVARA[VL]FAVLKAVA[MQ]I[AG] (SEQ ID NO: 660); an amino acid sequence MOTIF 16 having at least 90% sequence identity to the amino acid sequence as represented by the formula W[TS]RVRIRHLEM[QH]F[AV]QEASG (SEQ ID NO: 661); an amino acid sequence MOTIF 17 having at least 90% sequence identity to the amino acid sequence as represented by the formula QISELQY[ED]IWVQG[LM][ML]RDIA (SEQ ID NO: 662); an amino acid sequence MOTIF 18 having at least 90% sequence identity to the amino acid sequence as represented by the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 having at least 90% sequence identity to the amino acid sequence as represented by the formula MDYSTLYRDLNQIS (SEQ ID NO: 664); an amino acid sequence MOTIF 20 having at least 90% sequence identity to the amino acid sequence as represented by the formula LRLPFM[QK]LHARVIEQN[VR]K[SE] (SEQ ID NO: 665); an amino acid sequence MOTIF 21 having at least 90% sequence identity to the amino acid sequence as represented by the formula VDSLEQVG[QH][IL]V[GD]AP (SEQ ID NO: 666); an amino acid sequence MOTIF 22 having at least 90% sequence identity to the amino acid sequence as represented by the formula [IV][EQ][CA]VMK[IM]GRF[VG][SL]VV (SEQ ID NO: 667); an amino acid sequence MOTIF 23 having at least 90% sequence identity to the amino acid sequence as represented by the formula TLTNEPSE[EQ]F (SEQ ID NO: 668); and an amino acid sequence MOTIF 24 having at least 90% sequence identity to the amino acid sequence as represented by the formula LPRQSRNISF (SEQ ID NO: 669). In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 as represented by an amino acid sequence of the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AV]W[KR]AKCKN[MV]AALGRE M[SC]I (SEQ ID NO: 670); an amino acid sequence MOTIF 2 as represented by an amino acid sequence of the formula PQLQYRMYG[NS]LI[KRN]QMAQVAQNYD[QR][ED]FK[QR][FL][KR]LFI[IAVL]QNQI[LF]GSYL L[QE]QN[KR]AF (SEQ ID NO: 671); an amino acid sequence MOTIF 3 as represented by an amino acid sequence of the formula N[TK]FMQMTPFT[RH]WRLRLSASA[SPKA]EN[AK][EG]LAFPTATA[PL]DSTT[EQ][IV][VA]ITF HVTAIR (SEQ ID NO: 672); an amino acid sequence MOTIF 4 as represented by an amino acid sequence of the formula [DN]FTSRHVVK[GD]IPV[SN]LLLDG[EG]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 673); an amino acid sequence MOTIF 5 as represented by an amino acid sequence of the formula IIHQP[SA]T[RQ][ST]G[IT][VI]YlLLQGST[IV]FHDRRR[DE][EQ]V[ML]T[FP]QAA[DAV]PLN[FY][QH]YAYRLDTG (SEQ ID NO: 674); an amino acid sequence MOTIF 6 as represented by an amino acid sequence of the formula S[HQ]ADRLAAIQP[AV][DN]LTN[HYF]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI][LM]RIQN AAL[MR]YEY (SEQ ID NO: 675); an amino acid sequence MOTIF 7 as represented by an amino acid sequence of the formula [VL]D[RQ]VEFSEVMVIHRMYV[N]RL[SA]DL[ND]V[GA][EQ]L[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 676); an amino acid sequence MOTIF 8 as represented by an amino acid sequence of the formula A[DE]RELQMESFH[SA]AVISQ[RK]R[QGE]EL[ND][TD][AT][IF]AKM[DE]R[LM]SLQMEEE[NS D][RG]AMEQA[QR]KEM (SEQ ID NO: 677); an amino acid sequence MOTIF 9 as represented by an amino acid sequence of the formula F[VL]TAGATAPGA[AV]ASAGQAV[SN]IAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 678); an amino acid sequence MOTIF 10 as represented by an amino acid sequence of the formula D[GD][MA][NK]WG[IT]Y[IV][YH][GA]E[KE]V[EQ][RVL]SPL[LYF][PN][SNG][NW][ASP][IY]L[AG V]V[WE]A[DQ]R[CS][TI]IT[SA]A[RFM]HN[HVT][VF][ND][AER]PG[RW][IV][IR] (SEQ ID NO: 679); an amino acid sequence MOTIF 11 as represented by an amino acid sequence of the formula [KV][VK][CA][RGC][PHY]PSP[DE][MIL][MV]SAV[AG][EV]HA[LIN]WL[NS][DK]VLL[QR]VVQ[K N]ES[QH][LM]QGT[AE][PSA]YNECLALLGR (SEQ ID NO: 680); an amino acid sequence MOTIF 12 as represented by an amino acid sequence of the formula [PN]T[EQ]LT[VAT]WPL[GR]MDTV[AG][ND]LLI[AT][QH]E[NS]AAL[VLS]GL[ITMA]QLG[PQ][S P]S (SEQ ID NO: 681); an amino acid sequence MOTIF 13 as represented by an amino acid sequence of the formula [RLC][DLWK][QNPR][MTP][HQR][MIL]PGSVTVI[IV]LCRLLQFP[IT][DG]G[SR][QFR][AS][TAD ][TW] (SEQ ID NO: 682); an amino acid sequence MOTIF 14 as represented by an amino acid sequence of the formula [TA][SGV][IL]PV[ED]VVTDP[SN]IL[LM]GMQT[TS]V[LH]IAEL (SEQ ID NO: 683); an amino acid sequence MOTIF 15 as represented by an amino acid sequence of the formula EGLR[EQ]FQN[RE]QVA[RN]A[VL]FAVL[KS][AS]VA[MQ]I[AG] (SEQ ID NO: 684); an amino acid sequence MOTIF 16 as represented by an amino acid sequence of the formula W[TS]RVRIRHLEM[QH]F[AV][QK]E[AS][SM][GN] (SEQ ID NO: 685); an amino acid sequence MOTIF 17 as represented by an amino acid sequence of the formula Q[IM]S[EQ]LQY[ED]IWVQG[LM][ML]RD[IM]A (SEQ ID NO: 686); an amino acid sequence MOTIF 18 as represented by an amino acid sequence of the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 as represented by an amino acid sequence of the formula [MLV]DY[SK][TSK]L[YF][RE]DLNQIS (SEQ ID NO: 687); an amino acid sequence MOTIF 20 as represented by an amino acid sequence of the formula L[RHQ]L[PT]FM[QK]LHA[RIT][VQL][IR]E[QER][NF][VR][KWS][SE] (SEQ ID NO: 688); an amino acid sequence MOTIF 21 as represented by an amino acid sequence of the formula V[DN][SA]L[ED]QV[GS][QH][IL]V[GD]AP (SEQ ID NO: 689); an amino acid sequence MOTIF 22 as represented by an amino acid sequence of the formula [IV][EQH][CAS][VA][MI]K[IM][GV][RP][FI][VG][SL]VV (SEQ ID NO: 690); an amino acid sequence MOTIF 23 as represented by an amino acid sequence of the formula TLTN[EQ]PSE[EQDH]F (SEQ ID NO: 691); and an amino acid sequence MOTIF 24 as represented by an amino acid sequence of the formula LP[RS]QS[RT]N[IV]SF (SEQ ID NO: 692). In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 having at least 90% sequence identity to the amino acid sequence as represented by the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AV]W[KR]AKCKN[MV]AALGRE M[SC]I (SEQ ID NO: 670); an amino acid sequence MOTIF 2 having at least 90% sequence identity to the amino acid sequence as represented by the formula PQLQYRMYG[NS]LI[KRN]QMAQVAQNYD[QR][ED]FK[QR][FL][KR]LFI[IAVL]QNQI[LF]GSYL L[QE]QN[KR]AF (SEQ ID NO: 671); an amino acid sequence MOTIF 3 having at least 90% sequence identity to the amino acid sequence as represented by the formula N[TK]FMQMTPFT[RH]WRLRLSASA[SPKA]EN[AK][EG]LAFPTATA[PL]DSTT[EQ][IV][VA]ITF HVTAIR (SEQ ID NO: 672); an amino acid sequence MOTIF 4 having at least 90% sequence identity to the amino acid sequence as represented by the formula [DN]FTSRHVVK[GD]IPV[SN]LLLDG[EG]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 673); an amino acid sequence MOTIF 5 having at least 90% sequence identity to the amino acid sequence as represented by the formula IIHQP[SA]T[RQ][ST]G[IT][VI]YlLLQGST[IV]FHDRRR[DE][EQ]V[ML]T[FP]QAA[DAV]PLN[FY][QH]YAYRLDTG (SEQ ID NO: 674); an amino acid sequence MOTIF 6 having at least 90% sequence identity to the amino acid sequence as represented by the formula S[HQ]ADRLAAIQP[AV][DN]LTN[HYF]LEMAT[HQ]MDMRTT[RS][MI]L[IL]GLLN[MI][LM]RIQN AAL[MR]YEY (SEQ ID NO: 675); an amino acid sequence MOTIF 7 having at least 90% sequence identity to the amino acid sequence as represented by the formula [VL]D[RQ]VEFSEVMVIHRMYV[N]RL[SA]DL[ND]V[GA][EQ]L[PE]GA[EG][RK]VKR[VL]YV[FL]ADVVE (SEQ ID NO: 676); an amino acid sequence MOTIF 8 having at least 90% sequence identity to the amino acid sequence as represented by the formula A[DE]RELQMESFH[SA]AVISQ[RK]R[QGE]EL[ND][TD][AT][IF]AKM[DE]R[LM]SLQMEEE[NS D][RG]AMEQA[QR]KEM (SEQ ID NO: 677); an amino acid sequence MOTIF 9 having at least 90% sequence identity to the amino acid sequence as represented by the formula F[VL]TAGATAPGA[AV]ASAGQAV[SN]IAGQAAQ[AG]LRRVVEILE[GQ]LEAVMEVVAA[VI]K (SEQ ID NO: 678); an amino acid sequence MOTIF 10 having at least 90% sequence identity to the amino acid sequence as represented by the formula D[GD][MA][NK]WG[IT]Y[IV][YH][GA]E[KE]V[EQ][RVL]SPL[LYF][PN][SNG][NW][ASP][IY]L[AG V]V[WE]A[DQ]R[CS][TI]IT[SA]A[RFM]HN[HVT][VF][ND][AER]PG[RW][IV][IR] (SEQ ID NO: 679); an amino acid sequence MOTIF 11 having at least 90% sequence identity to the amino acid sequence as represented by the formula [KV][VK][CA][RGC][PHY]PSP[DE][MIL][MV]SAV[AG][EV]HA[LIN]WL[NS][DK]VLL[QR]VVQ[K N]ES[QH][LM]QGT[AE][PSA]YNECLALLGR (SEQ ID NO: 680); an amino acid sequence MOTIF 12 having at least 90% sequence identity to the amino acid sequence as represented by the formula [PN]T[EQ]LT[VAT]WPL[GR]MDTV[AG][ND]LLI[AT][QH]E[NS]AAL[VLS]GL[ITMA]QLG[PQ][S P]S (SEQ ID NO: 681); an amino acid sequence MOTIF 13 having at least 90% sequence identity to the amino acid sequence as represented by the formula [RLC][DLWK][QNPR][MTP][HQR][MIL]PGSVTVI[IV]LCRLLQFP[IT][DG]G[SR][QFR][AS][TAD ][TW] (SEQ ID NO: 682); an amino acid sequence MOTIF 14 having at least 90% sequence identity to the amino acid sequence as represented by the formula [TA][SGV][IL]PV[ED]VVTDP[SN]IL[LM]GMQT[TS]V[LH]IAEL (SEQ ID NO: 683); an amino acid sequence MOTIF 15 having at least 90% sequence identity to the amino acid sequence as represented by the formula EGLR[EQ]FQN[RE]QVA[RN]A[VL]FAVL[KS][AS]VA[MQ]I[AG] (SEQ ID NO: 684); an amino acid sequence MOTIF 16 having at least 90% sequence identity to the amino acid sequence as represented by the formula W[TS]RVRIRHLEM[QH]F[AV][QK]E[AS][SM][GN] (SEQ ID NO: 685); an amino acid sequence MOTIF 17 having at least 90% sequence identity to the amino acid sequence as represented by the formula Q[IM]S[EQ]LQY[ED]IWVQG[LM][ML]RD[IM]A (SEQ ID NO: 686); an amino acid sequence MOTIF 18 having at least 90% sequence identity to the amino acid sequence as represented by the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 having at least 90% sequence identity to the amino acid sequence as represented by the formula [MLV]DY[SK][TSK]L[YF][RE]DLNQIS (SEQ ID NO: 687); an amino acid sequence MOTIF 20 having at least 90% sequence identity to the amino acid sequence as represented by the formula L[RHQ]L[PT]FM[QK]LHA[RIT][VQL][IR]E[QER][NF][VR][KWS][SE] (SEQ ID NO: 688); an amino acid sequence MOTIF 21 having at least 90% sequence identity to the amino acid sequence as represented by the formula V[DN][SA]L[ED]QV[GS][QH][IL]V[GD]AP (SEQ ID NO: 689); an amino acid sequence MOTIF 22 having at least 90% sequence identity to the amino acid sequence as represented by the formula [IV][EQH][CAS][VA][MI]K[IM][GV][RP][FI][VG][SL]VV (SEQ ID NO: 690); an amino acid sequence MOTIF 23 having at least 90% sequence identity to the amino acid sequence as represented by the formula TLTN[EQ]PSE[EQDH]F (SEQ ID NO: 691); and an amino acid sequence MOTIF 24 having at least 90% sequence identity to the amino acid sequence as represented by the formula LP[RS]QS[RT]N[IV]SF (SEQ ID NO: 692). In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 as represented by an amino acid sequence of the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AVIL]W[KR]AKCKN[MVIL]AAL GREM[SCT]I (SEQ ID NO: 693); an amino acid sequence MOTIF 2 as represented by an amino acid sequence of the formula PQLQYRMYG[NS]LI[KRNQ]QMAQVAQNYD[QRNK][ED]FK[QRNK][FL][KR]LFI[IAVL]QNQI[L FIV]GSYLL[QEND]QN[KR]AF (SEQ ID NO: 694); an amino acid sequence MOTIF 3 as represented by an amino acid sequence of the formula N[TKSR]FMQMTPFT[RHK]WRLRLSASA[SPKATR]EN[AKR][EG]LAFPTATA[PLIV]DSTT[EQ ND][IVL][VAIL]ITFHVTAIR (SEQ ID NO: 695); an amino acid sequence MOTIF 4 as represented by an amino acid sequence of the formula [DNQE]FTSRHVVK[GDE]IPV[SNTQ]LLLDG[EGD]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 696); an amino acid sequence MOTIF 5 as represented by an amino acid sequence of the formula IIHQP[SAT]T[RQKN][ST]G[ITLVS][VIL]YILLQGST[IVL]FHDRRR[DE][EQDN]V[MLIV]T[FP]QA A[DAVEIL]PLN[FY][QHN]YAYRLDTG (SEQ ID NO: 697); an amino acid sequence MOTIF 6 as represented by an amino acid sequence of the formula S[HQN]ADRLAAIQP[AVIL][DN]LTN[HYF]LEMAT[HQN]MDMRTT[RSKT][MILV]L[ILV]GLLN[M ILV][LMIV]RIQNAAL[MRILVK]YEY (SEQ ID NO: 698); an amino acid sequence MOTIF 7 as represented by an amino acid sequence of the formula [VLI]D[RQKN]VEFSEVMVIHRMYV[N]RL[SAT]DL[NDQE]V[GA][EQND]L[PED]GA[EGD][RK]VKR[VLI]YV[FLIV]ADVVE (SEQ ID NO: 699); an amino acid sequence MOTIF 8 as represented by an amino acid sequence of the formula A[DE]RELQMESFH[SAT]AVISQ[RK]R[QGEND]EL[NDQE][TDSE][ATS][IFLV]AKM[DE]R[LMI V]SLQMEEE[NSDQET][RGK]AMEQA[QRNK]KEM (SEQ ID NO: 700); an amino acid sequence MOTIF 9 as represented by an amino acid sequence of the formula F[VLI]TAGATAPGA[AVIL]ASAGQAV[SNTQ]IAGQAAQ[AG]LRRVVEILE[GQN]LEAVMEVVA A[VIL]K (SEQ ID NO: 701); an amino acid sequence MOTIF 10 as represented by an amino acid sequence of the formula D[GDE][MA][NKQK]WG[ITLVS]Y[IVL][YH][GA]E[KERD]V[EQND][RVLKI]SPL[LYFIV][PNQ][S NGTQ][NWQ][ASPT][IYLV]L[AGVIL]V[WED]A[DQNE]R[CST][TISLV]IT[SAT]A[RFMK]HN[HV TILS][VFIL][NDQE][AERDK]PG[RWK][IVL][IRLVK] (SEQ ID NO: 702); an amino acid sequence MOTIF 11 as represented by an amino acid sequence of the formula [KVRIL][VKRIL][CA][RGCK][PHY]PSP[DE][MILV][MVIL]SAV[AG][EVDIL]HA[LINVQ]WL[NSQ T][DKER]VLL[QRNK]VVQ[KNRQ]ES[QHN][LMIV]QGT[AED][PSAT]YNECLALLGR (SEQ ID NO: 703); an amino acid sequence MOTIF 12 as represented by an amino acid sequence of the formula [PNQ]T[EQDN]LT[VATILS]WPL[GRK]MDTV[AG][NDQE]LLI[ATS][QHN]E[NSQT]AAL[VLSIT]GL[ITMALVS]QLG[PQN][SPT]S (SEQ ID NO: 704); an amino acid sequence MOTIF 13 as represented by an amino acid sequence of the formula [RLCKIV][DLWKEIVR][QNPRK][MTP][HQR][MILV]PGSVTVI[IVL]LCRLLQFP[ITLVS][DGE]G[SRTK][QFRNK][AST][TADES][TWS] (SEQ ID NO: 705); an amino acid sequence MOTIF 14 as represented by an amino acid sequence of the formula [TA][SGVTIL][ILV]PV[ED]VVTDP[SNTQ]IL[LMIV]GMQT[TS]V[LHIV]IAEL (SEQ ID NO: 706); an amino acid sequence MOTIF 15 as represented by an amino acid sequence of the formula EGLR[EQND]FQN[REKD]QVA[RNKQ]A[VLI]FAVL[KSRT][AST]VA[MQN]I[AG] (SEQ ID NO: 707); an amino acid sequence MOTIF 16 as represented by an amino acid sequence of the formula W[TS]RVRIRHLEM[QHN]F[AVIL][QKNR]E[AST][SMT][GNQ] (SEQ ID NO: 708); an amino acid sequence MOTIF 17 as represented by an amino acid sequence of the formula Q[IMLV]S[EQND]LQY[ED]IWVQG[LMIV][MLIV]RD[IMLV]A (SEQ ID NO: 709); an amino acid sequence MOTIF 18 as represented by an amino acid sequence of the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 as represented by an amino acid sequence of the formula [MLVI]DY[SKTR][TSKR]L[YF][REKD]DLNQIS (SEQ ID NO: 710); an amino acid sequence MOTIF 20 as represented by an amino acid sequence of the formula L[RHQKN]L[PTS]FM[QKNR]LHA[RITKLVS][VQLIN][IRLVK]E[QERNDK][NFQ][VRILK][KWSR T][SETD] (SEQ ID NO: 711); an amino acid sequence MOTIF 21 as represented by an amino acid sequence of the formula V[DNQE][SAT]L[ED]QV[GST][QHN][ILV]V[GDE]AP (SEQ ID NO: 712); an amino acid sequence MOTIF 22 as represented by an amino acid sequence of the formula [IVL][EQHND][CAST][VAIL][MILV]K[IMLV][GVIL][RPK][FILV][VGIL][SLTIV]VV (SEQ ID NO: 713); an amino acid sequence MOTIF 23 as represented by an amino acid sequence of the formula TLTN[EQDN]PSE[EQDHN]F (SEQ ID NO: 714); and an amino acid sequence MOTIF 24 as represented by an amino acid sequence of the formula LP[RSKT]QS[RTKS]N[IVL]SF (SEQ ID NO: 715). In some embodiments a PtIP-83 polypeptide comprises an amino acid sequence MOTIF selected from: an amino acid sequence MOTIF 1 having at least 90% sequence identity to the amino acid sequence as represented by the formula MP[DE]MP[ST][ED]ADWSIFVNE[IVL]EAVAEGMPTEVSEVP[AVIL]W[KR]AKCKN[MVIL]AAL GREM[SCT]I (SEQ ID NO: 693); an amino acid sequence MOTIF 2 having at least 90% sequence identity to the amino acid sequence as represented by the formula PQLQYRMYG[NS]LI[KRNQ]QMAQVAQNYD[QRNK][ED]FK[QRNK][FL][KR]LFI[IAVL]QNQI[L FIV]GSYLL[QEND]QN[KR]AF (SEQ ID NO: 694); an amino acid sequence MOTIF 3 having at least 90% sequence identity to the amino acid sequence as represented by the formula N[TKSR]FMQMTPFT[RHK]WRLRLSASA[SPKATR]EN[AKR][EG]LAFPTATA[PLIV]DSTT[EQ ND][IVL][VAIL]ITFHVTAIR (SEQ ID NO: 695); an amino acid sequence MOTIF 4 having at least 90% sequence identity to the amino acid sequence as represented by the formula [DNQE]FTSRHVVK[GDE]IPV[SNTQ]LLLDG[EGD]DWEFEIPVQ[AG]GMSSFP (SEQ ID NO: 696); an amino acid sequence MOTIF 5 having at least 90% sequence identity to the amino acid sequence as represented by the formula IIHQP[SAT]T[RQKN][ST]G[ITLVS][VIL]YILLQGST[IVL]FHDRRR[DE][EQDN]V[MLIV]T[FP]QA A[DAVEIL]PLN[FY][QHN]YAYRLDTG (SEQ ID NO: 697); an amino acid sequence MOTIF 6 having at least 90% sequence identity to the amino acid sequence as represented by the formula S[HQN]ADRLAAIQP[AVIL][DN]LTN[HYF]LEMAT[HQN]MDMRTT[RSKT][MILV]L[ILV]GLLN[M ILV][LMIV]RIQNAAL[MRILVK]YEY (SEQ ID NO: 698); an amino acid sequence MOTIF 7 having at least 90% sequence identity to the amino acid sequence as represented by the formula [VLI]D[RQKN]VEFSEVMVIHRMYV[N]RL[SAT]DL[NDQE]V[GA][EQND]L[PED]GA[EGD][RK]VKR[VLI]YV[FLIV]ADVVE (SEQ ID NO: 699); an amino acid sequence MOTIF 8 having at least 90% sequence identity to the amino acid sequence as represented by the formula A[DE]RELQMESFH[SAT]AVISQ[RK]R[QGEND]EL[NDQE][TDSE][ATS][IFLV]AKM[DE]R[LMI V]SLQMEEE[NSDQET][RGK]AMEQA[QRNK]KEM (SEQ ID NO: 700); an amino acid sequence MOTIF 9 having at least 90% sequence identity to the amino acid sequence as represented by the formula F[VLI]TAGATAPGA[AVIL]ASAGQAV[SNTQ]IAGQAAQ[AG]LRRVVEILE[GQN]LEAVMEVVA A[VIL]K (SEQ ID NO: 701); an amino acid sequence MOTIF 10 having at least 90% sequence identity to the amino acid sequence as represented by the formula D[GDE][MA][NKQK]WG[ITLVS]Y[IVL][YH][GA]E[KERD]V[EQND][RVLKI]SPL[LYFIV][PNQ][S NGTQ][NWQ][ASPT][IYLV]L[AGVIL]V[WED]A[DQNE]R[CST][TISLV]IT[SAT]A[RFMK]HN [HV TILS][VFIL][NDQE][AERDK]PG[RWK][IVL][IRLVK] (SEQ ID NO: 702); an amino acid sequence MOTIF 11 having at least 90% sequence identity to the amino acid sequence as represented by the formula [KVRIL][VKRIL][CA][RGCK][PHY]PSP[DE][MILV][MVIL]SAV[AG][EVDIL]HA[LINVQ]WL[NSQ T][DKER]VLL[QRNK]VVQ[KNRQ]ES[QHN][LMIV]QGT[AED][PSAT]YNECLALLGR (SEQ ID NO: 703); an amino acid sequence MOTIF 12 having at least 90% sequence identity to the amino acid sequence as represented by the formula [PNQ]T[EQDN]LT[VATILS]WPL[GRK]MDTV[AG][NDQE]LLI[ATS][QHN]E[NSQT]AAL[VLSIT]GL[ITMALVS]QLG[PQN][SPT]S (SEQ ID NO: 704); an amino acid sequence MOTIF 13 having at least 90% sequence identity to the amino acid sequence as represented by the formula [RLCKIV][DLWKEIVR][QNPRK][MTP][HQR][MILV]PGSVTVI[IVL]LCRLLQFP[ITLVS][DGE]G[SRTK][QFRNK][AST][TADES][TWS] (SEQ ID NO: 705); an amino acid sequence MOTIF 14 having at least 90% sequence identity to the amino acid sequence as represented by the formula [TA][SGVTIL][ILV]PV[ED]VVTDP[SNTQ]IL[LMIV]GMQT[TS]V[LHIV]IAEL (SEQ ID NO: 706); an amino acid sequence MOTIF 15 having at least 90% sequence identity to the amino acid sequence as represented by the formula EGLR[EQND]FQN[REKD]QVA[RNKQ]A[VLI]FAVL[KSRT][AST]VA[MQN]I[AG] (SEQ ID NO: 707); an amino acid sequence MOTIF 16 having at least 90% sequence identity to the amino acid sequence as represented by the formula W[TS]RVRIRHLEM[QHN]F[AVIL][QKNR]E[AST][SMT][GNQ] (SEQ ID NO: 708); an amino acid sequence MOTIF 17 having at least 90% sequence identity to the amino acid sequence as represented by the formula Q[IMLV]S[EQND]LQY[ED]IWVQG[LMIV][MLIV]RD[IMLV]A (SEQ ID NO: 709); an amino acid sequence MOTIF 18 having at least 90% sequence identity to the amino acid sequence as represented by the formula TFTLGSGVTGITSMHGEPSLDPWNGVSLDSASPTAF (SEQ ID NO: 663); an amino acid sequence MOTIF 19 having at least 90% sequence identity to the amino acid sequence as represented by the formula [MLVI]DY[SKTR][TSKR]L[YF][REKD]DLNQIS (SEQ ID NO: 710); an amino acid sequence MOTIF 20 having at least 90% sequence identity to the amino acid sequence as represented by the formula L[RHQKN]L[PTS]FM[QKNR]LHA[RITKLVS][VQLIN][IRLVK]E[QERNDK][NFQ][VRILK][KWSR T][SETD] (SEQ ID NO: 711); an amino acid sequence MOTIF 21 having at least 90% sequence identity to the amino acid sequence as represented by the formula V[DNQE][SAT]L[ED]QV[GST][QHN][ILV]V[GDE]AP (SEQ ID NO: 712); an amino acid sequence MOTIF 22 having at least 90% sequence identity to the amino acid sequence as represented by the formula [IVL][EQHND][CAST][VAIL][MILV]K[IMLV][GVIL][RPK][FILV][VGIL][SLTIV]VV (SEQ ID NO: 713); an amino acid sequence MOTIF 23 having at least 90% sequence identity to the amino acid sequence as represented by the formula TLTN[EQDN]PSE[EQDHN]F (SEQ ID NO: 714); and an amino acid sequence MOTIF 24 having at least 90% sequence identity to the amino acid sequence as represented by the formula LP[RSKT]QS[RTKS]N[IVL]SF (SEQ ID NO: 715). In some embodiment a PtIP-83 polypeptide comprises, sequentially from the N-terminus to the C-terminus, an amino acid sequence MOTIF selected from: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 10 (SEQ ID NO: 655, SEQ ID NO: 679 or SEQ ID NO: 702), MOTIF 18 (SEQ ID NO: 663), MOTIF 24 (SEQ ID NO: 669, SEQ ID NO: 692 or SEQ ID NO: 715), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 11 (SEQ ID NO: 656, SEQ ID NO: 680 or SEQ ID NO: 703), MOTIF 22 (SEQ ID NO: 667, SEQ ID NO: 690 or SEQ ID NO: 713), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments a PtIP-83 polypeptide comprises, sequentially from the N-terminus to the C-terminus, an amino acid sequence MOTIF selected from: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments a PtIP-83 polypeptide comprises, sequentially from the N-terminus to the C-terminus, the amino acid sequence MOTIFs: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 10 (SEQ ID NO: 655, SEQ ID NO: 679 or SEQ ID NO: 702), MOTIF 18 (SEQ ID NO: 663), MOTIF 24 (SEQ ID NO: 669, SEQ ID NO: 692 or SEQ ID NO: 715), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 11 (SEQ ID NO: 656, SEQ ID NO: 680 or SEQ ID NO: 703), MOTIF 22 (SEQ ID NO: 667, SEQ ID NO: 690 or SEQ ID NO: 713), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments a PtIP-83 polypeptide comprises, sequentially from the N-terminus to the C-terminus, the amino acid sequence MOTIFs: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 14 (SEQ ID NO: 659, SEQ ID NO: 683 or SEQ ID NO: 706), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), MOTIF 12 (SEQ ID NO: 657, SEQ ID NO: 681 or SEQ ID NO: 704), MOTIF 4 (SEQ ID NO: 649, SEQ ID NO: 673 or SEQ ID NO: 696), MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and MOTIF 3 (SEQ ID NO: 648, SEQ ID NO: 672 or SEQ ID NO: 695). In some embodiments a PtIP-83 polypeptide comprises, sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length comprising an amino acid sequence MOTIF of: MOTIF 19 (SEQ ID NO: 664, SEQ ID NO: 687 or SEQ ID NO: 710), MOTIF 7 (SEQ ID NO: 652, SEQ ID NO: 676 or SEQ ID NO: 699), MOTIF 13 (SEQ ID NO: 658, SEQ ID NO: 682 or SEQ ID NO: 705), MOTIF 20 (SEQ ID NO: 665, SEQ ID NO: 688 or SEQ ID NO: 711), MOTIF 10 (SEQ ID NO: 655, SEQ ID NO: 679 or SEQ ID NO: 702), MOTIF 18 (SEQ ID NO: 663), MOTIF 24 (SEQ ID NO: 669, SEQ ID NO: 692 or SEQ ID NO: 715), and/or MOTIF 14 having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length comprising an amino acid sequence MOTIF of MOTIF 22 (SEQ ID NO: 667, SEQ ID NO: 690 or SEQ ID NO: 713), MOTIF 2 (SEQ ID NO: 647, SEQ ID NO: 671 or SEQ ID NO: 694), MOTIF 8 (SEQ ID NO: 653, SEQ ID NO: 677 or SEQ ID NO: 700), MOTIF 15 (SEQ ID NO: 660, SEQ ID NO: 684 or SEQ ID NO: 707), MOTIF 9 (SEQ ID NO: 654, SEQ ID NO: 678 or SEQ ID NO: 701), MOTIF 21 (SEQ ID NO: 666, SEQ ID NO: 689 or SEQ ID NO: 712), MOTIF 1 (SEQ ID NO: 646, SEQ ID NO: 670 or SEQ ID NO: 693), MOTIF 17 (SEQ ID NO: 662, SEQ ID NO: 686 or SEQ ID NO: 709), MOTIF 6 (SEQ ID NO: 651, SEQ ID NO: 675 or SEQ ID NO: 698), and/or MOTIF 12 and having a predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length comprising an amino acid sequence MOTIF of MOTIF 16 (SEQ ID NO: 661, SEQ ID NO: 685 or SEQ ID NO: 708), MOTIF 5 (SEQ ID NO: 650, SEQ ID NO: 674 or SEQ ID NO: 697), MOTIF 23 (SEQ ID NO: 668, SEQ ID NO: 691 or SEQ ID NO: 714), and/or MOTIF 3 having a consensus secondary structure comprising predominately beta strand structure. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having predominantly a nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising 8 to 10 segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising 6 to 8 segments of predominately beta strand structure. As used herein “predominantly a nonconserved secondary structure” means that the regions of secondary structure don't consistently align within the family of PtIP polypeptides. As used herein “predominately alpha helical structure” means that secondary structure prediction may have one or more gap of between 1 to 4 amino acids of coil and/or beta strand structure intervening in the alpha helix structure. As used herein “predominately beta strand structure” means that secondary structure prediction may have a gap of between 1 to 4 amino acids of coil and/or alpha helix structure intervening in the beta strand structure. In some embodiments the secondary structure is generated by the PSIPRED, top ranked secondary structure prediction method (Jones DT. (1999) In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a flexible consensus secondary structure, wherein the Region A comprises a conserved beta strand 1 (β1a) of between about 4 and about 12 amino acids in length within about amino acid residue 30 to about amino acid residue 130 from the N-terminus of the PtIP-83 polypeptide; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. As used herein, the term “about” when used in the context of the lower/upper limit of the length of a secondary structural element means the greater of −/+ an integer of up to −/+20% of the length of the secondary structural element or −/+1 amino acid. By means of example, a secondary structure element of between about 3 amino acids and about 23 amino acids in length means a secondary structure element of between 2 and 27 amino acids in length. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a flexible consensus secondary structure, wherein the Region A comprises a conserved beta strand 1 (β1a) of between about 4 and about 12 amino acids in length, a coil of between about 10 and and about 20 amino acids in length and a beta strand 2 (β1b) of between about 4 and about 12 amino acids in length, within about amino acid residue 30 to about amino acid residue 165 from the N-terminus of the PtIP-83 polypeptide; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising sequentially: i) an alpha helix-1 of between about 10 and about 26 amino acids in length; ii) a coil-1 of between about 2 and about 8 amino acids in length flanked by alpha helix-1 and alpha helix-2; iii) an alpha helix-2 of between about 15 and about 24 amino acids in length; iv) a coil-2 of between about 4 and about 14 amino acids in length flanked by alpha helix-2 and alpha helix-3; v) an alpha helix 3 of between about 15 and about 27 amino acids in length; vi) a coil-3 of between about 11 and about 13 amino acids in length flanked by alpha helix-3 and alpha helix-4; vii) an alpha helix-4 of about 180 amino acids in length; viii) a coil-4 of between about 4 and about 5 amino acids in length flanked by alpha helix-4 and alpha helix-5; ix) an alpha helix-5 of between about 50 and about 54 amino acids in length; x) a coil-5 of between about 11 and about 17 amino acids in length flanked by alpha helix-5 and alpha helix-6; xi) an alpha helix-6 of between about 15 and about 16 amino acids in length; xii) a coil-6 of between about 6 and about 9 amino acids in length flanked by alpha helix-6 and alpha helix-7; xiii) an alpha helix-7 of between about 49 and about 55 amino acids in length; xiv) a coil-7 of between about 3 and about 8 amino acids in length flanked by alpha helix-7 and alpha helix-8; xv) an alpha helix-8 of between about 33 and about 36 amino acids in length; xvi) a coil-8 of between about 14 and about 16 amino acids in length flanked by alpha helix-8 and alpha helix-9; xvii) an alpha helix-9 of between about 16 and about 23 amino acids in length; xviii) a coil-9 of between about 21 and about 28 amino acids in length flanked by alpha helix-9 and Region C; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising seven segments of predominately beta strand structure. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising nine segments of predominately alpha helical structure; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising sequentially: i) a beta strand-1 (β1) of between about 3 amino acids and about 5 amino acids in length; ii) a coil of between about 13 amino acids and about 17 amino acids in length; iii) a beta strand-2 (β2) of between about 7 amino acids and about 11 amino acids in length; iv) a coil of between about 17 amino acids and about 23 amino acids in length; v) a beta strand-3 (β3) of between about 5 amino acids and about 7 amino acids in length; vi) a coil of between about 12 amino acids and about 14 amino acids in length; vii) a beta strand-4 (β4) of between about 5 amino acids and about 6 amino acids in length; viii) a coil of between about 2 amino acids and about 7 amino acids in length; ix) a beta strand-5 (β5) of between about 5 amino acids and about 7 amino acids in length; x) a coil of between about 26 amino acids and about 28 amino acids in length; xi) a beta strand-6 (β6) of between about 5 amino acids and about 7 amino acids in length; xii) a coil of between about 16 amino acids and about 20 amino acids in length; and xiii) a beta strand-1 (β7) of between about 13 amino acids and about 17 amino acids in length. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a predominantly nonconserved secondary structure; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising sequentially: i) an alpha helix-1 of between about 10 and about 26 amino acids in length; ii) a coil-1 of between about 2 and about 8 amino acids in length flanked by alpha helix-1 and alpha helix-2; iii) an alpha helix-2 of between about 15 and about 24 amino acids in length; iv) a coil-2 of between about 4 and about 14 amino acids in length flanked by alpha helix-2 and alpha helix-3; v) an alpha helix 3 of between about 15 and about 27 amino acids in length; vi) a coil-3 of between about 11 and about 13 amino acids in length flanked by alpha helix-3 and alpha helix-4; vii) an alpha helix-4 of about 24 180 amino acids in length; viii) a coil-4 of between about 4 and about 5 amino acids in length flanked by alpha helix-4 and alpha helix-5; ix) an alpha helix-5 of between about 50 and about 54 amino acids in length; x) a coil-5 of between about 11 and about 17 amino acids in length flanked by alpha helix-5 and alpha helix-6; xi) an alpha helix-6 of between about 15 and about 16 amino acids in length; xii) a coil-6 of between about 6 and about 9 amino acids in length flanked by alpha helix-6 and alpha helix-7; xiii) an alpha helix-7 of between about 49 and about 55 amino acids in length; xiv) a coil-7 of between about 3 and about 8 amino acids in length flanked by alpha helix-7 and alpha helix-8; xv) an alpha helix-8 of between about 33 and about 36 amino acids in length; xvi) a coil-8 of between about 14 and about 16 amino acids in length flanked by alpha helix-8 and alpha helix-9; xvii) an alpha helix-9 of between about 16 and about 23 amino acids in length; xviii) a coil-9 of between about 21 and about 28 amino acids in length flanked by alpha helix-9 and Region C; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising sequentially: i) a beta strand-1 (β1) of between about 3 amino acids and about 5 amino acids in length; ii) a coil of between about 13 amino acids and about 17 amino acids in length; iii) a beta strand-2 (β2) of between about 7 amino acids and about 11 amino acids in length; iv) a coil of between about 17 amino acids and about 23 amino acids in length; v) a beta strand-3 (β3) of between about 5 amino acids and about 7 amino acids in length; vi) a coil of between about 12 amino acids and about 14 amino acids in length; vii) a beta strand-4 (β4) of between about 5 amino acids and about 6 amino acids in length; viii) a coil of between about 2 amino acids and about 7 amino acids in length; ix) a beta strand-5 (β5) of between about 5 amino acids and about 7 amino acids in length; x) a coil of between about 26 amino acids and about 28 amino acids in length; xi) a beta strand-6 (β6) of between about 5 amino acids and about 7 amino acids in length; xii) a coil of between about 16 amino acids and about 20 amino acids in length; and xiii) a beta strand-1 (β7) of between about 13 amino acids and about 17 amino acids in length. In some embodiments a PtIP-83 polypeptide comprises sequentially from the N-terminus to the C-terminus: a Region A of between about 200 to about 300 amino acids in length having a flexible consensus secondary structure, wherein the Region A comprises a conserved beta strand 1 (β1a) of between about 4 and about 12 amino acids in length within about amino acid residue 30 to about amino acid residue 130 from the N-terminus of the PtIP-83 polypeptide; a Region B of between about 380 to about 465 amino acids in length having a consensus secondary structure comprising sequentially: i) an alpha helix-1 of between about 10 and about 26 amino acids in length; ii) a coil-1 of between about 2 and about 8 amino acids in length flanked by alpha helix-1 and alpha helix-2; iii) an alpha helix-2 of between about 15 and about 24 amino acids in length; iv) a coil-2 of between about 4 and about 14 amino acids in length flanked by alpha helix-2 and alpha helix-3; v) an alpha helix 3 of between about 15 and about 27 amino acids in length; vi) a coil-3 of between about 11 and about 13 amino acids in length flanked by alpha helix-3 and alpha helix-4; vii) an alpha helix-4 of about 24 180 amino acids in length; viii) a coil-4 of between about 4 and about 5 amino acids in length flanked by alpha helix-4 and alpha helix-5; ix) an alpha helix-5 of between about 50 and about 54 amino acids in length; x) a coil-5 of between about 11 and about 17 amino acids in length flanked by alpha helix-5 and alpha helix-6; xi) an alpha helix-6 of between about 15 and about 16 amino acids in length; xii) a coil-6 of between about 6 and about 9 amino acids in length flanked by alpha helix-6 and alpha helix-7; xiii) an alpha helix-7 of between about 49 and about 55 amino acids in length; xiv) a coil-7 of between about 3 and about 8 amino acids in length flanked by alpha helix-7 and alpha helix-8; xv) an alpha helix-8 of between about 33 and about 36 amino acids in length; xvi) a coil-8 of between about 14 and about 16 amino acids in length flanked by alpha helix-8 and alpha helix-9; xvii) an alpha helix-9 of between about 16 and about 23 amino acids in length; xviii) a coil-9 of between about 21 and about 28 amino acids in length flanked by alpha helix-9 and Region C; and a Region C of between about 150 to about 180 amino acids in length having a consensus secondary structure comprising sequentially: i) a beta strand-1 (β1) of between about 3 amino acids and about 5 amino acids in length; ii) a coil of between about 13 amino acids and about 17 amino acids in length; iii) a beta strand-2 (β2) of between about 7 amino acids and about 11 amino acids in length; iv) a coil of between about 17 amino acids and about 23 amino acids in length; v) a beta strand-3 (β3) of between about 5 amino acids and about 7 amino acids in length; vi) a coil of between about 12 amino acids and about 14 amino acids in length; vii) a beta strand-4 (β4) of between about 5 amino acids and about 6 amino acids in length; viii) a coil of between about 2 amino acids and about 7 amino acids in length; ix) a beta strand-5 (β5) of between about 5 amino acids and about 7 amino acids in length; x) a coil of between about 26 amino acids and about 28 amino acids in length; xi) a beta strand-6 (β6) of between about 5 amino acids and about 7 amino acids in length; xii) a coil of between about 16 amino acids and about 20 amino acids in length; and xiii) a beta strand-1 (β7) of between about 13 amino acids and about 17 amino acids in length. In some embodiments a PtIP-83 polypeptide has a calculated molecular weight of between about 70 kD and about 120 kD, between about 75 kD and about 110 kD, and between about 80 kD and about 105 kD, and between about 85 kD and about 105 kD. In some embodiments the PtIP-83 polypeptide has a modified physical property. As used herein, the term “physical property” refers to any parameter suitable for describing the physical-chemical characteristics of a protein. As used herein, “physical property of interest” and “property of interest” are used interchangeably to refer to physical properties of proteins that are being investigated and/or modified. Examples of physical properties include, but are not limited to net surface charge and charge distribution on the protein surface, net hydrophobicity and hydrophobic residue distribution on the protein surface, surface charge density, surface hydrophobicity density, total count of surface ionizable groups, surface tension, protein size and its distribution in solution, melting temperature, heat capacity, and second virial coefficient. Examples of physical properties also include, but are not limited to solubility, folding, stability, and digestibility. In some embodiments the PtIP-83 polypeptide has increased digestibility of proteolytic fragments in an insect gut. Models for digestion by simulated simulated gastric fluids are known to one skilled in the art (Fuchs, R. L. and J. D. Astwood. In some embodiments variants include polypeptides that differ in amino acid sequence due to mutagenesis. Variant proteins encompassed by the disclosure are biologically active, that is they continue to possess the desired biological activity (i.e. pesticidal activity) of the native protein. In some embodiment the variant will have at least about 10%, at least about 30%, at least about 50%, at least about 70%, at least about 80% or more of the insecticidal activity of the native protein. In some embodiments, the variants may have improved activity over the native protein. Bacterial genes quite often possess multiple methionine initiation codons in proximity to the start of the open reading frame. Often, translation initiation at one or more of these start codons will lead to generation of a functional protein. These start codons can include ATG codons. However, bacteria such as In another aspect the PtIP-83 polypeptide may be expressed as a precursor protein with an intervening sequence that catalyzes multi-step, post translational protein splicing. Protein splicing involves the excision of an intervening sequence from a polypeptide with the concomitant joining of the flanking sequences to yield a new polypeptide (Chong, et al., (1996) In another aspect the PtIP-83 polypeptide may be encoded by two separate genes where the intein of the precursor protein comes from the two genes, referred to as a split-intein, and the two portions of the precursor are joined by a peptide bond formation. This peptide bond formation is accomplished by intein-mediated trans-splicing. For this purpose, a first and a second expression cassette comprising the two separate genes further code for inteins capable of mediating protein trans-splicing. By trans-splicing, the proteins and polypeptides encoded by the first and second fragments may be linked by peptide bond formation. Trans-splicing inteins may be selected from the nucleolar and organellar genomes of different organisms including eukaryotes, archaebacteria and eubacteria. Inteins that may be used for are listed at neb.com/neb/inteins.html, which can be accessed on the world-wide web using the “www” prefix). The nucleotide sequence coding for an intein may be split into a 5′ and a 3′ part that code for the 5′ and the 3′ part of the intein, respectively. Sequence portions not necessary for intein splicing (e.g. homing endonuclease domain) may be deleted. The intein coding sequence is split such that the 5′ and the 3′ parts are capable of trans-splicing. For selecting a suitable splitting site of the intein coding sequence, the considerations published by Southworth, et al., (1998) In general, the trans-splicing partners can be designed using any split intein, including any naturally-occurring or artificially-split split intein. Several naturally-occurring split inteins are known, for example: the split intein of the DnaE gene of Naturally-occurring non-split inteins may have endonuclease or other enzymatic activities that can typically be removed when designing an artificially-split split intein. Such mini-inteins or minimized split inteins are well known in the art and are typically less than 200 amino acid residues long (see, Wu, et al., (1998) In another aspect the PtIP-83 polypeptide is a circular permuted variant. In certain embodiments the PtIP-83 polypeptide is a circular permuted variant of the polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. The development of recombinant DNA methods has made it possible to study the effects of sequence transposition on protein folding, structure and function. The approach used in creating new sequences resembles that of naturally occurring pairs of proteins that are related by linear reorganization of their amino acid sequences (Cunningham, et al., (1979) In another aspect fusion proteins are provided that include within its amino acid sequence an amino acid sequence comprising a PtIP-83 polypeptide including but not limited to the polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, and active fragments thereof. Methods for design and construction of fusion proteins (and polynucleotides encoding same) are known to those of skill in the art. Polynucleotides encoding a PtIP-83 polypeptide may be fused to signal sequences which will direct the localization of the PtIP-83 polypeptide to particular compartments of a prokaryotic or eukaryotic cell and/or direct the secretion of the PtIP-83 polypeptide of the embodiments from a prokaryotic or eukaryotic cell. For example, in In some embodiments fusion proteins are provide comprising a PtIP-83 polypeptide and an insecticidal polypeptide joined by an amino acid linker. In some embodiments fusion proteins are provided represented by a formula selected from the group consisting of: wherein R1is a PtIP-83 polypeptide, R2is a protein of interest. The R1polypeptide is fused either directly or through a linker (L) segment to the R2polypeptide. The term “directly” defines fusions in which the polypeptides are joined without a peptide linker. Thus “L” represents a chemical bound or polypeptide segment to which both R1and R2are fused in frame, most commonly L is a linear peptide to which R1and R2are bound by amide bonds linking the carboxy terminus of R1to the amino terminus of L and carboxy terminus of L to the amino terminus of R2. By “fused in frame” is meant that there is no translation termination or disruption between the reading frames of R1and R2. The linking group (L) is generally a polypeptide of between 1 and 500 amino acids in length. The linkers joining the two molecules are preferably designed to (1) allow the two molecules to fold and act independently of each other, (2) not have a propensity for developing an ordered secondary structure which could interfere with the functional domains of the two proteins, (3) have minimal hydrophobic or charged characteristic which could interact with the functional protein domains and (4) provide steric separation of R1and R2such that R1and R2could interact simultaneously with their corresponding receptors on a single cell. Typically surface amino acids in flexible protein regions include Gly, Asn and Ser. Virtually any permutation of amino acid sequences containing Gly, Asn and Ser would be expected to satisfy the above criteria for a linker sequence. Other neutral amino acids, such as Thr and Ala, may also be used in the linker sequence. Additional amino acids may also be included in the linkers due to the addition of unique restriction sites in the linker sequence to facilitate construction of the fusions. In some embodiments the linkers comprise sequences selected from the group of formulas: (Gly3Ser)n, (Gly4Ser)n, (Gly5Ser)n, (GlynSer)nor (AlaGlySer)nwhere n is an integer. One example of a highly-flexible linker is the (GlySer)-rich spacer region present within the pill protein of the filamentous bacteriophages, e.g. bacteriophages M13 or fd (Schaller, et al., 1975). This region provides a long, flexible spacer region between two domains of the pill surface protein. Also included are linkers in which an endopeptidase recognition sequence is included. Such a cleavage site may be valuable to separate the individual components of the fusion to determine if they are properly folded and active in vitro. Examples of various endopeptidases include, but are not limited to, Plasmin, Enterokinase, Kallikerin, Urokinase, Tissue Plasminogen activator, clostripain, Chymosin, Collagenase, Russell's Viper Venom Protease, Postproline cleavage enzyme, V8 protease, Thrombin and factor Xa. In some embodiments the linker comprises the amino acids EEKKN (SEQ ID NO: 37) from the multi-gene expression vehicle (MGEV), which is cleaved by vacuolar proteases as disclosed in US Patent Application Publication Number US 2007/0277263. In other embodiments, peptide linker segments from the hinge region of heavy chain immunoglobulins IgG, IgA, IgM, IgD or IgE provide an angular relationship between the attached polypeptides. Especially useful are those hinge regions where the cysteines are replaced with serines. Linkers of the present disclosure include sequences derived from murine IgG gamma 2b hinge region in which the cysteines have been changed to serines. The fusion proteins are not limited by the form, size or number of linker sequences employed and the only requirement of the linker is that functionally it does not interfere adversely with the folding and function of the individual molecules of the fusion. In another aspect chimeric PtIP-83 polypeptides are provided that are created through joining two or more portions of PtIP-83 genes, which originally encoded separate PtIP-83 proteins to create a chimeric gene. The translation of the chimeric gene results in a single chimeric PtIP-83 polypeptide with regions, motifs or domains derived from each of the original polypeptides. In certain embodiments the chimeric protein comprises portions, motifs or domains of PtIP-83 polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026, in any combination. In one embodiment, a chimeric PtIP-83 polypeptide comprises an N-terminal fragment of about 100, about 200, about 300, or about 400 amino acids of a PtIP-83 polypeptide heterologous to the C-terminal region of the chimeric PtIP-83 polypeptide. In a further embodiment the N-terminal fragment comprises conserved regions from about amino acid 1-65; about amino acids 78-88; and/or about amino acids 242-292, wherein the boundaries of those regions may vary by about 10 amino acids. In some embodiments, the PtIP-83 polypeptide comprises an N-terminal fragment comprises a PtIP-83Aa (SEQ ID NO: 1) N-terminal fragment. In some embodiments, the PtIP-83 polypeptide comprises an N-terminal fragment comprises a PtIP-83Cb (SEQ ID NO: 7) N-terminal fragment. In certain embodiments, a chimeric PtIP-83 polypeptide comprising an N-terminal fragment of either PtIP-83Aa (SEQ ID NO: 1) or PtIP-83Cb (SEQ ID NO: 7) alters the site of action of the chimeric PtIP-83 polypeptide compared to the original C-terminal fragment of the chimeric PtIP-83 polypeptide in a heterologous binding assay. It is recognized that DNA sequences may be altered by various methods, and that these alterations may result in DNA sequences encoding proteins with amino acid sequences different than that encoded by the wild-type (or native) pesticidal protein. In some embodiments a PtIP-83 polypeptide may be altered in various ways including amino acid substitutions, deletions, truncations and insertions of one or more amino acids, including up to 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145 or more amino acid substitutions, deletions and/or insertions or combinations thereof compared to any one of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments a PtIP-83 polypeptide variant comprises one or more amino acid substitution, of Table 13, Table 14, Table 15, Table 16, Table17, Table 18, Table 20, Table 21, Table 23, Table 24 or combinations thereof, compared to the native amino acid of PtIP-83Aa (SEQ ID NO: 1) at the corresponding residue. In some embodiments a PtIP-83 polypeptide variant is selected from but not limited to any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, and SEQ ID NO: 728-737. In some embodiments a PtIP-83 polypeptide comprises a deletion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more amino acids from the N-terminus of the PtIP-83 polypeptide relative to the amino acid position of any one of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. In some embodiments a PtIP-83 polypeptide comprises a deletion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more amino acids from the C-terminus of the PtIP-83 polypeptide relative to the amino acid position of any one of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of a PtIP-83 polypeptide can be prepared by mutations in the DNA. This may also be accomplished by one of several forms of mutagenesis and/or in directed evolution. In some aspects, the changes encoded in the amino acid sequence will not substantially affect the function of the protein. Such variants will possess the desired pesticidal activity. However, it is understood that the ability of a PtIP-83 polypeptide to confer pesticidal activity may be improved by the use of such techniques upon the compositions of this disclosure. For example, conservative amino acid substitutions may be made at one or more, PtIP-, nonessential amino acid residues. A “nonessential” amino acid residue is a residue that can be altered from the wild-type sequence of a PtIP-83 without altering the biological activity. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include: amino acids with basic side chains (e.g., lysine, arginine, histidine); acidic side chains (e.g., aspartic acid, glutamic acid); polar, negatively charged residues and their amides (e.g., aspartic acid, asparagine, glutamic, acid, glutamine; uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine); small aliphatic, nonpolar or slightly polar residues (e.g., Alanine, serine, threonine, proline, glycine); nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); large aliphatic, nonpolar residues (e.g., methionine, leucine, isoleucine, valine, cystine); beta-branched side chains (e.g., threonine, valine, isoleucine); aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine); large aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan). Amino acid substitutions may be made in nonconserved regions that retain function. In general, such substitutions would not be made for conserved amino acid residues or for amino acid residues residing within a conserved motif, where such residues are essential for protein activity. Examples of residues that are conserved and that may be essential for protein activity include, for example, residues that are identical between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments (e.g., residues that are identical in an alignment of homologous proteins). Examples of residues that are conserved but that may allow conservative amino acid substitutions and still retain activity include, for example, residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments (e.g., residues that have only conservative substitutions between all proteins contained in the alignment homologous proteins). However, one of skill in the art would understand that functional variants may have minor conserved or nonconserved alterations in the conserved residues. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff, et al., (1978) It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e., still obtain a biological functionally equivalent protein. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, ibid). These are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9) and arginine (−4.5). In making such changes, the substitution of amino acids whose hydropathic indices are within +2 is preferred, those which are within +1 are particularly preferred, and those within +0.5 are even more particularly preferred. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0.+0.1); glutamate (+3.0.+0.1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5.+0.1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); tryptophan (−3.4). Alternatively, alterations may be made to the protein sequence of many proteins at the amino or carboxy terminus without substantially affecting activity. This can include insertions, deletions or alterations introduced by modern molecular methods, such as PCR, including PCR amplifications that alter or extend the protein coding sequence by virtue of inclusion of amino acid encoding sequences in the oligonucleotides utilized in the PCR amplification. Alternatively, the protein sequences added can include entire protein-coding sequences, such as those used commonly in the art to generate protein fusions. Such fusion proteins are often used to (1) increase expression of a protein of interest (2) introduce a binding domain, enzymatic activity or epitope to facilitate either protein purification, protein detection or other experimental uses known in the art (3) target secretion or translation of a protein to a subcellular organelle, such as the periplasmic space of Gram-negative bacteria, mitochondria or chloroplasts of plants or the endoplasmic reticulum of eukaryotic cells, the latter of which often results in glycosylation of the protein. Variant nucleotide and amino acid sequences of the disclosure also encompass sequences derived from mutagenic and recombinogenic procedures such as DNA shuffling. With such a procedure, one or more different PtIP-83 polypeptide coding regions can be used to create a new PtIP-83 polypeptide possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between a pesticidal gene and other known pesticidal genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased insecticidal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer, (1994) Domain swapping or shuffling is another mechanism for generating altered PtIP-83 polypeptides. Domains may be swapped between PtIP-83 polypeptides resulting in hybrid or chimeric toxins with improved insecticidal activity or target spectrum. Methods for generating recombinant proteins and testing them for pesticidal activity are well known in the art (see, for example, Naimov, et al., (2001) Alignment of PtIP-83 homologs ( In some embodiments PtIP-83 polypeptides are provided comprising an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity to any one of SEQ ID NO: 786-888. In some embodiments PtIP-83 polypeptides are provide comprising the amino acid sequence of any one of SEQ ID NO: 786-888. In some embodiments the PtIP-83 polypeptide is not the amino acid sequence of any one of SEQ ID NO: 786-888. Compositions comprising a PtIP-83 polypeptide of the disclosure are also embraced. In some embodiments the composition comprises a PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769, or SEQ ID NOs: 958-1026or a variant thereof. In some embodiments the composition comprises a PtIP-83 fusion protein. In some embodiments compositions are provided comprising a PtIP-83 polypeptide comprising an amino acid sequence of any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737 or a variant thereof. In some embodiments compositions are provide comprising a PtIP-83 polypeptide comprising the amino acid sequence of any one of SEQ ID NO: 786-888 or a variant thereof. In some embodiments agricultural compositions of PtIP-83 polypeptides are disclosed. In the embodiments, a transformed microorganism (which includes whole organisms, cells, spore(s), PtIP-83 polypeptide(s), pesticidal component(s), pest-impacting component(s), variant(s), living or dead cells and cell components, including mixtures of living and dead cells and cell components, and including broken cells and cell components) or an isolated PtIP-83 polypeptide(s) can be formulated with an acceptable carrier into a pesticidal composition(s) that is, for example, a suspension, a solution, an emulsion, a dusting powder, a dispersible granule or pellet, a wettable powder, and an emulsifiable concentrate, an aerosol or spray, an impregnated granule, an adjuvant, a coatable paste, a colloid, and also encapsulations in, for example, polymer substances. Such formulated compositions may be prepared by such conventional means as desiccation, lyophilization, homogenization, extraction, filtration, centrifugation, sedimentation, or concentration of a culture of cells comprising the polypeptide. Such compositions disclosed above may be obtained by the addition of a surface-active agent, an inert carrier, a preservative, a humectant, a feeding stimulant, an attractant, an encapsulating agent, a binder, an emulsifier, a dye, a UV protectant, a buffer, a flow agent or fertilizers, micronutrient donors, or other preparations that influence plant growth. One or more agrochemicals including, but not limited to, herbicides, insecticides, fungicides, bactericides, nematocides, molluscicides, acaricides, plant growth regulators, harvest aids, and fertilizers, can be combined with carriers, surfactants or adjuvants customarily employed in the art of formulation or other components to facilitate product handling and application for particular target pests. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g., natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders, or fertilizers. The active ingredients of the embodiments are normally applied in the form of compositions and can be applied to the crop area, plant, or seed to be treated. For example, the compositions of the embodiments may be applied to grain in preparation for or during storage in a grain bin or silo, etc. The compositions of the embodiments may be applied simultaneously or in succession with other compounds. Methods of applying an active ingredient of the embodiments or an agrochemical composition of the embodiments that contains at least one of the Cyt1A variant polypeptides produced by the bacterial strains of the embodiments include, but are not limited to, foliar application, seed coating, and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest. Suitable surface-active agents include, but are not limited to, anionic compounds such as a carboxylate of, for example, a metal; a carboxylate of a long chain fatty acid; an N-acylsarcosinate; mono or di-esters of phosphoric acid with fatty alcohol ethoxylates or salts of such esters; fatty alcohol sulfates such as sodium dodecyl sulfate, sodium octadecyl sulfate or sodium cetyl sulfate; ethoxylated fatty alcohol sulfates; ethoxylated alkylphenol sulfates; lignin sulfonates; petroleum sulfonates; alkyl aryl sulfonates such as alkyl-benzene sulfonates or lower alkylnaphtalene sulfonates, e.g., butyl-naphthalene sulfonate; salts of sulfonated naphthalene-formaldehyde condensates; salts of sulfonated phenol-formaldehyde condensates; more complex sulfonates such as the amide sulfonates, e.g., the sulfonated condensation product of oleic acid and N-methyl taurine; or the dialkyl sulfosuccinates, e.g., the sodium sulfonate of dioctyl succinate. Non-ionic agents include condensation products of fatty acid esters, fatty alcohols, fatty acid amides or fatty-alkyl- or alkenyl-substituted phenols with ethylene oxide, fatty esters of polyhydric alcohol ethers, e.g., sorbitan fatty acid esters, condensation products of such esters with ethylene oxide, e.g., polyoxyethylene sorbitar fatty acid esters, block copolymers of ethylene oxide and propylene oxide, acetylenic glycols such as 2,4,7,9-tetraethyl-5-decyn-4,7-diol, or ethoxylated acetylenic glycols. Examples of a cationic surface-active agent include, for instance, an aliphatic mono-, di-, or polyamine such as an acetate, naphthenate or oleate; or oxygen-containing amine such as an amine oxide of polyoxyethylene alkylamine; an amide-linked amine prepared by the condensation of a carboxylic acid with a di- or polyamine; or a quaternary ammonium salt. Examples of inert materials include but are not limited to inorganic minerals such as kaolin, phyllosilicates, carbonates, sulfates, phosphates, Mica, Amorphous Silica Gel, talc, clay, volcanic ash or botanical materials such as cork, powdered corncobs, peanut hulls, rice hulls, and walnut shells. Kaolins such as kaolinite, dickite, nacrite, anauxite, halloysite and endellite are useful as carrier materials. Montmorillonites, such as beidellite, nontronite, montmorillonite, hectorite, saponite, sauconite and bentonite are useful as carrier materials. Vermiculites such as biotite are useful as carrier materials. The compositions of the embodiments can be in a suitable form for direct application or as a concentrate of primary composition that requires dilution with a suitable quantity of water or other diluent before application. The pesticidal concentration will vary depending upon the nature of the particular formulation, specifically, whether it is a concentrate or to be used directly. The composition contains 1 to 98% of a solid or liquid inert carrier, and 0 to 50% or 0.1 to 50% of a surfactant. These compositions will be administered at the labeled rate for the commercial product, for example, about 0.01 lb-5.0 lb. per acre when in dry form and at about 0.01 pts.-10 pts. per acre when in liquid form. Antibodies to a PtIP-83 polypeptide of the embodiments or to variants or fragments thereof are also encompassed. The antibodies of the disclosure include polyclonal and monoclonal antibodies as well as fragments thereof which retain their ability to bind to PtIP-83 polypeptide found in the insect gut. An antibody, monoclonal antibody or fragment thereof is said to be capable of binding a molecule if it is capable of specifically reacting with the molecule to thereby bind the molecule to the antibody, monoclonal antibody or fragment thereof. The term “antibody” (Ab) or “monoclonal antibody” (Mab) is meant to include intact molecules as well as fragments or binding regions or domains thereof (such as, for example, Fab and F(ab).sub.2 fragments) which are capable of binding hapten. Such fragments are typically produced by proteolytic cleavage, such as papain or pepsin. Alternatively, hapten-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry. Methods for the preparation of the antibodies of the present disclosure are generally known in the art. For example, see, Antibodies, A Laboratory Manual, Ed Harlow and David Lane (eds.) Cold Spring Harbor Laboratory, N.Y. (1988), as well as the references cited therein. Standard reference works setting forth the general principles of immunology include: Klein, J. Immunology: The Science of Cell-Noncell Discrimination, John Wiley & Sons, N.Y. (1982); Dennett, et al., Monoclonal Antibodies, Hybridoma: A New Dimension in Biological Analyses, Plenum Press, N.Y. (1980) and Campbell, “Monoclonal Antibody Technology,” In Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 13, Burdon, et al., (eds.), Elsevier, Amsterdam (1984). See also, U.S. Pat. Nos. 4,196,265; 4,609,893; 4,713,325; 4,714,681; 4,716,111; 4,716,117 and 4,720,459. PtIP-83 polypeptide antibodies or antigen-binding portions thereof can be produced by a variety of techniques, including conventional monoclonal antibody methodology, for example the standard somatic cell hybridization technique of Kohler and Milstein, (1975) Nature 256:495. Other techniques for producing monoclonal antibody can also be employed such as viral or oncogenic transformation of B lymphocytes. An animal system for preparing hybridomas is a murine system. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. Fusion partners (e.g., murine myeloma cells) and fusion procedures are also known. The antibody and monoclonal antibodies of the disclosure can be prepared by utilizing a PtIP-83 polypeptide as antigens. A kit for detecting the presence of a PtIP-83 polypeptide or detecting the presence of a nucleotide sequence encoding a PtIP-83 polypeptide in a sample is provided. In one embodiment, the kit provides antibody-based reagents for detecting the presence of a PtIP-83 polypeptide in a tissue sample. In another embodiment, the kit provides labeled nucleic acid probes useful for detecting the presence of one or more polynucleotides encoding PtIP-83 polypeptide. The kit is provided along with appropriate reagents and controls for carrying out a detection method, as well as instructions for use of the kit. Receptors to the PtIP-83 polypeptide of the embodiments or to variants or fragments thereof, are also encompassed. Methods for identifying receptors are well known in the art (see, Hofmann, et. al., (1988) The use of the term “nucleotide constructs” herein is not intended to limit the embodiments to nucleotide constructs comprising DNA. Those of ordinary skill in the art will recognize that nucleotide constructs particularly polynucleotides and oligonucleotides composed of ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides may also be employed in the methods disclosed herein. The nucleotide constructs, nucleic acids, and nucleotide sequences of the embodiments additionally encompass all complementary forms of such constructs, molecules, and sequences. Further, the nucleotide constructs, nucleotide molecules, and nucleotide sequences of the embodiments encompass all nucleotide constructs, molecules, and sequences which can be employed in the methods of the embodiments for transforming plants including, but not limited to, those comprised of deoxyribonucleotides, ribonucleotides, and combinations thereof. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The nucleotide constructs, nucleic acids, and nucleotide sequences of the embodiments also encompass all forms of nucleotide constructs including, but not limited to, single-stranded forms, double-stranded forms, hairpins, stem-and-loop structures and the like. A further embodiment relates to a transformed organism such as an organism selected from plant and insect cells, bacteria, yeast, baculovirus, protozoa, nematodes and algae. The transformed organism comprises a DNA molecule of the embodiments, an expression cassette comprising the DNA molecule or a vector comprising the expression cassette, which may be stably incorporated into the genome of the transformed organism. In some embodiments transgenic host cells are provide transformed with a polynucleotide encoding a PtIP-83 polypeptide of the disclosure. In some embodiments the host cell is a plant cell. In some embodiments the host cell is a bacteria. The sequences of the embodiments are provided in DNA constructs for expression in the organism of interest. The construct will include 5′ and 3′ regulatory sequences operably linked to a sequence of the embodiments. The term “operably linked” as used herein refers to a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and where necessary to join two protein coding regions in the same reading frame. The construct may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple DNA constructs. Such a DNA construct is provided with a plurality of restriction sites for insertion of the PtIP-83 polypeptide gene sequence to be under the transcriptional regulation of the regulatory regions. The DNA construct may additionally contain selectable marker genes. The DNA construct will generally include in the 5′ to 3′ direction of transcription: a transcriptional and translational initiation region (i.e., a promoter), a DNA sequence of the embodiments, and a transcriptional and translational termination region (i.e., termination region) functional in the organism serving as a host. The transcriptional initiation region (i.e., the promoter) may be native, analogous, foreign or heterologous to the host organism and/or to the sequence of the embodiments. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. The term “foreign” as used herein indicates that the promoter is not found in the native organism into which the promoter is introduced. Where the promoter is “foreign” or “heterologous” to the sequence of the embodiments, it is intended that the promoter is not the native or naturally occurring promoter for the operably linked sequence of the embodiments. As used herein, a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence. Where the promoter is a native or natural sequence, the expression of the operably linked sequence is altered from the wild-type expression, which results in an alteration in phenotype. In some embodiments the DNA construct may also include a transcriptional enhancer sequence. As used herein, the term an “enhancer” refers to a DNA sequence which can stimulate promoter activity, and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Various enhancers are known in the art including for example, introns with gene expression enhancing properties in plants (US Patent Application Publication Number 2009/0144863, the ubiquitin intron (i.e., the maize ubiquitin intron 1 (see, for example, NCBI sequence S94464)), the omega enhancer or the omega prime enhancer (Gallie, et al., (1989) The termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, may be native with the plant host or may be derived from another source (i.e., foreign or heterologous to the promoter, the sequence of interest, the plant host or any combination thereof). Convenient termination regions are available from the Ti-plasmid of Where appropriate, a nucleic acid may be optimized for increased expression in the host organism. Thus, where the host organism is a plant, the synthetic nucleic acids can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri, (1990) A In some embodiments the recombinant nucleic acid molecule encoding a PtIP-83 polypeptide has maize optimized codons. Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other well-characterized sequences that may be deleterious to gene expression. The GC content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. The term “host cell” as used herein refers to a cell which contains a vector and supports the replication and/or expression of the expression vector is intended. Host cells may be prokaryotic cells such as The expression cassettes may additionally contain 5′ leader sequences. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5′ noncoding region) (Elroy-Stein, et al., (1989) “Signal sequence” as used herein refers to a sequence that is known or suspected to result in cotranslational or post-translational peptide transport across the cell membrane. In eukaryotes, this typically involves secretion into the Golgi apparatus, with some resulting glycosylation. Insecticidal toxins of bacteria are often synthesized as protoxins, which are protolytically activated in the gut of the target pest (Chang, (1987) Methods Enzymol. 153:507-516). In some embodiments, the signal sequence is located in the native sequence or may be derived from a sequence of the embodiments. “Leader sequence” as used herein refers to any sequence that when translated, results in an amino acid sequence sufficient to trigger co-translational transport of the peptide chain to a subcellular organelle. Thus, this includes leader sequences targeting transport and/or glycosylation by passage into the endoplasmic reticulum, passage to vacuoles, plastids including chloroplasts, mitochondria, and the like. Nuclear-encoded proteins targeted to the chloroplast thylakoid lumen compartment have a characteristic bipartite transit peptide, composed of a stromal targeting signal peptide and a lumen targeting signal peptide. The stromal targeting information is in the amino-proximal portion of the transit peptide. The lumen targeting signal peptide is in the carboxyl-proximal portion of the transit peptide, and contains all the information for targeting to the lumen. Recent research in proteomics of the higher plant chloroplast has achieved in the identification of numerous nuclear-encoded lumen proteins (Kieselbach et al. Suitable chloroplast transit peptides (CTP) are well known to one skilled in the art also include chimeric CTPs comprising but not limited to, an N-terminal domain, a central domain or a C-terminal domain from a CTP from The PtIP-83 polypeptide gene to be targeted to the chloroplast may be optimized for expression in the chloroplast to account for differences in codon usage between the plant nucleus and this organelle. In this manner, the nucleic acids of interest may be synthesized using chloroplast-preferred codons. See, for example, U.S. Pat. No. 5,380,831, herein incorporated by reference. In preparing the expression cassette, the various DNA fragments may be manipulated so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved. A number of promoters can be used in the practice of the embodiments. The promoters can be selected based on the desired outcome. The nucleic acids can be combined with constitutive, tissue-preferred, inducible or other promoters for expression in the host organism. Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 1999/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell, et al., (1985) Depending on the desired outcome, it may be beneficial to express the gene from an inducible promoter. Of particular interest for regulating the expression of the nucleotide sequences of the embodiments in plants are wound-inducible promoters. Such wound-inducible promoters, may respond to damage caused by insect feeding, and include potato proteinase inhibitor (pin II) gene (Ryan, (1990) Additionally, pathogen-inducible promoters may be employed in the methods and nucleotide constructs of the embodiments. Such pathogen-inducible promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi, et al., (1983) Of interest are promoters that are expressed locally at or near the site of pathogen infection. See, for example, Marineau, et al., (1987) Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena, et al., (1991) Tissue-preferred promoters can be utilized to target enhanced PtIP-83 polypeptide expression within a particular plant tissue. Tissue-preferred promoters include those discussed in Yamamoto, et al., (1997) Root-preferred or root-specific promoters are known and can be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire, et al., (1992) “Seed-preferred” promoters include both “seed-specific” promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as “seed-germinating” promoters (those promoters active during seed germination). See, Thompson, et al., (1989) Where low level expression is desired, weak promoters will be used. Generally, the term “weak promoter” as used herein refers to a promoter that drives expression of a coding sequence at a low level. By low level expression at levels of between about 1/1000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts is intended. Alternatively, it is recognized that the term “weak promoters” also encompasses promoters that drive expression in only a few cells and not in others to give a total low level of expression. Where a promoter drives expression at unacceptably high levels, portions of the promoter sequence can be deleted or modified to decrease expression levels. Such weak constitutive promoters include, for example the core promoter of the Rsyn7 promoter (WO 1999/43838 and U.S. Pat. No. 6,072,050), the core 35S CaMV promoter, and the like. Other constitutive promoters include, for example, those disclosed in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142 and 6,177,611, herein incorporated by reference. The above list of promoters is not meant to be limiting. Any appropriate promoter can be used in the embodiments. Generally, the expression cassette will comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones and 2,4-dichlorophenoxyacetate (2,4-D). Additional examples of suitable selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol (Herrera Estrella, et al., (1983) The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the embodiments. The methods of the embodiments involve introducing a polypeptide or polynucleotide into a plant. “Introducing” is as used herein means presenting to the plant the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the plant. The methods of the embodiments do not depend on a particular method for introducing a polynucleotide or polypeptide into a plant, only that the polynucleotide or polypeptides gains access to the interior of at least one cell of the plant. Methods for introducing polynucleotide or polypeptides into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods. “Stable transformation” is as used herein means that the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof. “Transient transformation” as used herein means that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant. “Plant” as used herein refers to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, propagules, embryos and progeny of the same. Plant cells can be differentiated or undifferentiated (e.g. callus, suspension culture cells, protoplasts, leaf cells, root cells, phloem cells and pollen). Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway, et al., (1986) In specific embodiments, the sequences of the embodiments can be provided to a plant using a variety of transient transformation methods. Such transient transformation methods include, but are not limited to, the introduction of the PtIP-83 polynucleotide or variants and fragments thereof directly into the plant or the introduction of the PtIP-83 polypeptide transcript into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway, et al., (1986) Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, WO 1999/25821, WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853, all of which are herein incorporated by reference. Briefly, the polynucleotide of the embodiments can be contained in transfer cassette flanked by two non-identical recombination sites. The transfer cassette is introduced into a plant have stably incorporated into its genome a target site which is flanked by two non-identical recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a specific chromosomal position in the plant genome. Plant transformation vectors may be comprised of one or more DNA vectors needed for achieving plant transformation. For example, it is a common practice in the art to utilize plant transformation vectors that are comprised of more than one contiguous DNA segment. These vectors are often referred to in the art as “binary vectors”. Binary vectors as well as vectors with helper plasmids are most often used for Agrobacterium-mediated transformation, where the size and complexity of DNA segments needed to achieve efficient transformation is quite large, and it is advantageous to separate functions onto separate DNA molecules. Binary vectors typically contain a plasmid vector that contains the cis-acting sequences required for T-DNA transfer (such as left border and right border), a selectable marker that is engineered to be capable of expression in a plant cell, and a “gene of interest” (a gene engineered to be capable of expression in a plant cell for which generation of transgenic plants is desired). Also present on this plasmid vector are sequences required for bacterial replication. The cis-acting sequences are arranged in a fashion to allow efficient transfer into plant cells and expression therein. For example, the selectable marker gene and the pesticidal gene are located between the left and right borders. Often a second plasmid vector contains the trans-acting factors that mediate T-DNA transfer from In general, plant transformation methods involve transferring heterologous DNA into target plant cells (e.g., immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.), followed by applying a maximum threshold level of appropriate selection (depending on the selectable marker gene) to recover the transformed plant cells from a group of untransformed cell mass. Following integration of heterologous foreign DNA into plant cells, one then applies a maximum threshold level of appropriate selection in the medium to kill the untransformed cells and separate and proliferate the putatively transformed cells that survive from this selection treatment by transferring regularly to a fresh medium. By continuous passage and challenge with appropriate selection, one identifies and proliferates the cells that are transformed with the plasmid vector. Molecular and biochemical methods can then be used to confirm the presence of the integrated heterologous gene of interest into the genome of the transgenic plant. Explants are typically transferred to a fresh supply of the same medium and cultured routinely. Subsequently, the transformed cells are differentiated into shoots after placing on regeneration medium supplemented with a maximum threshold level of selecting agent. The shoots are then transferred to a selective rooting medium for recovering rooted shoot or plantlet. The transgenic plantlet then grows into a mature plant and produces fertile seeds (e.g., Hiei, et al., (1994) The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick, et al., (1986) The nucleotide sequences of the embodiments may be provided to the plant by contacting the plant with a virus or viral nucleic acids. Generally, such methods involve incorporating the nucleotide construct of interest within a viral DNA or RNA molecule. It is recognized that the recombinant proteins of the embodiments may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired PtIP-83 polypeptide. It is also recognized that such a viral polyprotein, comprising at least a portion of the amino acid sequence of a PtIP-83 of the embodiments, may have the desired pesticidal activity. Such viral polyproteins and the nucleotide sequences that encode for them are encompassed by the embodiments. Methods for providing plants with nucleotide constructs and producing the encoded proteins in the plants, which involve viral DNA or RNA molecules are known in the art. See, for example, U.S. Pat. Nos. 5,889,191; 5,889,190; 5,866,785; 5,589,367 and 5,316,931; herein incorporated by reference. Methods for transformation of chloroplasts are known in the art. See, for example, Svab, et al., (1990) The embodiments further relate to plant-propagating material of a transformed plant of the embodiments including, but not limited to, seeds, tubers, corms, bulbs, leaves and cuttings of roots and shoots. The embodiments may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plants of interest include, but are not limited to, corn ( Vegetables include tomatoes ( Turf grasses include, but are not limited to: annual bluegrass ( Plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, millet, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Following introduction of heterologous foreign DNA into plant cells, the transformation or integration of heterologous gene in the plant genome is confirmed by various methods such as analysis of nucleic acids, proteins and metabolites associated with the integrated gene. PCR analysis is a rapid method to screen transformed cells, tissue or shoots for the presence of incorporated gene at the earlier stage before transplanting into the soil (Sambrook and Russell, (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). PCR is carried out using oligonucleotide primers specific to the gene of interest or Agrobacterium vector background, etc. Plant transformation may be confirmed by Southern blot analysis of genomic DNA (Sambrook and Russell, (2001) supra). In general, total DNA is extracted from the transformant, digested with appropriate restriction enzymes, fractionated in an agarose gel and transferred to a nitrocellulose or nylon membrane. The membrane or “blot” is then probed with, for example, radiolabeled 32P target DNA fragment to confirm the integration of introduced gene into the plant genome according to standard techniques (Sambrook and Russell, (2001) supra). In Northern blot analysis, RNA is isolated from specific tissues of transformant, fractionated in a formaldehyde agarose gel, and blotted onto a nylon filter according to standard procedures that are routinely used in the art (Sambrook and Russell, (2001) supra). Expression of RNA encoded by the pesticidal gene is then tested by hybridizing the filter to a radioactive probe derived from a pesticidal gene, by methods known in the art (Sambrook and Russell, (2001) supra). Western blot, biochemical assays and the like may be carried out on the transgenic plants to confirm the presence of protein encoded by the pesticidal gene by standard procedures (Sambrook and Russell, 2001, supra) using antibodies that bind to one or more epitopes present on the PtIP-83 polypeptide. Transgenic plants may comprise a stack of one or more insecticidal polynucleotides disclosed herein with one or more additional polynucleotides resulting in the production or suppression of multiple polypeptide sequences. Transgenic plants comprising stacks of polynucleotide sequences can be obtained by either or both of traditional breeding methods or through genetic engineering methods. These methods include, but are not limited to, breeding individual lines each comprising a polynucleotide of interest, transforming a transgenic plant comprising a gene disclosed herein with a subsequent gene and co-transformation of genes into a single plant cell. As used herein, the term “stacked” includes having the multiple traits present in the same plant (i.e., both traits are incorporated into the nuclear genome, one trait is incorporated into the nuclear genome and one trait is incorporated into the genome of a plastid or both traits are incorporated into the genome of a plastid). In one non-limiting example, “stacked traits” comprise a molecular stack where the sequences are physically adjacent to each other. A trait, as used herein, refers to the phenotype derived from a particular sequence or groups of sequences. Co-transformation of genes can be carried out using single transformation vectors comprising multiple genes or genes carried separately on multiple vectors. If the sequences are stacked by genetically transforming the plants, the polynucleotide sequences of interest can be combined at any time and in any order. The traits can be introduced simultaneously in a co-transformation protocol with the polynucleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis). Expression of the sequences can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of the polynucleotide of interest. This may be combined with any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant. It is further recognized that polynucleotide sequences can be stacked at a desired genomic location using a site-specific recombination system. See, for example, WO 1999/25821, WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853, all of which are herein incorporated by reference. In some embodiments the polynucleotides encoding the PtIP-83 polypeptide disclosed herein, alone or stacked with one or more additional insect resistance traits can be stacked with one or more additional input traits (e.g., herbicide resistance, fungal resistance, virus resistance, stress tolerance, disease resistance, male sterility, stalk strength, and the like) or output traits (e.g., increased yield, modified starches, improved oil profile, balanced amino acids, high lysine or methionine, increased digestibility, improved fiber quality, drought resistance, and the like). Thus, the polynucleotide embodiments can be used to provide a complete agronomic package of improved crop quality with the ability to flexibly and cost effectively control any number of agronomic pests. 1. Transgenes that Confer Resistance to Insects or Disease and that Encode:
Examples of δ-endotoxins also include but are not limited to Cry1A proteins of U.S. Pat. Nos. 5,880,275 and 7,858,849; a DIG-3 or DIG-11 toxin (N-terminal deletion of α-helix 1 and/or α-helix 2 variants of Cry proteins such as Cry1A) of U.S. Pat. Nos. 8,304,604 and 8.304,605, Cry1B of U.S. patent application Ser. No. 10/525,318; Cry1C of U.S. Pat. No. 6,033,874; Cry1F of U.S. Pat. Nos. 5,188,960, 6,218,188; Cry1A/F chimeras of U.S. Pat. Nos. 7,070,982; 6,962,705 and 6,713,063); a Cry2 protein such as Cry2Ab protein of U.S. Pat. No. 7,064,249); a Cry3A protein including but not limited to an engineered hybrid insecticidal protein (eHIP) created by fusing unique combinations of variable regions and conserved blocks of at least two different Cry proteins (US Patent Application Publication Number 2010/0017914); a Cry4 protein; a Cry5 protein; a Cry6 protein; Cry8 proteins of U.S. Pat. Nos. 7,329,736, 7,449,552, 7,803,943, 7,476,781, 7,105,332, 7,378,499 and 7,462,760; a Cry9 protein such as such as members of the Cry9A, Cry9B, Cry9C, Cry9D, Cry9E, and Cry9F families; a Cry15 protein of Naimov, et al., (2008) There are several methods of conferring genetic male sterility available, such as multiple mutant genes at separate locations within the genome that confer male sterility, as disclosed in U.S. Pat. Nos. 4,654,465 and 4,727,219 to Brar, et al., and chromosomal translocations as described by Patterson in U.S. Pat. Nos. 3,861,709 and 3,710,511. In addition to these methods, Albertsen, et al., U.S. Pat. No. 5,432,068, describe a system of nuclear male sterility which includes: identifying a gene which is critical to male fertility; silencing this native gene which is critical to male fertility; removing the native promoter from the essential male fertility gene and replacing it with an inducible promoter; inserting this genetically engineered gene back into the plant; and thus creating a plant that is male sterile because the inducible promoter is not “on” resulting in the male fertility gene not being transcribed. Fertility is restored by inducing or turning “on”, the promoter, which in turn allows the gene that confers male fertility to be transcribed.
For additional examples of nuclear male and female sterility systems and genes, see also, U.S. Pat. Nos. 5,859,341; 6,297,426; 5,478,369; 5,824,524; 5,850,014 and 6,265,640, all of which are hereby incorporated by reference. 5. Genes that create a site for site specific DNA integration. This includes the introduction of FRT sites that may be used in the FLP/FRT system and/or Lox sites that may be used in the Cre/Loxp system. For example, see, Lyznik, et al., (2003) 6. Genes that Affect Abiotic Stress Resistance Including but not limited to flowering, ear and seed development, enhancement of nitrogen utilization efficiency, altered nitrogen responsiveness, drought resistance or tolerance, cold resistance or tolerance and salt resistance or tolerance and increased yield under stress.
Other genes and transcription factors that affect plant growth and agronomic traits such as yield, flowering, plant growth and/or plant structure, can be introduced or introgressed into plants, see e.g., WO 1997/49811 (LHY), WO 1998/56918 (ESD4), WO 1997/10339 and U.S. Pat. No. 6,573,430 (TFL), U.S. Pat. No. 6,713,663 (FT), WO 1996/14414 (CON), WO 1996/38560, WO 2001/21822 (VRN1), WO 2000/44918 (VRN2), WO 1999/49064 (GI), WO 2000/46358 (FR1), WO 1997/29123, U.S. Pat. Nos. 6,794,560, 6,307,126 (GAI), WO 1999/09174 (D8 and Rht) and WO 2004/076638 and WO 2004/031349 (transcription factors). 7. Genes that Confer Increased Yield
In some embodiment the stacked trait may be a trait or event that has received regulatory approval including but not limited to the events in Table 5A-5F. Other events with regulatory approval are well known to one skilled in the art and can be found at the Center for Environmental Risk Assessment (cera-gmc.org/?action=gm_crop_database, which can be accessed using the www prefix) and at the International Service for the Acquisition of Agri-Biotech Applications (isaaa.org/gmapprovaldatabase/default.asp, which can be accessed using the www prefix). In some embodiments the stacked trait may be in the form of silencing of one or more polynucleotides of interest resulting in suppression of one or more target pest polypeptides. In some embodiments the silencing is achieved through the use of a suppression DNA construct. In some embodiments one or more polynucleotide encoding the polypeptides of the PtIP-83 polypeptide or fragments or variants thereof may be stacked with one or more polynucleotides encoding one or more polypeptides having insecticidal activity or agronomic traits as set forth supra and optionally may further include one or more polynucleotides providing for gene silencing of one or more target polynucleotides as discussed infra. “Suppression DNA construct” is a recombinant DNA construct which when transformed or stably integrated into the genome of the plant, results in “silencing” of a target gene in the plant. The target gene may be endogenous or transgenic to the plant. “Silencing,” as used herein with respect to the target gene, refers generally to the suppression of levels of mRNA or protein/enzyme expressed by the target gene, and/or the level of the enzyme activity or protein functionality. The term “suppression” includes lower, reduce, decline, decrease, inhibit, eliminate and prevent. “Silencing” or “gene silencing” does not specify mechanism and is inclusive, and not limited to, anti-sense, cosuppression, viral-suppression, hairpin suppression, stem-loop suppression, RNAi-based approaches and small RNA-based approaches. A suppression DNA construct may comprise a region derived from a target gene of interest and may comprise all or part of the nucleic acid sequence of the sense strand (or antisense strand) of the target gene of interest. Depending upon the approach to be utilized, the region may be 100% identical or less than 100% identical (e.g., at least 50% or any integer between 51% and 100% identical) to all or part of the sense strand (or antisense strand) of the gene of interest. Suppression DNA constructs are well-known in the art, are readily constructed once the target gene of interest is selected, and include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs. “Antisense inhibition” refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein. “Antisense RNA” refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target isolated nucleic acid fragment (U.S. Pat. No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5′ non-coding sequence, 3′ non-coding sequence, introns or the coding sequence. “Cosuppression” refers to the production of sense RNA transcripts capable of suppressing the expression of the target protein. “Sense” RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. Cosuppression constructs in plants have been previously designed by focusing on overexpression of a nucleic acid sequence having homology to a native mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see, Vaucheret, et al., (1998) Another variation describes the use of plant viral sequences to direct the suppression of proximal mRNA encoding sequences (PCT Publication WO 1998/36083). Recent work has described the use of “hairpin” structures that incorporate all or part, of an mRNA encoding sequence in a complementary orientation that results in a potential “stem-loop” structure for the expressed RNA (PCT Publication WO 1999/53050). In this case the stem is formed by polynucleotides corresponding to the gene of interest inserted in either sense or anti-sense orientation with respect to the promoter and the loop is formed by some polynucleotides of the gene of interest, which do not have a complement in the construct. This increases the frequency of cosuppression or silencing in the recovered transgenic plants. For review of hairpin suppression, see, Wesley, et al., (2003) Methods in Molecular Biology, Plant Functional Genomics: Methods and Protocols 236:273-286. A construct where the stem is formed by at least 30 nucleotides from a gene to be suppressed and the loop is formed by a random nucleotide sequence has also effectively been used for suppression (PCT Publication WO 1999/61632). The use of poly-T and poly-A sequences to generate the stem in the stem-loop structure has also been described (PCT Publication WO 2002/00894). Yet another variation includes using synthetic repeats to promote formation of a stem in the stem-loop structure. Transgenic organisms prepared with such recombinant DNA fragments have been shown to have reduced levels of the protein encoded by the nucleotide fragment forming the loop as described in PCT Publication WO 2002/00904. RNA interference refers to the process of sequence-specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire, et al., (1998) The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme referred to as dicer. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein, et al., (2001) Methods and compositions are further provided which allow for an increase in RNAi produced from the silencing element. In such embodiments, the methods and compositions employ a first polynucleotide comprising a silencing element for a target pest sequence operably linked to a promoter active in the plant cell; and, a second polynucleotide comprising a suppressor enhancer element comprising the target pest sequence or an active variant or fragment thereof operably linked to a promoter active in the plant cell. The combined expression of the silencing element with suppressor enhancer element leads to an increased amplification of the inhibitory RNA produced from the silencing element over that achievable with only the expression of the silencing element alone. In addition to the increased amplification of the specific RNAi species itself, the methods and compositions further allow for the production of a diverse population of RNAi species that can enhance the effectiveness of disrupting target gene expression. As such, when the suppressor enhancer element is expressed in a plant cell in combination with the silencing element, the methods and composition can allow for the systemic production of RNAi throughout the plant; the production of greater amounts of RNAi than would be observed with just the silencing element construct alone; and, the improved loading of RNAi into the phloem of the plant, thus providing better control of phloem feeding insects by an RNAi approach. Thus, the various methods and compositions provide improved methods for the delivery of inhibitory RNA to the target organism. See, for example, US Patent Application Publication 2009/0188008. As used herein, a “suppressor enhancer element” comprises a polynucleotide comprising the target sequence to be suppressed or an active fragment or variant thereof. It is recognize that the suppressor enhancer element need not be identical to the target sequence, but rather, the suppressor enhancer element can comprise a variant of the target sequence, so long as the suppressor enhancer element has sufficient sequence identity to the target sequence to allow for an increased level of the RNAi produced by the silencing element over that achievable with only the expression of the silencing element. Similarly, the suppressor enhancer element can comprise a fragment of the target sequence, wherein the fragment is of sufficient length to allow for an increased level of the RNAi produced by the silencing element over that achievable with only the expression of the silencing element. It is recognized that multiple suppressor enhancer elements from the same target sequence or from different target sequences or from different regions of the same target sequence can be employed. For example, the suppressor enhancer elements employed can comprise fragments of the target sequence derived from different region of the target sequence (i.e., from the 3′UTR, coding sequence, intron, and/or 5′UTR). Further, the suppressor enhancer element can be contained in an expression cassette, as described elsewhere herein, and in specific embodiments, the suppressor enhancer element is on the same or on a different DNA vector or construct as the silencing element. The suppressor enhancer element can be operably linked to a promoter as disclosed herein. It is recognized that the suppressor enhancer element can be expressed constitutively or alternatively, it may be produced in a stage-specific manner employing the various inducible or tissue-preferred or developmentally regulated promoters that are discussed elsewhere herein. In specific embodiments, employing both a silencing element and the suppressor enhancer element the systemic production of RNAi occurs throughout the entire plant. In further embodiments, the plant or plant parts of the disclosure have an improved loading of RNAi into the phloem of the plant than would be observed with the expression of the silencing element construct alone and, thus provide better control of phloem feeding insects by an RNAi approach. In specific embodiments, the plants, plant parts and plant cells of the disclosure can further be characterized as allowing for the production of a diversity of RNAi species that can enhance the effectiveness of disrupting target gene expression. In specific embodiments, the combined expression of the silencing element and the suppressor enhancer element increases the concentration of the inhibitory RNA in the plant cell, plant, plant part, plant tissue or phloem over the level that is achieved when the silencing element is expressed alone. As used herein, an “increased level of inhibitory RNA” comprises any statistically significant increase in the level of RNAi produced in a plant having the combined expression when compared to an appropriate control plant. For example, an increase in the level of RNAi in the plant, plant part or the plant cell can comprise at least about a 1%, about a 1%-5%, about a 5%-10%, about a 10%-20%, about a 20%-30%, about a 30%-40%, about a 40%-50%, about a 50%-60%, about 60-70%, about 70%-80%, about a 80%-90%, about a 90%-100% or greater increase in the level of RNAi in the plant, plant part, plant cell or phloem when compared to an appropriate control. In other embodiments, the increase in the level of RNAi in the plant, plant part, plant cell or phloem can comprise at least about a 1 fold, about a 1 fold-5 fold, about a 5 fold-10 fold, about a 10 fold-20 fold, about a 20 fold-30 fold, about a 30 fold-40 fold, about a 40 fold-50 fold, about a 50 fold-60 fold, about 60 fold-70 fold, about 70 fold-80 fold, about a 80 fold-90 fold, about a 90 fold-100 fold or greater increase in the level of RNAi in the plant, plant part, plant cell or phloem when compared to an appropriate control. Examples of combined expression of the silencing element with suppressor enhancer element for the control of Stinkbugs and Lygus can be found in US Patent Application Publication 2011/0301223 and US Patent Application Publication 2009/0192117. Some embodiments relate to down-regulation of expression of target genes in insect pest species by interfering ribonucleic acid (RNA) molecules. PCT Publication WO 2007/074405 describes methods of inhibiting expression of target genes in invertebrate pests including Colorado potato beetle. PCT Publication WO 2005/110068 describes methods of inhibiting expression of target genes in invertebrate pests including in particular Western corn rootworm as a means to control insect infestation. Furthermore, PCT Publication WO 2009/091864 describes compositions and methods for the suppression of target genes from insect pest species including pests from the Lygus genus. Nucleic acid molecules including RNAi for targeting the vacuolar ATPase H subunit, useful for controlling a coleopteran pest population and infestation as described in US Patent Application Publication 2012/0198586. PCT Publication WO 2012/055982 describes ribonucleic acid (RNA or double stranded RNA) that inhibits or down regulates the expression of a target gene that encodes: an insect ribosomal protein such as the ribosomal protein L19, the ribosomal protein L40 or the ribosomal protein S27A; an insect proteasome subunit such as the Rpn6 protein, the Pros 25, the Rpn2 protein, the proteasome beta 1 subunit protein or the Pros beta 2 protein; an insect β-coatomer of the COPI vesicle, the γ-coatomer of the COPI vesicle, the β′-coatomer protein or the ζ-coatomer of the COPI vesicle; an insect Tetraspanine 2 A protein which is a putative transmembrane domain protein; an insect protein belonging to the actin family such as Actin 5C; an insect ubiquitin-5E protein; an insect Sec23 protein which is a GTPase activator involved in intracellular protein transport; an insect crinkled protein which is an unconventional myosin which is involved in motor activity; an insect crooked neck protein which is involved in the regulation of nuclear alternative mRNA splicing; an insect vacuolar H+-ATPase G-subunit protein and an insect Tbp-1 such as Tat-binding protein. US Patent Application Publications 2012/029750, US 20120297501, and 2012/0322660 describe interfering ribonucleic acids (RNA or double stranded RNA) that functions upon uptake by an insect pest species to down-regulate expression of a target gene in said insect pest, wherein the RNA comprises at least one silencing element wherein the silencing element is a region of double-stranded RNA comprising annealed complementary strands, one strand of which comprises or consists of a sequence of nucleotides which is at least partially complementary to a target nucleotide sequence within the target gene. US Patent Application Publication 2012/0164205 describe potential targets for interfering double stranded ribonucleic acids for inhibiting invertebrate pests including: a Chd3 Homologous Sequence, a Beta-Tubulin Homologous Sequence, a 40 kDa V-ATPase Homologous Sequence, a EF1a Homologous Sequence, a 26S Proteosome Subunit p28 Homologous Sequence, a Juvenile Hormone Epoxide Hydrolase Homologous Sequence, a Swelling Dependent Chloride Channel Protein Homologous Sequence, a Glucose-6-Phosphate 1-Dehydrogenase Protein Homologous Sequence, an Act42A Protein Homologous Sequence, a ADP-Ribosylation Factor 1 Homologous Sequence, a Transcription Factor IIB Protein Homologous Sequence, a Chitinase Homologous Sequences, a Ubiquitin Conjugating Enzyme Homologous Sequence, a Glyceraldehyde-3-Phosphate Dehydrogenase Homologous Sequence, an Ubiquitin B Homologous Sequence, a Juvenile Hormone Esterase Homolog, and an Alpha Tubuliln Homologous Sequence. General methods for employing strains comprising a nucleic acid sequence of the embodiments or a variant thereof, in pesticide control or in engineering other organisms as pesticidal agents are known in the art. See, for example U.S. Pat. No. 5,039,523 and EP 0480762A2. Microorganism hosts that are known to occupy the “phytosphere” (phylloplane, phyllosphere, rhizosphere, and/or rhizoplana) of one or more crops of interest may be selected. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing the PtIP-83 polypeptide and desirably provide for improved protection of the pesticide from environmental degradation and inactivation. Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms such as bacteria, e.g., Genes encoding the PtIP-83 polypeptide of the embodiments can be introduced into microorganisms that multiply on plants (epiphytes) to deliver PtIP-83 polypeptide to potential target pests. Epiphytes, for example, can be gram-positive or gram-negative bacteria. Root-colonizing bacteria, for example, can be isolated from the plant of interest by methods known in the art. Specifically, a Genes encoding PtIP-83 polypeptides can be introduced, for example, into the root-colonizing Expression systems can be designed so that PtIP-83 polypeptides are secreted outside the cytoplasm of gram-negative bacteria, such as PtIP-83 polypeptides can be made to be secreted in PtIP-83 polypeptides of the embodiments can be fermented in a bacterial host and the resulting bacteria processed and used as a microbial spray in the same manner that Bt strains have been used as insecticidal sprays. In the case of a PtIP-83 polypeptide(sthat is secreted from Alternatively, the PtIP-83 polypeptide is produced by introducing a heterologous gene into a cellular host. Expression of the heterologous gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. These cells are then treated under conditions that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of target pest(s). The resulting product retains the toxicity of the toxin. These naturally encapsulated PtIP-83 polypeptide may then be formulated in accordance with conventional techniques for application to the environment hosting a target pest, e.g., soil, water, and foliage of plants. See, for example EPA 0192319, and the references cited therein. In some embodiments the active ingredients can be applied in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with other compounds. These compounds can be fertilizers, weed killers, Cryoprotectants, surfactants, detergents, pesticidal soaps, dormant oils, polymers, and/or time-release or biodegradable carrier formulations that permit long-term dosing of a target area following a single application of the formulation. They can also be selective herbicides, chemical insecticides, virucides, microbicides, amoebicides, pesticides, fungicides, bacteriocides, nematocides, molluscicides or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers. Likewise the formulations may be prepared into edible “baits” or fashioned into pest “traps” to permit feeding or ingestion by a target pest of the pesticidal formulation. Methods of applying an active ingredient or an agrochemical composition that contains at least one of the PtIP-83 polypeptide produced by the bacterial strains include leaf application, seed coating and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest. The composition may be formulated as a powder, dust, pellet, granule, spray, emulsion, colloid, solution or such like, and may be prepared by such conventional means as desiccation, lyophilization, homogenation, extraction, filtration, centrifugation, sedimentation or concentration of a culture of cells comprising the polypeptide. In all such compositions that contain at least one such pesticidal polypeptide, the polypeptide may be present in a concentration of from about 1% to about 99% by weight. Lepidopteran, Dipteran, Heteropteran, nematode, Hemiptera or Coleopteran pests may be killed or reduced in numbers in a given area by the methods of the disclosure or may be prophylactically applied to an environmental area to prevent infestation by a susceptible pest. Preferably the pest ingests or is contacted with, a pesticidally-effective amount of the polypeptide. “Pesticidally-effective amount” as used herein refers to an amount of the pesticide that is able to bring about death to at least one pest or to noticeably reduce pest growth, feeding or normal physiological development. This amount will vary depending on such factors as, for example, the specific target pests to be controlled, the specific environment, location, plant, crop or agricultural site to be treated, the environmental conditions and the method, rate, concentration, stability, and quantity of application of the pesticidally-effective polypeptide composition. The formulations may also vary with respect to climatic conditions, environmental considerations, and/or frequency of application and/or severity of pest infestation. The pesticide compositions described may be made by formulating either the bacterial cell, Crystal and/or spore suspension or isolated protein component with the desired agriculturally-acceptable carrier. The compositions may be formulated prior to administration in an appropriate means such as lyophilized, freeze-dried, desiccated or in an aqueous carrier, medium or suitable diluent, such as saline or other buffer. The formulated compositions may be in the form of a dust or granular material or a suspension in oil (vegetable or mineral) or water or oil/water emulsions or as a wettable powder or in combination with any other carrier material suitable for agricultural application. Suitable agricultural carriers can be solid or liquid and are well known in the art. The term “agriculturally-acceptable carrier” covers all adjuvants, inert components, dispersants, surfactants, tackifiers, binders, etc. that are ordinarily used in pesticide formulation technology; these are well known to those skilled in pesticide formulation. The formulations may be mixed with one or more solid or liquid adjuvants and prepared by various means, e.g., by homogeneously mixing, blending and/or grinding the pesticidal composition with suitable adjuvants using conventional formulation techniques. Suitable formulations and application methods are described in U.S. Pat. No. 6,468,523, herein incorporated by reference. The plants can also be treated with one or more chemical compositions, including one or more herbicide, insecticides or fungicides. Exemplary chemical compositions include: Fruits/Vegetables Herbicides: Atrazine, Bromacil, Diuron, Glyphosate, Linuron, Metribuzin, Simazine, Trifluralin, Fluazifop, Glufosinate, Halo sulfuron Gowan, Paraquat, Propyzamide, Sethoxydim, Butafenacil, Halosulfuron, Indaziflam; Fruits/Vegetables Insecticides: Aldicarb, In some embodiments the herbicide is Atrazine, Bromacil, Diuron, Chlorsulfuron, Metsulfuron, Thifensulfuron Methyl, Tribenuron, Acetochlor, Dicamba, Isoxaflutole, Nicosulfuron, Rimsulfuron, Pyrithiobac-sodium, Flumioxazin, Chlorimuron-Ethyl, Metribuzin, Quizalofop, S-metolachlor, Hexazinne or combinations thereof. In some embodiments the insecticide is Esfenvalerate, Chlorantraniliprole, Methomyl, Indoxacarb, Oxamyl or combinations thereof. “Pest” includes but is not limited to, insects, fungi, bacteria, nematodes, mites, ticks and the like. Insect pests include insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera Orthroptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc., particularly Lepidoptera and Coleoptera. Those skilled in the art will recognize that not all compounds are equally effective against all pests. Compounds of the embodiments display activity against insect pests, which may include economically important agronomic, forest, greenhouse, nursery ornamentals, food and fiber, public and animal health, domestic and commercial structure, household and stored product pests. Larvae of the order Lepidoptera include, but are not limited to, armyworms, cutworms, loopers and heliothines in the family Noctuidae Selected other agronomic pests in the order Lepidoptera include, but are not limited to, Of interest are larvae and adults of the order Coleoptera including weevils from the families Anthribidae, Bruchidae and Curculionidae (including, but not limited to: Adults and immatures of the order Diptera are of interest, including leafminers Included as insects of interest are adults and nymphs of the orders Hemiptera and Homoptera such as, but not limited to, adelgids from the family Adelgidae, plant bugs from the family Miridae, cicadas from the family Cicadidae, leafhoppers, Agronomically important members from the order Homoptera further include, but are not limited to: Agronomically important species of interest from the order Hemiptera include, but are not limited to: Furthermore, embodiments may be effective against Hemiptera such, Also included are adults and larvae of the order Acari (mites) such as Insect pests of the order Thysanura are of interest, such as Additional arthropod pests covered include: spiders in the order Araneae such as Insect pest of interest include the superfamily of stink bugs and other related insects including but not limited to species belonging to the family Pentatomidae ( Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang, (1990) Nematodes include parasitic nematodes such as root-knot, cyst and lesion nematodes, including To protect and to enhance yield production and trait technologies, seed treatment options can provide additional crop plan flexibility and cost effective control against insects, weeds and diseases. Seed material can be treated, typically surface treated, with a composition comprising combinations of chemical or biological herbicides, herbicide safeners, insecticides, fungicides, germination inhibitors and enhancers, nutrients, plant growth regulators and activators, bactericides, nematocides, avicides and/or molluscicides. These compounds are typically formulated together with further carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. The coatings may be applied by impregnating propagation material with a liquid formulation or by coating with a combined wet or dry formulation. Examples of the various types of compounds that may be used as seed treatments are provided in The Pesticide Manual: A World Compendium, C. D. S. Tomlin Ed., Published by the British Crop Production Council, which is hereby incorporated by reference. Some seed treatments that may be used on crop seed include, but are not limited to, one or more of abscisic acid, acibenzolar-S-methyl, avermectin, amitrol, azaconazole, azospirillum, azadirachtin, azoxystrobin, Seed varieties and seeds with specific transgenic traits may be tested to determine which seed treatment options and application rates may complement such varieties and transgenic traits in order to enhance yield. For example, a variety with good yield potential but head smut susceptibility may benefit from the use of a seed treatment that provides protection against head smut, a variety with good yield potential but cyst nematode susceptibility may benefit from the use of a seed treatment that provides protection against cyst nematode, and so on. Likewise, a variety encompassing a transgenic trait conferring insect resistance may benefit from the second mode of action conferred by the seed treatment, a variety encompassing a transgenic trait conferring herbicide resistance may benefit from a seed treatment with a safener that enhances the plants resistance to that herbicide, etc. Further, the good root establishment and early emergence that results from the proper use of a seed treatment may result in more efficient nitrogen use, a better ability to withstand drought and an overall increase in yield potential of a variety or varieties containing a certain trait when combined with a seed treatment. In some embodiments methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide. In some embodiments methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally-effective amount of a recombinant pesticidal protein of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or a variant thereof. In some embodiments methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737. In some embodiments methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide comprising an amino acid sequence of any one of SEQ ID NO: 786-888 or a variant thereof. In some embodiments methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide. In some embodiments methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or a variant thereof. As used herein, “controlling a pest population” or “controls a pest” refers to any effect on a pest that results in limiting the damage that the pest causes. Controlling a pest includes, but is not limited to, killing the pest, inhibiting development of the pest, altering fertility or growth of the pest in such a manner that the pest provides less damage to the plant, decreasing the number of offspring produced, producing less fit pests, producing pests more susceptible to predator attack or deterring the pests from eating the plant. In some embodiments methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide of any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737. In some embodiments methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally-effective amount of a recombinant PtIP-83 polypeptide of any one of SEQ ID NO: 786-888 or a variant thereof. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof at least one recombinant polynucleotide encoding a PtIP-83 polypeptide. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof a recombinant polynucleotide encoding a PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768 or SEQ ID NO: 769 or variants thereof. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof at least one recombinant polynucleotide encoding a PtIP-83 polypeptide. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof a recombinant polynucleotide encoding a PtIP-83 polypeptide of any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof at least one recombinant polynucleotide encoding a PtIP-83 polypeptide. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof a recombinant polynucleotide encoding a PtIP-83 polypeptide of any one of SEQ ID NO: 786-888 or a variant thereof. Expression of One way to increasing the duration of effectiveness of the transgenic insecticides against target pests and contemporaneously reducing the development of insecticide-resistant pests is to provide non-transgenic (i.e., non-insecticidal protein expressing) refuge crop plants(a section of non-insecticidal crops/corn) for use with transgenic crops producing a single insecticidal protein active against target pests. The United States Environmental Protection Agency (epa.gov/oppbppdl/biopesticides/pips/bt_corn_refuge_2006.htm, which can be accessed using the www prefix) publishes the requirements for use with transgenic crops producing a single Bt protein active against target pests. In addition, the National Corn Growers Association, on their website: (ncga.com/insect-resistance-management-fact-sheet-bt-corn, which can be accessed using the www prefix) also provides similar guidance regarding refuge requirements. Economic factors constrain this approach as losses to insects within the refuge area, larger refuges may reduce overall yield. Another way of increasing the duration of effectiveness of the transgenic insecticides against target pests and contemporaneously reducing the development of insecticide-resistant pests would be to have a repository of insecticidal genes that are effective against groups of insect pests and which manifest their effects through different modes of action where each gene could be deployed against a fixed number of generations of insects before another gene is deployed. Expression in a plant of two or more insecticidal compositions toxic to the same insect species, each insecticide being expressed at efficacious levels would be another way to achieve control of the development of resistance. This is based on the principle that evolution of resistance against two separate modes of action is far more unlikely than only one. Roush, for example, outlines two-toxin strategies, also called “pyramiding” or “stacking,” for management of insecticidal transgenic crops. (The Royal Society. Phil. Trans. R. Soc. Lond. B. (1998) 353:1777-1786). Stacking or pyramiding of two different proteins each effective against the target pests and with little or no cross-resistance can allow for use of a smaller refuge. The US Environmental Protection Agency requires significantly less (generally 5%) structured refuge of non-Bt corn be planted than for single trait products (generally 20%). There are various ways of providing the IRM effects of a refuge, including various geometric planting patterns in the fields and in-bag seed mixtures, as discussed further by Roush. In some embodiments the PtIP-83 polypeptide of the disclosure are useful as an insect resistance management strategy in combination (i.e., pyramided) with other pesticidal proteins include but are not limited to Bt toxins, Provided are methods of controlling Lepidoptera and/or Coleoptera insect infestation(s) in a transgenic plant that promote insect resistance management, comprising expressing in the plant at least two different insecticidal proteins having different modes of action. In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and promoting insect resistance management the at least one of the insecticidal proteins comprise a PtIP-83 polypeptide insecticidal to insects in the order Lepidoptera and/or Coleoptera. In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and promoting insect resistance management the at least one of the insecticidal proteins comprises a PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or variants thereof, insecticidal to insects in the order Lepidoptera and/or Coleoptera. In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and promoting insect resistance management the at least one of the insecticidal proteins comprises a PtIP-83 polypeptide of any one of SEQ ID NO: 236-299, SEQ ID NO: 334-367, SEQ ID NO: 398-427, SEQ ID NO: 518-607, SEQ ID NO: 640-645, and SEQ ID NO: 728-737. In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and promoting insect resistance management comprise expressing in the transgenic plant a PtIP-83 polypeptide and a Cry protein insecticidal to insects in the order Lepidoptera and/or Coleoptera having different modes of action. In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation of a transgenic plant and promoting insect resistance management comprise in the transgenic plant a PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or variants thereof and a Cry protein insecticidal to insects in the order Lepidoptera and/or Coleoptera having different modes of action. Also provided are methods of reducing likelihood of emergence of Lepidoptera and/or Coleoptera insect resistance to transgenic plants expressing in the plants insecticidal proteins to control the insect species, comprising expression of a PtIP-83 polypeptide insecticidal to the insect species in combination with a second insecticidal protein to the insect species having different modes of action. Also provided are means for effective Lepidoptera and/or Coleoptera insect resistance management of transgenic plants, comprising co-expressing at high levels in the plants two or more insecticidal proteins toxic to Lepidoptera and/or Coleoptera insects but each exhibiting a different mode of effectuating its killing activity, wherein the two or more insecticidal proteins comprise a PtIP-83 polypeptide and a Cry protein. Also provided are means for effective Lepidoptera and/or Coleoptera insect resistance management of transgenic plants, comprising co-expressing at high levels in the plants two or more insecticidal proteins toxic to Lepidoptera and/or Coleoptera insects but each exhibiting a different mode of effectuating its killing activity, wherein the two or more insecticidal proteins comprise a PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or variants thereof and a Cry protein. In addition, methods are provided for obtaining regulatory approval for planting or commercialization of plants expressing proteins insecticidal to insects in the order Lepidoptera and/or Coleoptera, comprising the step of referring to, submitting or relying on insect assay binding data showing that the PtIP-83 polypeptide does not compete with binding sites for Cry proteins in such insects. In addition, methods are provided for obtaining regulatory approval for planting or commercialization of plants expressing proteins insecticidal to insects in the order Lepidoptera and/or Coleoptera, comprising the step of referring to, submitting or relying on insect assay binding data showing that the PtIP-83 polypeptide of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769 or variant thereof does not compete with binding sites for Cry proteins in such insects. Methods for increasing plant yield are provided. The methods comprise providing a plant or plant cell expressing a polynucleotide encoding the pesticidal polypeptide sequence disclosed herein and growing the plant or a seed thereof in a field infested with a pest against which the polypeptide has pesticidal activity. In some embodiments, the polypeptide has pesticidal activity against a Lepidopteran, Coleopteran, Dipteran, Hemipteran or nematode pest, and the field is infested with a Lepidopteran, Hemipteran, Coleopteran, Dipteran or nematode pest. As defined herein, the “yield” of the plant refers to the quality and/or quantity of biomass produced by the plant. “Biomass” as used herein refers to any measured plant product. An increase in biomass production is any improvement in the yield of the measured plant product. Increasing plant yield has several commercial applications. For example, increasing plant leaf biomass may increase the yield of leafy vegetables for human or animal consumption. Additionally, increasing leaf biomass can be used to increase production of plant-derived pharmaceutical or industrial products. An increase in yield can comprise any statistically significant increase including, but not limited to, at least a 1% increase, at least a 3% increase, at least a 5% increase, at least a 10% increase, at least a 20% increase, at least a 30%, at least a 50%, at least a 70%, at least a 100% or a greater increase in yield compared to a plant not expressing the pesticidal sequence. In specific methods, plant yield is increased as a result of improved pest resistance of a plant expressing a PtIP-83 polypeptide disclosed herein. Expression of the PtIP-83 polypeptide results in a reduced ability of a pest to infest or feed on the plant, thus improving plant yield. Further provided are methods of processing a plant, plant part or seed to obtain a food or feed product from a plant, plant part or seed comprising a PtIP-83 polypeptide. The plants, plant parts or seeds provided herein, can be processed to yield oil, protein products and/or by-products that are derivatives obtained by processing that have commercial value. Non-limiting examples include transgenic seeds comprising a nucleic acid molecule encoding a PtIP-83 polypeptide which can be processed to yield soy oil, soy products and/or soy by-products. “Processing” refers to any physical and chemical methods used to obtain any soy product and includes, but is not limited to, heat conditioning, flaking and grinding, extrusion, solvent extraction or aqueous soaking and extraction of whole or partial seeds The following examples are offered by way of illustration and not by way of limitation. The insecticidal protein PtIP-83Aa (SEQ ID NO: 1) was identified by protein purification, mass spectroscopy (MS) and PCR cloning from Bioassays against the three pest species, Soybean Looper (SBL) ( For protein purification, PS-7140 fronds were ground to a fine powder at liquid N2temperatures with a Geno Ball Mill (SPEX, Metuchen, N.J.). Protein was extracted in 100 mM Tris buffer, pH 8.0, 150 mM KCl, 2.5 mM EDTA, 1.5% PVPP and protease inhibitor cocktail (Roche Diagnostics, Germany). The extracted material was centrifuged to remove cell debris, filtered through Miracloth™ (Calbiochem) and then ammonium sulfate added to 35% and allowed to equilibrate. The suspension was centrifuged and the resulting pellet was resuspended in a small volume of 20 mM Tris buffer, pH 8. After clarification by centrifugation it was desalted using a Sephadex G25 column (GE, Piscataway, N.J.) equilibrated in 20 mM Tris buffer, pH 8. The desalted protein fraction pool was loaded onto a 1 ml Mono Q column (GE, Piscataway, N.J.) and eluted with a linear (60 CV (column volumes) gradient from 0 M to 0.7 M NaCl in 20 mM Tris, pH 8.0. Fractions active against SBL and ECB were combined and desalted into 25 mM MOPS, pH 6.7. This was then loaded onto a 4 mL Mono P column (Buffer A: 25 mM MOPS, pH 6.7; Buffer B: Polybuffer 74, pH 4) using a 4 CV linear gradient (0% Buffer B) followed by a 15 CV 100% Buffer B wash. 1 mL fractions were collected. Fractions 47 and 48 showed activity against ECB and SBL. Based on LDS-PAGE these active fractions contained a protein band at approximately 95 kDa. The protein representing the 95 kDa band was named PtIP-83Aa (SEQ ID NO: 1). Protein identification was performed by MS analysis after protein digestion with trypsin. Proteins for MS identification were obtained after running the sample on an LDS-PAGE gel stained with Brilliant Blue G-250 Stain. Bands of interest were excised from the gel, de-stained, reduced with dithiothreitol and then alkylated with iodoacetamide. Following overnight digestion with trypsin, samples were analyzed by nano-liquid chromatography/electrospray tandem mass spectrometry (nano-LC/ES-MSMS) on a Thermo Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific) interfaced with an Eksigent NanoLC Ultra 1-D Plus nano-lc system and a nanolc-as2 autosampler (AB Sciex). The protein identification was performed by searching the nano-LC/MSMS data against an in-house transcriptome database containing the transcripts from the source plant materials and the public protein database Swiss-Prot using the Mascot search engine (Matrix Science). The amino acid sequence of SEQ ID NO: 1 was BLAST (Basic Local Alignment Search Tool; Altschul, et al., (1993) A transcriptome for Normalized transcript libraries were sequenced according to manufacturer protocols on the Illumina® Genome Analyzer IIx. Each library was hybridized to two flow cell lanes and amplified, blocked, linearized and primer hybridized using the Illumina clonal cluster generation process on cBot®. Sequencing was completed on the Genome Analyzer IIx, generating sixty million 75 bp paired end reads per normalized library. Peptide sequence identified for PtIP-83Aa (SEQ ID NO: 1) by LC-MS/MS/MS sequencing (described in Example 1) were searched against the protein sequences predicted by open reading frames (ORFs) from the internal transcriptome for PS-7140CF assemblies. The peptides gave a perfect match to a transcript corresponding to PtIP-83Aa (SEQ ID NO: 2). The coding sequences were used to design the following primers to clone the PtIP-83Aa coding sequence: This clone was produced by polymerase chain reaction using the KOD Hot Start DNA polymerase® PCR kit (Novagen, Merck KGaA, Darmstadt, Germany) and the total RNA from Based on the DNA and protein sequencing, the PtIP-83Aa polynucleotide sequence is shown as SEQ ID NO: 2 and the polypeptide sequence as SEQ ID NO: 1. Gene identities may be determined by conducting BLAST® (Basic Local Alignment Search Tool; Altschul, et al., (1993) Gene identities conducted by BLAST® in a DUPONT PIONEER internal transcriptome database of ferns and other primitive plants identified homologs for PtIP-83Aa (SEQ ID NO: 1). The PtIP-83Aa homologs and the organism they were identified from are shown in Table 7. cDNA was generated from source organisms with identified homologs by reverse transcription from total RNA. Homologs were PCR amplified from their respective cDNAs using primers designed to the coding sequences of each homolog and subcloned into a plant transient vector containing the DMMV promoter. Cloned PCR products were confirmed by sequencing. Cloning primers are shown in Table 8. The cDNA for homolog PtIP-83Fb was synthesized (SEQ ID NO: 717) based on the transcriptome assembly of PS-9319 and subcloned into a plant transient vector. Additional diversity was recovered by PCR amplification with primers designed to the non-coding regions flanking identified homologs. Primers were designed to conserved sequences in the 5′ and 3′ untranslated regions of PtIP-83Ca BLAST hits within the DUPONT PIONEER internal transcriptome database. Primers pairs (1) GCCTTTATCGACTCCTAATTCACACC (SEQ ID NO: 626) and CCACATTGTGCATTACGACCAC (SEQ ID NO: 627), and (2) CCAGTGATTTGAGTTCCTTCATTATG (SEQ ID NO: 628) and GAACAGTACATTGACTGCATGTGC (SEQ ID NO: 629) were used to generate PCR products from PS-11481 and PS-12345 cDNA. Resulting PCR products were blunt end cloned using the Zero Blunt® TOPO® PCR Cloning Kit (Invitrogen) and sequence analyzed. From this analysis, homologs PtIP-83Cg, Da, Ea, and Eb were identified and subcloned into the plant transient vector. Cloning primers are shown in Table 8. The amino acid sequence identity of the PtIP-83Aa homologs as calculated using the Needleman-Wunsch algorithm, as implemented in the Needle program (EMBOSS tool suite) are shown in Table 9a-9c. To confirm activity of PtIP-83Aa (SEQ ID NO: 1) a transient expression system under control of a viral promoter pDMMV and/or AtUBQ10 (Dav, et. al., (1999) Activity of PtIP-83Fa (SEQ ID NO: 4) was validated using the bush bean transient expression system and found to be comparable to PtIP-83Aa (SEQ ID NO: 2). PtIP-83Fa (SEQ ID NO: 4) showed a similar insecticidal activity spectrum except for lacking activity against FAW (Table 11). Activity of PtIP-83Ca (SEQ ID NO: 5), PtIP-83Cb (SEQ ID NO: 7), PtIP-83Cc (SEQ ID NO: 9), PtIP-83Cd (SEQ ID NO: 11), PtIP-83Ce (SEQ ID NO: 13), PtIP-83Cf (SEQ ID NO: 15), PtIP-83Cg (SEQ ID NO: 17), PtIP-83Da (SEQ ID NO: 19), PtIP-83Ea (SEQ ID NO: 21), PtIP-83Eb (SEQ ID NO: 23), PtIP-83Fb (SEQ ID NO: 716), PtIP-83Ch (SEQ ID NO: 754), PtIP-83Ch-like (SEQ ID NO: 755), PtIP-83Fd (SEQ ID NO: 756), PtIP-83Fe (SEQ ID NO: 757), PtIP-83Ci (SEQ ID NO: 758), PtIP-83Ci-like (SEQ ID NO: 759), PtIP-83Ff (SEQ ID NO: 760), PtIP-83Ff-like (SEQ ID NO: 761), and other polypeptides as shown in Table 12 were also validated using a bush bean transient expression system. The activity spectra for all PtIP-83 homologs are summarized in Table 12, where a “+” indicates an average activity score of <=60% of leaf disc consumed, a “−” indicates an average activity score of .>=60% leaf disc consumed, and “ND” indicates not determined. The gene encoding PtIP-83Aa SEQ ID NO: 2 was subcloned into the pFastBac™ Dual vector (Invitrogen®) with the stop codon removed for C-terminal translation of a 10x-histidine tag addition (SEQ ID NO: 27) and the sequence of the histidine-tagged PtIP-83Aa polypeptide is set forth as SEQ ID NO: 2. This vector was transformed into DH10Bac cells to generate baculovirus. These baculovirus were used to infect sf9 insect cells and incubated for 72 hours at 27° C. The infected insect cells were harvested by centrifugation. The cell culture pellet was suspended with 100 mL of lysis buffer (1×PBS, 10% glycerol, with protease inhibitor and benzonase) and incubated at 4° C. for 5 min with stirring, then homogenizing twice. The lysate was centrifuged at 16000 rpm for 20 min. The supernatant was saved and loaded onto two 2 mL Ni-NTA Hi-Bind Resin (Novagen, cat #70666) columns pre-equilibrated with Elute buffer (1×PBS, 10% glycerol). The columns were then sequentially eluted with 10 mLof Elute buffer containing 10, 20, 50, and 250 mM of imidazole. Samples were analyzed by SDS-PAGE. The purified fractions (E250) were concentrated using 100K Amicon® Ultra Centrifugal Filters (Millipore) to ˜0.5 mg/mL and demonstrated insecticidal activity against CEW, ECB, FAW and SBL similar to the activity spectrum obtained using transient expressing leaf discs. For Transgenic soybean lines are generated by the method of particle gun bombardment (Klein et al., 37.0 g MgSO4.7H2O, 1.69 g MnSO4.H2O, 0.86 g ZnSO4.7H2O, 0.0025 g CuSO4.5H2O
30.0 g CaCl2.2H2O, 0.083 g KI, 0.0025 g CoCl2.6H2O
18.5 g KH2PO4, 0.62 g H3BO3, 0.025 g Na2MoO4.2H2O
3.724 g Na2EDTA, 2.784 g FeSO4.7H2O
10 mg/mL Vitamin
Pods with immature seeds from available soybean plants 45-55 days after planting are picked, removed from their shells and placed into a sterilized magenta box. The soybean seeds are sterilized by shaking them for 15 min in a 5% Clorox® solution with 1 drop of Ivory™ soap (i.e., 95 mL of autoclaved distilled water plus 5 mL Clorox® and 1 drop of soap, mixed well). Seeds are rinsed using 2 L sterile distilled water and those less than 3 mm are placed on individual microscope slides. The small end of the seed is cut and the cotyledons pressed out of the seed coat. Cotyledons are transferred to plates containing SB199 medium (25-30 cotyledons per plate) for 2 weeks, then transferred to SB1 for 2-4 weeks. Plates are wrapped with fiber tape. After this time, secondary embryos are cut and placed into SB196 liquid medium for 7 days. Soy bean embryogenic suspension cultures (cv. 93Y21) were maintained in 50 mL liquid medium SB196 on a rotary shaker, 100-150 rpm, 26° C. on 16:8 h day/night photoperiod at light intensity of 80-100 μE/m2/s. Cultures are subcultured every 7-14 days by inoculating up to ½ dime size quantity of tissue (clumps bulked together) into 50 mL of fresh liquid SB196. In particle gun bombardment procedures it is possible to use purified 1) entire plasmid DNA; or 2) DNA fragments containing only the recombinant DNA expression cassette(s) of interest. For every seventeen bombardment transformations, 85 μL of suspension is prepared containing 1 to 90 picograms (pg) of plasmid DNA per base pair of each DNA plasmid. DNA plasmids or fragments are co-precipitated onto gold particles as follows. The DNAs in suspension are added to 50 μL of a 10-60 mg/mL 0.6 μm gold particle suspension and then combined with 50 μL CaCl2(2.5 M) and 20 μL spermidine (0.1 M). The mixture is vortexed for 5 sec, spun in a microfuge for 5 sec, and the supernatant removed. The DNA-coated particles are then washed once with 150 μL of 100% ethanol, vortexed and spun in a microfuge again, then resuspended in 85 μL of anhydrous ethanol. Five μL of the DNA-coated gold particles are then loaded on each macrocarrier disc. Tissue Preparation and Bombardment with DNA: Approximately 100 mg of two-week-old suspension culture is placed in an empty 60 mm×15 mm petri plate and the residual liquid removed from the tissue using a pipette. The tissue is placed about 3.5 inches away from the retaining screen and each plate of tissue is bombarded once. Membrane rupture pressure is set at 650 psi and the chamber is evacuated to −28 inches of Hg. Following bombardment, the tissue from each plate is divided between two flasks, placed back into liquid media, and cultured as described above. After bombardment, tissue from each bombarded plate is divided and placed into two flasks of SB196 liquid culture maintenance medium per plate of bombarded tissue. Seven days post bombardment, the liquid medium in each flask is replaced with fresh SB196 culture maintenance medium supplemented with 100 ng/ml selective agent (selection medium). For selection of transformed soybean cells the selective agent used can be a sulfonylurea (SU) compound with the chemical name, 2-chloro-N-((4-methoxy-6 methy-1,3,5-triazine-2-yl)aminocarbonyl) benzenesulfonamide (common names: DPX-W4189 and chlorsulfuron). Chlorsulfuron is the active ingredient in the DuPont sulfonylurea herbicide, GLEAN®. The selection medium containing SU is replaced every two weeks for 8 weeks. After the 8 week selection period, islands of green, transformed tissue are observed growing from untransformed, necrotic embryogenic clusters. These putative transgenic events are isolated and kept in SB196 liquid medium with SU at 100 ng/ml for another 5 weeks with media changes every 1-2 weeks to generate new, clonally propagated, transformed embryogenic suspension cultures. Embryos spend a total of around 13 weeks in contact with SU. Suspension cultures are subcultured and maintained as clusters of immature embryos and also regenerated into whole plants by maturation and germination of individual somatic embryos. Somatic embryos became suitable for germination after four weeks on maturation medium (1 week on SB166 followed by 3 weeks on SB103). They are then removed from the maturation medium and dried in empty petri dishes for up to seven days. The dried embryos are then planted in SB71-4 medium where they are allowed to germinate under the same light and temperature conditions as described above. Germinated embryos are transferred to potting medium and grown to maturity for seed production. Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing a nucleotide sequence encoding the insecticidal protein. The ears are husked and surface sterilized in 30% Clorox® bleach plus 0.5% Micro detergent for 20 minutes and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5 cm target zone in preparation for bombardment. A plasmid vector DNA comprising the nucleotide sequence encoding the insecticidal protein operably linked to a promoter is precipitated onto 1.1 μm (average diameter) tungsten pellets using a CaCl2precipitation procedure as follows: 100 μl prepared tungsten particles in water; 10 μl (1 μg) DNA in Tris EDTA buffer (1 μg total DNA); 100 μl 2.5 M CaCl2and 10 μl 0.1 M spermidine. Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol and centrifuged for 30 seconds. Again the liquid is removed, and 105 μl 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated and 10 μl spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment. The sample plates are bombarded at level #4 in a particle gun. All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5″ pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for expression of a PtIP-83 polypeptide by assays known in the art, such as, for example, immunoassays and Western blotting. Transgenic maize plants positive for expression of the insecticidal proteins are tested for pesticidal activity using standard bioassays known in the art. Such methods include, for example, root excision bioassays and whole plant bioassays. See, e.g., US Patent Application Publication Number US 2003/0120054 and International Publication Number WO 2003/018810. Bombardment medium (560Y) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000.times.SIGMA-1511), 0.5 mg/l thiamine HCl, 120.0 g/l sucrose, 1.0 mg/l 2,4-D and 2.88 g/l L-proline (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); 2.0 g/l Gelrite (added after bringing to volume with D-I H2O) and 8.5 mg/l silver nitrate (added after sterilizing the medium and cooling to room temperature). Selection medium (560R) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000.times.SIGMA-1511), 0.5 mg/l thiamine HCl, 30.0 g/l sucrose and 2.0 mg/l 2,4-D (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); 3.0 g/l Gelrite (added after bringing to volume with D-I H2O) and 0.85 mg/l silver nitrate and 3.0 mg/l bialaphos (both added after sterilizing the medium and cooling to room temperature). Plant regeneration medium (288J) comprises 4.3 g/l MS salts (GIBCO 11117-074), 5.0 ml/l MS vitamins stock solution (0.100 g nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H2O) (Murashige and Skoog, (1962) Leaf discs are excised from the transformed plants and tested for insecticidal activity of PtIP-83 polypeptides against the Soy Bean Looper (SBL) ( To generate single component active variants with diversified sequences, chimeras between PtIP-83Aa (SEQ ID NO: 1) and PtIP50Aa (SEQ ID NO: 34) were generated by multi-PCR fragments overlap assembly (Gibson Assembly Cloning Kit, New England Biolabs Inc.). A total of 6 chimeras were constructed: Table 13 shows the crossover points and the % sequence identity to PtIP-83Aa (SEQ ID NO: 1). The chimera genes were cloned into a plant transient expression vector and SBL activity assays were performed as described in Example 4. To identify sequence space affecting protein structural stability and insecticidal function of PtIP-83Aa, five unique motifs were identified by amino acid alignment among PtIP-83Aa, PtIP-50Aa (SEQ ID NO: 34), PtIP-50Ba (SEQ ID NO: 35), PtIP-50Bb (SEQ ID NO: 36), and PtIP-83Fa (SEQ ID NO: 3) ( PtIP-83Aa variants with multiple amino acid substitutions within a motif were constructed for Motif A and Motif C using either the QuikChange® Lightning Site-Directed Mutagenesis Kit (Agilent) (as described in Example 11), or by multi-PCR fragment overlap assembly (Gibson Assembly Cloning Kit, New England Biolabs Inc.) into a plant transient vector containing the viral DMMV promoter. Primers used in constructing combinations of mutations within an individual motif are summarized in Table 19. The resulting combinatory libraries were transformed into Agrobacterium for plant transient expression and subsequent SBL activity assays as described in Example 4. Active variants, defined as having an average activity score of <=60% of leaf disk eaten, were sent for sequence identification. Two libraries with differing mutation rates were screened for Motif A. Motif A Combi-1 contains potential mutations at positions K54, R55, L56, Y57, V58, F59, A60, V62, V63, E64, and L65 in PtIP-83Aa (SEQ ID NO: 1): Motif A Combi-2 contains potential mutations at positions K54, R55, V58, A60, V62, V63, and E64 in PtIP-83Aa (SEQ ID NO: 1): From Motif A Combi -1, sequences were recovered for 5 active unique variants (96 total screened). From Motif A Combi -2, sequences were recovered for 59 active unique variants (192 total screened). Table 20 summarizes the amino acid substitutions of the resulting active PtIP-83Aa Motif A variants as compared to PtIP-83Aa. A single combination library of Motif C containing potential mutations at positions R557, A558, K559, K561, and N562 of PtIP-83Aa (SEQ ID NO: 1) was screened. From a total of 233 variants screened from Motif C Combi, 34 active unique sequence variants were identified. Table 21 summarizes the amino acid substitutions of the resulting active PtIP-83Aa Motif C variants as compared to PtIP-83Aa. Additional sequence diversity was created by combining active Motif A combinations with active Motif C combinations. Twenty four unique active Motif A combination variants and 11 unique active Motif C combination variants were selected for construction of a Motif A x Motif C Library (Table 22). Plasmid DNA was isolated from these variants and pooled by motif. Motif A combinations were PCR amplified from the Motif A pool using the following primers: AATCTCTCATCTAAGAGGCTGGATCCTAGGATGGCTCTCGTGGATTACGGC (SEQ ID NO: 630) and GCAGCCACAACCTCCATCACAGC (SEQ ID NO: 631). Motif C combinations were PCR amplified from the Motif C pool using the following primers: TGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCTTCGTCGTGCCGCCAG (SEQ ID NO: 632) and GCTGTGATGGAGGTTGTGGCTGC (SEQ ID NO: 633). The two PCR products were then assembled by multi-PCR fragments overlap (Gibson Assembly Cloning Kit, New England Biolabs Inc) into a plant transient vector containing the viral DMMV promoter. 94 variants from this library were screened by plant transient expression and SBL activity assay as described in Example 4. 30 unique active variants, defined as having an average activity score of <=60% of leaf disk eaten, were identified by sequencing. Table 23 summarizes the amino acid substitutions of the resulting active PtIP-83Aa Motif A x Motif C variants as compared to PtIP-83Aa. To create variants of PtIP-83Aa (SEQ ID NO: 1) with multiple amino acid changes, variant libraries were generated by family shuffling (Chia-Chun J. Chang et al, 1999, All shuffled libraries were cloned into a plant transient expression vector containing the viral dMMV promoter for subsequent transient expression in bush bean and SBL activity assays as described in Example 4. Active variants, defined as having an average activity score of ≤60% of leaf disk eaten, were sent for sequence identification. In library 83FS-1, 197 variants were screened and 45 active unique variants were sequence identified. In library 83FS-2, 96 variants were screened and 32 active unique variants were sequence identified. In library 83FS-3, 192 variants were screened and 13 active unique variants were sequence identified. In library 83FS-4, 96 variants were screened and 6 unique active variants were sequence identified. In library 83FS-5, four of the eleven constructed single cross variants were found to be active. Sequence identity of active variants to PtIP-83Aa was calculated using the Needleman-Wunsch algorithm, as implemented in the Needle program (EMBOSS tool suite). The percent identity compared to PtIP-83Aa (SEQ ID NO: 1), variant designation, nucleotide sequences, and amino acid sequences of the resulting active PtIP-83Aa polypeptide variants from all libraries are summarized in Table 24. Table 25 summarizes the % identity of the active variants compared to PtIP-83Aa (SEQ ID NO: 1), the number of variants with each % identity, and the variant identification. Insect midguts were isolated from fourth instar insects by making a longitudinal incision through the cuticle along the dorsal side of the larvae. Midguts were opened to remove the peritrophic membrane and food bolus and separated from the carcass. Isolated guts were cleaned of fat bodies and other non-midgut tissues and immediately flash frozen in liquid nitrogen for storage at −80° C. until needed. Brush border membrane vesicles (BBMVs) were prepared from stored midgut tissue essentially as described in Wolfersberger, M. et al. ( The above description of various illustrated embodiments of the disclosure is not intended to be exhaustive or to limit the scope to the precise form disclosed. While specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. The teachings provided herein can be applied to other purposes, other than the examples described above. Numerous modifications and variations are possible in light of the above teachings and, therefore, are within the scope of the appended claims. These and other changes may be made in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the scope to the specific embodiments disclosed in the specification and the claims. The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, manuals, books or other disclosures) in the Background, Detailed Description, and Examples is herein incorporated by reference in their entireties. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight; temperature is in degrees centigrade; and pressure is at or near atmospheric.CROSS-REFERENCE TO RELATED APPLICATIONS
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY
FIELD
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE FIGURES
DETAILED DESCRIPTION
Nucleic Acid Molecules, and Variants and Fragments Thereof
Polynucleotides Encoding PtIP-83 Polypeptides
Alanine Ala A GCA GCC GCG GC Cystine Cys UGC UGU Aspartic acid Asp D GAC GAU Glutamic acid Glu E GAA GAG Phenylalanine Phe F UUC UUU Glycine Gly G GGA GGC GGG GGU Histidine His CAC CAU Isoleucine II I AUA AUC AUU Lysine Lys K AAA AAG Leucine Leu L UUA UUG CUA CUC CUG C U Methionine Me M AUG Asparagine Asn N AAC AAU Proline Pro P CCA CCC CCG CCU Glutamine Gln Q CAA CAG Arginine Arg R AGA AGG CGA CGC CGG CGU Serine Ser S AGC AGU UCA UCC UCG UCC Threonine Thr T ACA ACC ACG ACU Valine Val V GUA GUC GUG GUU Tryptophan Trp W TGG Tyrosine Tyr Y UAC UAU Proteins and Variants and Fragments Thereof
Phylogenetic, Sequence Motif, and Structural Analyses for Insecticidal Protein Families
Phylogenetic Tree Construction
Protein Sequence Motifs Finding
Secondary Structure Prediction
SEQ ID NO: MOTIF 19 MOTIF 7 MOTIF 13 MOTIF 20 MOTIF 10 MOTIF 18 PtIP-83Aa 1 4-17 21-64 71-100 102-120 n. p. n. p. PtIP-83Ca 5 1-14 17-60 68-97 98-116 122-171 173-208 PtIP-83Cb 7 1-14 17-60 69-98 n. p. 121-170 n. p. PtIP-83Cc 9 1-14 17-60 68-97 98-116 122-171 173-208 PtIP-83Cd 11 1-14 17-60 68-97 98-116 122-171 173-208 PtIP-83Ce 13 1-14 17-60 68-97 98-116 121-170 173-208 PtIP-83Cf 15 1-14 21-64 68-97 98-116 122-171 n. p. PtIP-83Fa 3 5-18 17-60 68-97 n. p. n. p. n. p. SEQ ID NO: MOTIF 24 MOTIF 14 MOTIF 11 MOTIF 22 MOTIF 2 MOTIF 8 PtIP-83Aa 1 n. p. 238-263 n. p. 313-326 327-376 376-425 PtIP-83Ca 5 211-220 221-246 248-297 298-311 312-361 362-411 PtIP-83Cb 7 n. p. 223-248 249-298 299-312 313-362 363-412 PtIP-83Cc 9 211-220 221-246 248-297 298-311 312-361 362-411 PtIP-83Cd 11 211-220 221-246 248-297 298-311 312-361 362-411 PtIP-83Ce 13 211-220 221-246 248-297 298-311 312-361 362-411 PtIP-83Cf 15 211-220 221-246 248-297 298-311 312-361 362-411 PtIP-83Fa 3 247-256 262-287 n. p. 329-342 344-393 394-443 SEQ ID NO: MOTIF 21 MOTIF 15 MOTIF 9 MOTIF 1 MOTIF 17 MOTIF 6 PtIP-83Aa 1 508-521 428-453 455-504 523-572 576-594 596-645 PtIP-83Ca 5 493-506 413-438 441-490 508-557 561-579 581-630 PtIP-83Cb 7 494-507 414-439 442-491 509-558 562-580 582-631 PtIP-83Cc 9 493-506 413-438 441-490 508-557 561-579 581-630 PtIP-83Cd 11 493-506 413-438 441-490 508-557 561-579 581-630 PtIP-83Ce 13 493-506 413-438 441-490 508-557 561-579 581-630 PtIP-83Cf 15 493-506 413-438 441-490 508-557 561-579 581-630 PtIP-83Fa 3 525-538 445-470 473-522 540-589 593-611 613-662 SEQ ID NO: MOTIF 12 MOTIF 4 MOTIF 16 MOTIF 5 MOTIF 23 MOTIF 3 PtIP-83Aa 1 648-683 684-719 723-741 746-795 798-807 809-858 PtIP-83Ca 5 634-669 670-705 708-726 732-781 784-793 795-844 PtIP-83Cb 7 635-670 671-706 709-727 731-780 783-792 794-843 PtIP-83Cc 9 634-669 670-705 708-726 730-779 782-791 793-842 PtIP-83Cd 11 634-669 670-705 708-726 730-779 782-791 793-842 PtIP-83Ce 13 634-669 670-705 708-726 730-779 782-791 793-842 PtIP-83Cf 15 634-669 670-705 708-726 731-780 783-792 794-843 PtIP-83Fa 3 667-702 703-738 740-758 763-812 815-824 826-875 n.p. = not present Alignment of Protein Sequences and Secondary Structures
R1-L-R2, R2-L-R1, R1-R2or R2-R1Compositions
Antibodies
Receptor Identification and Isolation
Nucleotide Constructs, Expression Cassettes and Vectors
Phe UUU 115 0.04 2,301 1.22 Ala GCU 629 0.17 3,063 1.59 UUC* 5,269 1.96 1,485 0.78 GCC* 8,057 2.16 1,136 0.59 Ser UCU 176 0.13 2,498 1.48 GCA 369 0.1 2,872 1.49 UCC* 3,489 2.48 1,074 0.63 GCG* 5,835 1.57 630 0.33 UCA 104 0.07 2,610 1.54 Tyr UAU 71 0.04 1,632 1.22 UCG* 1,975 1.4 670 0.4 UAC* 3,841 1.96 1,041 0.78 AGU 77 0.05 1,788 1.06 His CAU 131 0.09 1,902 1.36 AGC* 2,617 1.86 1,514 0.89 CAC* 2,800 1.91 897 0.64 Leu UUA 10 0.01 1,326 0.79 Cys UGU 52 0.04 1,233 1.12 UUG 174 0.09 2,306 1.37 UGC* 2,291 1.96 963 0.88 CUU 223 0.11 2,396 1.43 Gln CAA 99 0.05 2,312 1.04 CUC* 5,979 3.08 1,109 0.66 CAG* 3,557 1.95 2,130 0.96 CUA 106 0.05 1,280 0.76 Arg CGU 153 0.12 751 0.74 CUG* 5,161 2.66 1,646 0.98 CGC* 4,278 3.25 466 0.46 Pro CCU 427 0.22 1,900 1.47 CGA 92 0.07 659 0.65 CCC* 3,035 1.59 601 0.47 CGG* 1,793 1.36 631 0.62 CCA 311 0.16 2,140 1.66 AGA 83 0.06 1,948 1.91 CCG* 3,846 2.02 513 0.4 AGG* 1,493 1.14 1,652 1.62 Ile AUU 138 0.09 2,388 1.3 Asn AAU 131 0.07 3,074 1.26 AUC* 4,380 2.85 1,353 0.74 AAC* 3,814 1.93 1,807 0.74 AUA 88 0.06 1,756 0.96 Lys AAA 130 0.05 3,215 0.98 Thr ACU 136 0.09 1,990 1.43 AAG* 5,047 1.95 3,340 1.02 ACC* 3,398 2.25 991 0.71 Asp GAU 312 0.09 4,217 1.38 ACA 133 0.09 2,075 1.5 GAC* 6,729 1.91 1,891 0.62 ACG* 2,378 1.57 495 0.36 Gly GGU 363 0.13 2,301 1.35 Val GUU 182 0.07 2,595 1.51 GGC* 7,842 2.91 1,282 0.75 GUC* 4,584 1.82 1,096 0.64 GGA 397 0.15 2,044 1.19 GUA 74 0.03 1,325 0.77 GGG* 2,186 0.81 1,215 0.71 GUG* 5,257 2.08 1,842 1.07 Glu GAA 193 0.06 4,080 1.1 GAG* 6,010 1.94 3,307 0.9 Codon usage was compared using Chi squared contingency test to identify optimal codons. Codons that occur significantly more often (P\0.01) are indicated with an asterisk. TTT F 21.2 (10493) TCT S 18.4 (9107) TTC F 21.2 (10487) TCC S 12.9 (6409) TTA L 9.2 (4545) TCA S 15.6 (7712) TTG L 22.9 (11340) TCG S 4.8 (2397) CTT L 23.9 (11829) CCT P 18.9 (9358) CTC L 17.1 (8479) CCC P 10.1 (5010) CTA L 8.5 (4216) CCA P 19.1 (9461) CTG L 12.7 (6304) CCG P 4.7 (2312) ATT I 25.1 (12411) ACT T 17.1 (8490) ATC I 16.3 (8071) ACC T 14.3 (7100) ATA I 12.9 (6386) ACA T 14.9 (7391) ATG M 22.7 (11218) ACG T 4.3 (2147) GTT V 26.1 (12911) GCT A 26.7 (13201) GTC V 11.9 (5894) GCC A 16.2 (8026) GTA V 7.7 (3803) GCA A 21.4 (10577) GTG V 21.4 (10610) GCG A 6.3 (3123) TAT Y 15.7 (7779) TGT C 8.1 (3995) TAC Y 14.9 (7367) TGC C 8.0 (3980) TAA * 0.9 (463) TGA * 1.0 (480) TAG * 0.5 (263) TGG W 13.0 (6412) CAT H 14.0 (6930) CGT R 6.6 (3291) CAC H 11.6 (5759) CGC R 6.2 (3093) CAA Q 20.5 (10162) CGA R 4.1 (2018) CAG Q 16.2 (8038) CGG R 3.1 (1510) AAT N 22.4 (11088) AGT S 12.6 (6237) AAC N 22.8 (11284) AGC S 11.3 (5594) AAA K 26.9 (13334) AGA R 14.8 (7337) AAG K 35.9 (17797) AGG R 13.3 (6574) GAT D 32.4 (16040) GGT G 20.9 (10353) GAC D 20.4 (10097) GGC G 13.4 (6650) GAA E 33.2 (16438) GGA G 22.3 (11022) GAG E 33.2 (16426) GGG G 13.0 (6431) Plant Transformation
Evaluation of Plant Transformation
Stacking of Traits in Transgenic Plant
Transgenes Useful for Stacking Include but are not Limited to:
2. Transgenes that Confer Resistance to a Herbicide, for Example:
3. Transgenes that Confer or Contribute to an Altered Grain Characteristic
4. Genes that Control Male-Sterility:
8. Genes that Confer Plant Digestibility.
Event Company Description J101, J163 Monsanto Company and Glyphosate herbicide tolerant Forage Genetics alfalfa (lucerne) produced by International inserting a gene encoding the enzyme 5-enolypyruvylshikimate- 3-phosphate synthase (EPSPS) from the CP4 strain of Event Company Description X81359 BASF Inc. Tolerance to imidazolinone herbicides by selection of a naturally occuring mutant. Event Company Description CL121, CL141, BASF Inc. Tolerance to the imidazolinone herbicide, CFX51 imazethapyr, induced by chemical mutagenesis of the acetolactate synthase (ALS) enzyme using ethyl methanesulfonate (EMS). IMINTA-1, BASF Inc. Tolerance to imidazolinone herbicides induced by IMINTA-4 chemical mutagenesis of the acetolactate synthase (ALS) enzyme using sodium azide. LLRICE06, Aventis CropScience Glufosinate ammonium herbicide tolerant rice LLRICE62 produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium LLRICE601 Bayer CropScience Glufosinate ammonium herbicide tolerant rice (Aventis produced by inserting a modified phosphinothricin CropScience(AgrEvo)) acetyltransferase (PAT) encoding gene from the soil bacterium PWC16 BASF Inc. Tolerance to the imidazolinone herbicide, imazethapyr, induced by chemical mutagenesis of the acetolactate synthase (ALS) enzyme using ethyl methanesulfonate (EMS). Event Company Description AP205CL BASF Inc. Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate- lyase. AP602CL BASF Inc. Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also knownas acetolactate synthase (ALS) or acetolactate pyruvate- lyase. BW255-2, BASF Inc. Selection for a mutagenized version BW238-3 of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate- lyase. BW7 BASF Inc. Tolerance to imidazolinone herbicides induced by chemical mutagenesis of the acetohydroxyacid synthase (AHAS) gene using sodium azide. MON71800 Monsanto Glyphosate tolerant wheat variety Company produced by inserting a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from the soil bacterium SWP965001 Cyanamid Crop Selection for a mutagenized version Protection of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate- lyase. Teal 11A BASF Inc. Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate- lyase. Event Company Description A2704-12, Bayer CropScience Glufosinate ammonium herbicide tolerant soybean A2704-21, (Aventis CropScience produced by inserting a modified phosphinothricin A5547-35 (AgrEvo)) acetyltransferase (PAT) encoding gene from the soil bacterium A5547-127 Bayer CropScience Glufosinate ammonium herbicide tolerant soybean (Aventis CropScience produced by inserting a modified phosphinothricin (AgrEvo)) acetyltransferase (PAT) encoding gene from the soil bacterium BPS-CV127-9 BASF Inc. The introduced csr1-2 gene from encodes an acetohydroxyacid synthase protein that confers tolerance to imidazolinone herbicides due to a point mutation that results in a single amino acid substitution in which the serine residue at position 653 is replaced by asparagine (S653N). DP-305423 Pioneer Hi-Bred High oleic acid soybean produced by inserting International Inc. additional copies of a portion of the omega-6 desaturase encoding gene, gm-fad2-1 resulting in silencing of the endogenous omega-6 desaturase gene (FAD2-1). DP356043 Pioneer Hi-Bred Soybean event with two herbicide tolerance International Inc. genes: glyphosate N-acetlytransferase, which detoxifies glyphosate, and a modified acetolactate synthase (ALS) gene which is tolerant to ALS- inhibiting herbicides. G94-1, G94-19, DuPont Canada High oleic acid soybean produced by inserting a G168 Agricultural Products second copy of the fatty acid desaturase (GmFad2-1) encoding gene from soybean, which resulted in “silencing” of the endogenous host gene. GTS 40-3-2 Monsanto Company Glyphosate tolerant soybean variety produced by inserting a modified 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) encoding gene from the soil bacterium GU262 Bayer CropScience Glufosinate ammonium herbicide tolerant soybean (Aventis produced by inserting a modified phosphinothricin CropScience(AgrEvo)) acetyltransferase (PAT) encoding gene from the soil bacterium MON87701 Monsanto Company Resistance to Lepidopteran pests of soybean including velvetbean caterpillar ( ( MON87701 × Monsanto Company Glyphosate herbicide tolerance through MON89788 expression of the EPSPS encoding gene from Lepidopteran pests of soybean including velvetbean caterpillar ( soybean looper ( expression of the Cry1Ac encoding gene from MON89788 Monsanto Company Glyphosate-tolerant soybean produced by inserting a modified 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) encoding aroA (epsps) gene from CP4. OT96-15 Agriculture & Low linolenic acid soybean produced through Agri-Food Canada traditional cross-breeding to incorporate the novel trait from a naturally occurring fan1 gene mutant that was selected for low linolenic acid. W62, W98 Bayer CropScience Glufosinate ammonium herbicide tolerant soybean (Aventis produced by inserting a modified phosphinothricin CropScience(AgrEvo)) acetyltransferase (PAT) encoding gene from the soil bacterium Event Company Description 176 Syngenta Seeds, Insect-resistant maize produced by inserting the Inc. Cry1Ab gene from resistance to attack by the European corn borer (ECB). 3751IR Pioneer Hi-Bred Selection of somaclonal variants by culture of International Inc. embryos on imidazolinone containing media. 676, 678, Pioneer Hi-Bred Male-sterile and glufosinate ammonium herbicide 680 International Inc. tolerant maize produced by inserting genes encoding DNA adenine methylase and phosphinothricin acetyltransferase (PAT) from respectively. B16 Dekalb Genetics Glufosinate ammonium herbicide tolerant maize (DLL25) Corporation produced by inserting the gene encoding phosphinothricin acetyltransferase (PAT) from BT11 Syngenta Seeds, Insect-resistant and herbicide tolerant maize (X4334CBR, Inc. produced by inserting the Cry1Ab gene from X4734CBR) phosphinothricin N-acetyltransferase (PAT) encoding gene from BT11 × Syngenta Seeds, Stacked insect resistant and herbicide tolerant GA21 Inc. maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN- BTO11-1) and GA21 (OECD unique identifier: MON-OOO21-9). BT11 × Syngenta Seeds, Resistance to Coleopteran pests, particularly corn MIR162 × Inc. rootworm pests ( MIR604 × Lepidopteran pests of corn, including European GA21 corn borer (ECB, (CEW, glufosinate-ammonium containing herbicides. BT11 × Syngenta Seeds, Stacked insect resistant and herbicide tolerant MIR162 Inc. maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN- BTO11-1) and MIR162 (OECD unique identifier: SYN-IR162-4). Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the Cry1Ab gene from encoding gene from Resistance to other Lepidopteran pests, including is derived from MIR162, which contains the vip3Aa gene from BT11 × Syngenta Seeds, MIR162 × Inc. protein and the genetic material necessary for its MIR604 production (via elements of vector pZO1502) in Event Bt11 corn (OECD Unique Identifier: SYN- BTO11-1) × insecticidal protein and the genetic material necessary for its production (via elements of vector pNOV1300) in Event MIR162 maize (OECD Unique Identifier: SYN-IR162-4) × modified Cry3A protein and the genetic material necessary for its production (via elements of vector pZM26) in Event MIR604 corn (OECD Unique Identifier: SYN-IR6O4-5). CBH-351 Aventis Insect-resistant and glufosinate ammonium CropScience herbicide tolerant maize developed by inserting genes encoding Cry9C protein from phosphinothricin acetyltransferase (PAT) from DAS-06275-8 DOW AgroSciences Lepidopteran insect resistant and glufosinate LLC ammonium herbicide-tolerant maize variety produced by inserting the Cry1F gene from phosphinothricin acetyltransferase (PAT) from BT11 × Syngenta Seeds, Stacked insect resistant and herbicide tolerant MIR604 Inc. maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN- BTO11-1) and MIR604 (OECD unique identifier: SYN-IR6O5-5). Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the Cry1Ab gene from subsp. acetyltransferase (PAT) encoding gene from Corn rootworm-resistance is derived from MIR604 which contains the mCry3A gene from BT11 × Syngenta Seeds, Stacked insect resistant and herbicide tolerant MIR604 × Inc. maize produced by conventional cross breeding of GA21 parental lines BT11 (OECD unique identifier: SYN- BTO11-1), MIR604 (OECD unique identifier: SYN- IR6O5-5) and GA21 (OECD unique identifier: MON-OOO21-9). Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the Cry1Ab gene from phosphinothricin N-acetyltransferase (PAT) encoding gene from rootworm-resistance is derived from MIR604 which contains the mCry3A gene from is derived from GA21 which contains a a modified EPSPS gene from maize. DAS-59122-7 DOW AgroSciences Corn rootworm-resistant maize produced by LLC and Pioneer inserting the Cry34Ab1 and Cry35Ab1 genes from Hi-Bred International Inc. encoding gene from was introduced as a selectable marker. DAS-59122-7 × DOW AgroSciences Stacked insect resistant and herbicide tolerant TC1507 × LLC and Pioneer maize produced by conventional cross breeding of NK603 Hi-Bred parental lines DAS-59122-7 (OECD unique International Inc. identifier: DAS-59122-7) and TC1507 (OECD unique identifier: DAS-O15O7-1) with NK603 (OECD unique identifier: MON-OO6O3-6). Corn rootworm-resistance is derived from DAS-59122-7 which contains the Cry34Ab1 and Cry35Ab1 genes from Lepidopteran resistance and tolerance to glufosinate ammonium herbicide is derived from TC1507. Tolerance to glyphosate herbicide is derived from NK603. DBT418 Dekalb Genetics Insect-resistant and glufosinate ammonium Corporation herbicide tolerant maize developed by inserting genes encoding Cry1AC protein from phosphinothricin acetyltransferase (PAT) from MIR604 × Syngenta Seeds, Stacked insect resistant and herbicide tolerant GA21 Inc. maize produced by conventional cross breeding of parental lines MIR604 (OECD unique identifier: SYN-IR6O5-5) and GA21 (OECD unique identifier: MON-OOO21-9). Corn rootworm-resistance is derived from MIR604 which contains the mCry3A gene from glyphosate herbicide is derived from GA21. MON80100 Monsanto Company Insect-resistant maize produced by inserting the Cry1Ab gene from resistance to attack by the European corn borer (ECB). MON802 Monsanto Company Insect-resistant and glyphosate herbicide tolerant maize produced by inserting the genes encoding the Cry1Ab protein from the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from MON809 Pioneer Hi-Bred Resistance to European corn borer ( International by introduction of a synthetic Cry1Ab Inc. gene. Glyphosate resistance via introduction of the bacterial version of a plant enzyme, 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS). MON810 Monsanto Company Insect-resistant maize produced by inserting a truncated form of the Cry1Ab gene from The genetic modification affords resistance to attack by the European corn borer (ECB). MON810 × Monsanto Company Stacked insect resistant and enhanced lysine LY038 content maize derived from conventional cross- breeding of the parental lines MON810 (OECD identifier: MON-OO81O-6) and LY038 (OECD identifier: REN-OOO38-3). MON810 × Monsanto Company Stacked insect resistant and glyphosate tolerant MON88017 maize derived from conventional cross-breeding of the parental lines MON810 (OECD identifier: MON-OO81O-6) and MON88017 (OECD identifier: MON-88O17-3). European corn borer (ECB) resistance is derived from a truncated form of the Cry1Ab gene from subsp. rootworm resistance is derived from the Cry3Bb1 gene from MON88017. Glyphosate tolerance is derived from a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from strain CP4 present in MON88017. MON832 Monsanto Company Introduction, by particle bombardment, of glyphosate oxidase (GOX) and a modified 5- enolpyruvyl shikimate-3-phosphate synthase (EPSPS), an enzyme involved in the shikimate biochemical pathway for the production of the aromatic amino acids. MON863 Monsanto Company Corn rootworm resistant maize produced by inserting the Cry3Bb1 gene from MON863 × Monsanto Company Stacked insect resistant corn hybrid derived from MON810 conventional cross-breeding of the parental lines MON863 (OECD identifier: MON-OO863-5) and MON810 (OECD identifier: MON-OO81O-6) MON863 × Monsanto Company Stacked insect resistant and herbicide tolerant MON810 × corn hybrid derived from conventional cross- NK603 breeding of the stacked hybrid MON-OO863-5 × MON-OO81O-6 and NK603 (OECD identifier: MON-OO6O3-6). MON863 × Monsanto Company Stacked insect resistant and herbicide tolerant NK603 corn hybrid derived from conventional cross- breeding of the parental lines MON863 (OECD identifier: MON-OO863-5) and NK603 (OECD identifier: MON-OO6O3-6). MON87460 Monsanto Company MON 87460 was developed to provide reduced yield loss under water-limited conditions compared to conventional maize. Efficacy in MON 87460 is derived by expression of the inserted cold shock protein B (CspB). MON88017 Monsanto Company Corn rootworm-resistant maize produced by inserting the Cry3Bb1 gene from strain EG4691. Glyphosate tolerance derived by inserting a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from MON89034 Monsanto Company Maize event expressing two different insecticidal proteins from resistance to number of Lepidopteran pests. MON89034 × Monsanto Company Stacked insect resistant and glyphosate tolerant MON88017 maize derived from conventional cross-breeding of the parental lines MON89034 (OECD identifier: MON-89O34-3) and MON88017 (OECD identifier: MON-88O17-3). Resistance to Lepidopteran insects is derived from two Cry genes present in MON89043. Corn rootworm resistance is derived from a single Cry genes and glyphosate tolerance is derived from the 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from MON89034 × Monsanto Company Stacked insect resistant and herbicide tolerant NK603 maize produced by conventional cross breeding of parental lines MON89034 (OECD identifier: MON- 89034-3) with NK603 (OECD unique identifier: MON-OO6O3-6). Resistance to Lepidopteran insects is derived from two Cry genes present in MON89043. Tolerance to glyphosate herbicide is derived from NK603. NK603 × Monsanto Company Stacked insect resistant and herbicide tolerant corn MON810 hybrid derived from conventional cross-breeding of the parental lines NK603 (OECD identifier: MON-OO6O3-6) and MON810 (OECD identifier: MON-OO81O-6). MON89034 × Monsanto Company Stacked insect resistant and herbicide tolerant maize TC1507 × and Mycogen produced by conventional cross breeding of parental MON88017 × Seeds c/o Dow lines: MON89034, TC1507, MON88017, and DAS- DAS-59122-7 AgroSciences LLC 59122. Resistance to the above-ground and below- ground insect pests and tolerance to glyphosate and glufosinate-ammonium containing herbicides. MS3 Bayer CropScience Male sterility caused by expression of the barnase (Aventis ribonuclease gene from CropScience(AgrEvo)) resistance was via PPT-acetyltransferase (PAT). MS6 Bayer CropScience Male sterility caused by expression of the barnase (Aventis ribonuclease gene from CropScience(AgrEvo)) resistance was via PPT-acetyltransferase (PAT). NK603 Monsanto Company Introduction, by particle bombardment, of a modified 5- enolpyruvyl shikimate-3-phosphate synthase (EPSPS), an enzyme involved in the shikimate biochemical pathway for the production of the aromatic amino acids. NK603 × Monsanto Company Stacked glufosinate ammonium and glyphosate T25 herbicide tolerant maize hybrid derived from conventional cross-breeding of the parental lines NK603 (OECD identifier: MON-OO6O3-6) and T25 (OECD identifier: ACS-ZM003-2). T25 × Bayer CropScience Stacked insect resistant and herbicide tolerant corn MON810 (Aventis hybrid derived from conventional cross-breeding of the CropScience(AgrEvo)) parental lines T25 (OECD identifier: ACS-ZMOO3-2) and MON810 (OECD identifier: MON-OO81O-6). TC1507 Mycogen (c/o Dow Insect-resistant and glufosinate ammonium herbicide AgroSciences); tolerant maize produced by inserting the Cry1F gene Pioneer (c/o from DuPont) phosphinothricin N-acetyltransferase encoding gene from TC1507 × DOW Stacked insect resistant and herbicide tolerant corn NK603 AgroSciences LLC hybrid derived from conventional cross-breeding of the parental lines 1507 (OECD identifier: DAS-O1507-1) and NK603 (OECD identifier: MON-OO6O3-6). TC1507 × DOW AgroSciences Stacked insect resistant and herbicide tolerant maize DAS-59122-7 LLC and Pioneer produced by conventional cross breeding of parental Hi-Bred lines TC1507 (OECD unique identifier: DAS-O15O7-1) International Inc. with DAS-59122-7 (OECD unique identifier: DAS-59122- 7). Resistance to Lepidopteran insects is derived from TC1507 due the presence of the Cry1F gene from resistance is derived from DAS-59122-7 which contains the Cry34Ab1 and Cry35Ab1 genes from ammonium herbicide is derived from TC1507 from the phosphinothricin N-acetyltransferase encoding gene from Gene Silencing
Use in Pesticidal Control
Pesticidal Compositions
Pesticidal and Insecticidal Activity
Seed Treatment
Methods for Killing an Insect Pest and Controlling an Insect Population
Insect Resistance Management (IRM) Strategies
Methods for Increasing Plant Yield
Methods of Processing
EXPERIMENTALS
Example 1
Identification of an Insecticidal Protein Active Against Broad Spectrum of Lepidopteran Insects from the Fern,
Activity of Ave. Score after Ave. Score Proteinase K/Heat Neonate Soybean Looper 3 0 Corn Earworm 2 0 European Corn Borer 1.5 0 Example 2
Transcriptomic Sequencing of PtIP-83Aa
(95KD N-T Nco I for) (SEQ ID NO: 30) CCATGGCTCTCGTGGATTACGGCAAG and (95KD C-T Hpa I REV) (SEQ ID NO: 31) GTTAACCTACTCTTCGTCGTGCCGCCAGTC. Example 3
Identification of PtIP-83 Homologs
PtIP-83Aa SEQ ID NO: 1 PS-7140 PtIP-83Ca SEQ ID NO: 5 PS-11481 PtIP-83Cb SEQ ID NO: 7 PS-11481 PtIP-83Cc SEQ ID NO: 9 PS-11481 PtIP-83Cd SEQ ID NO: 11 PS-11481 PtIP-83Ce SEQ ID NO: 13 PS-12345 PtIP-83Cf SEQ ID NO: 15 PS-9224 PtIP-83Cg SEQ ID NO: 17 PS-12345 PtIP-83Da SEQ ID NO: 19 PS-12345 PtIP-83Ea SEQ ID NO: 21 PS-11481 PtIP-83Eb SEQ ID NO: 23 PS-11481 PtIP-83Fa SEQ ID NO: 3 PS-8568 PtIP-83Fb SEQ ID NO: 716 PS-9319 PtIP-83Ch SEQ ID NO: 754 LW13327 PtIP-83Ch- SEQ ID NO: 755 LW13327 like PtIP-83Fd SEQ ID NO: 756 LW13327 PtIP-83Fe SEQ ID NO: 757 LW13327 PtIP-83Ci SEQ ID NO: 758 LW12354 PtIP-83Ci- SEQ ID NO: 759 LW12354 like PtIP-83Ff SEQ ID NO: 760 LW12354 PtIP-83Ff- SEQ ID NO: 761 LW12354 like PtIP-83Cj SEQ ID NO: 762 NY012 PtIP-83Cj- SEQ ID NO: 763 NY012 like PtIP-83Ga SEQ ID NO: 764 NY009 PtIP-83Ga- SEQ ID NO: 765 NY009 like PtIP-83Fg SEQ ID NO: 766 NY009 PtIP-83Fh SEQ ID NO: 767 NY009 PtIP-83Fi SEQ ID NO: 768 NY009 PtIP-83Fi- SEQ ID NO: 769 NY009 like PtIP-83Cb GZ-550- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCAC 83Ca-F GCTTTACAGGGAC (SEQ ID NO: 608) PtIP-83Cb GZ-550- TTAAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCT 83Ca-R CTTGCCGCCAGTC (SEQ ID NO: 609) PtIP-83Ca, Cc, and GZ-550- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCAC Cd 83Ca-F GCTTTACAGGGAC (SEQ ID NO: 608) PtIP-83Ca, Cc, and 83Ca-1s-R CAA GGA TTG CAT TGC TAG GAA GG (SEQ ID NO: 611) Cd PtIP-83Ca, Cc, and GZ-550- TTAAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCT Cd 83Ca-R CTTGCCGCCAGTC (SEQ ID NO: 609) PtIP-83Ca, Cc, and 83Ca-1s CCTTCCTAGCAATGCAATCCTTG (SEQ ID NO: 613) Cd PtIP-83Ce GZ-550- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCAC 83Ca-F GCTTTACAGGGAC (SEQ ID NO: 608) PtIP-83Ce 550- AAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCTCT 12345-R TTCTCCTCCTGCC (SEQ ID NO: 615) PtIP-83Cf 550-9224- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGCCAGTGTACT F1 GGATTACAGCAC (SEQ ID NO: 616) PtIP-83Cf 550-9224- TTAAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCT R1 CGTGCCGCC (SEQ ID NO: 617) PtIP-83Cg 550- GAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCACT 11790.2-F CTTTACAGGGATC (SEQ ID NO: 618) PtIP-83Cg GZ-550- TTAAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCT 83Ca-R CTTGCCGCCAGTC (SEQ ID NO: 609) PtIP-83Da GZ-550- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCAC 83Ca-F GCTTTACAGGGAC (SEQ ID NO: 608) PtIP-83Da 550- GTTGGCCAATCCAGAAGATGGACAAGTCTAGATTAGAGTGGCTTCGC UTR8.7-R CAGTGTCG (SEQ ID NO: 621) PtIP-83Ea GZ-550- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCAC 83Ca-F GCTTTACAGGGAC (SEQ ID NO: 608) PtIP-83Ea 550- AAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCTCT 12345-R TTCTCCTCCTGCC (SEQ ID NO: 615) PtIP-83Eb GZ-550- CGAAATCTCTCATCTAAGAGGCTGGATCCTAGGATGGATTACAGCAC 83Ca-F GCTTTACAGGGAC (SEQ ID NO: 608) PtIP-83Eb 550- AAGTTGGCCAATCCAGAAGATGGACAAGTCTAGACTACTCCTCCTCT 12345-R TTCTCCTCCTGCC (SEQ ID NO: 615) PtIP-83Fa infusion TTTAACTTAGCCTAGGATCCATGGAATATAGCAGCTTGTAC bamHI (SEQ ID NO: 32) PtIP-83Fa infusion ACTCCTTCTTTAGTTAACTTACTCCACATCACCCTCTTGTCG Hpal (SEQ ID NO: 33) PtIP-83Ch and LW13327- cgaaatctctcatctaagaggctggatcctaggATGGATTACAGCACGCTTTACA PtIP-83Ch-like F1 GG (SEQ ID NO: 770) PtIP-83Ch and LW13327- taagttggccaatccagaagatggacaagtctagaCTACTCCTCCACCTCCTGCCT PtIP-83Ch-like R1 CC (SEQ ID NO: 771) PtIP-83Fd and LW13327- cgaaatctctcatctaagaggctggatcctaggATGACGATGGCGGCAACTG PtIP-83Fe F2 (SEQ ID NO: 772) PtIP-83Fd and LW13327- ggccaatccagaagatggacaagtctagaCTAGAAAGAAATTTTCCTGATAGC PtIP-83Fe R2 TGAG (SEQ ID NO: 773) PtIP-83Ci and PtIP- LW12354- cgaaatctctcatctaagaggctggatcctaggATGGATTACAGCACTCTTTACA 83Ci-like F1 CGG (SEQ ID NO: 774) PtIP-83Ci and PtIP- LW12354- taagttggccaatccagaagatggacaagtctagaCTACTCCTCTTGCCGCCAGT 83Ci-like R1 C (SEQ ID NO: 775) PtIP-83Ff and PtIP- LW12354- cgaaatctctcatctaagaggctggatcctaggATGGCTGCCTCCGCTGCTG 83Ff-like F2 (SEQ ID NO: 776) PtIP-83Ff and PtIP- LW12354- taagttggccaatccagaagatggacaagtctagaCTAGAAAGAAATGCGCCGG 83Ff-like R2 ATAG (SEQ ID NO: 777) PtIP-83Cj and PtIP- NY012-F1 cgaaatctctcatctaagaggctggatcctaggATGGATTACAGCACGCTTTACA 83Cj-like GG (SEQ ID NO: 778) PtIP-83Cj and PtIP- NY012-R1 taagttggccaatccagaagatggacaagtctagaCTACTCCTCCTCCTCCTCGTG 83Cj-like CC (SEQ ID NO: 779) PtIP-83Ga and NY009-F1 cgaaatctctcatctaagaggctggatcctaggATGGGTGTCACAGTCGTTAGC PtIP-83Ga-like G (SEQ ID NO: 780) PtIP-83Ga and NY009-R1 taagttggccaatccagaagatggacaagtctagaTTAGCTGACGACCTGATCAT PtIP-83Ga-like CGC (SEQ ID NO: 781) PtIP-83Fg, Fi, and NY009-F2 cgaaatctctcatctaagaggctggatcctaggATGGAGTATGGCAGCTTGTAT Fi-like GG (SEQ ID NO: 782) PtIP-83Fg, Fi, and NY009- gttggccaatccagaagatggacaagtctagaCTATAACTCCGCATCAGCTCGTT Fi-like R2a G (SEQ ID NO: 783) PtIP-83Fh NY009-F3 cgaaatctctcatctaagaggctggatcctaggATGGAGTACTCCGACTTGTATG AGG (SEQ ID NO: 784) PtIP-83Fh NY009-R3 taagttggccaatccagaagatggacaagtctagaTCACTCCTCATCGACTTCCC G (SEQ ID NO: 785) PtIP-83Aa 71.4 71.2 71.9 72.0 71.5 77.4 71.5 74.8 74.8 70.9 SEQ ID NO: 1 PtIP-83Ca — 76.4 98.5 98.2 98.0 79.3 76.6 80.6 80.6 75.8 SEQ ID NO: 5 PtIP-83Cb — — 76.7 76.8 76.3 77.6 98.6 78.0 78.0 96.6 SEQ ID NO: 7 PtIP-83Cc — — — 99.8 99.5 79.1 76.9 80.8 80.8 75.8 SEQ ID NO: 9 PtIP-83Cd — — — — 99.3 79.3 76.9 80.9 80.9 75.8 SEQ ID NO: 11 PtIP-83Ce — — — — — 78.7 76.5 80.6 80.6 75.6 SEQ ID NO: 13 PtIP-83Cf — — — — — — 77.8 84.0 84.0 77.3 SEQ ID NO: 15 PtIP-83Cg — — — — — — — 78.2 78.2 97.1 SEQ ID NO: 17 PtIP-83Ch-like — — — — — — — — 99.9 77.4 SEQ ID NO: 755 PtIP-83Ch — — — — — — — — — 77.4 SEQ ID NO: 754 PtIP-83Ci-like — — — — — — — — — — SEQ ID NO: 759 PtIP-83Ci — — — — — — — — — — SEQ ID NO: 758 PtIP-83Cj-like — — — — — — — — — — SEQ ID NO: 763 PtIP-83Cj — — — — — — — — — — SEQ ID NO: 762 PtIP-83Da — — — — — — — — — — SEQ ID NO: 19 PtIP-83Ea — — — — — — — — — — SEQ ID NO: 21 PtIP-83Eb — — — — — — — — — — SEQ ID NO: 23 PtIP-83Fa — — — — — — — — — — SEQ ID NO: 3 PtIP-83Fb — — — — — — — — — — SEQ ID NO: 716 PtIP-83Fd — — — — — — — — — — SEQ ID NO: 756 PtIP-83Fe — — — — — — — — — — SEQ ID NO: 757 PtIP-83Ff-like — — — — — — — — — — SEQ ID NO: 761 PtIP-83Ff — — — — — — — — — — SEQ ID NO: 760 PtIP-83Fg — — — — — — — — — — SEQ ID NO: 766 PtIP-83Fh — — — — — — — — — — SEQ ID NO: 767 PtIP-83Fi-like — — — — — — — — — — SEQ ID NO: 769 PtIP-83Fi — — — — — — — — — — SEQ ID NO: 768 PtIP-83Ga-like — — — — — — — — — — SEQ ID NO: 765 PtIP-83Aa 71.0 75.5 73.6 64.7 55.8 55.4 49.8 50.1 50.8 SEQ ID NO: 1 PtIP-83Ca 75.9 79.5 77.5 89.7 68.6 79.1 48.8 48.3 48.8 SEQ ID NO: 5 PtIP-83Cb 96.7 79.5 77.2 68.8 59.3 60.2 49.7 49.3 50.4 SEQ ID NO: 7 PtIP-83Cc 76.0 79.8 77.8 91.1 70.1 80.4 49.2 48.7 49.1 SEQ ID NO: 9 PtIP-83Cd 76.0 79.9 77.9 90.8 70.1 80.2 49.2 48.7 49.2 SEQ ID NO: 11 PtIP-83Ce 75.7 79.8 77.8 90.7 70.5 80.9 49.3 48.8 48.9 SEQ ID NO: 13 PtIP-83Cf 77.4 87.1 84.8 71.4 60.5 61.8 49.3 48.9 52.8 SEQ ID NO: 15 PtIP-83Cg 97.2 79.6 77.4 69.1 59.3 60.4 49.5 49.4 50.5 SEQ ID NO: 17 PtIP-83Ch-like 77.6 84.9 82.6 72.5 62.5 62.9 50.6 50.6 52.5 SEQ ID NO: 755 PtIP-83Ch 77.6 84.9 82.6 72.5 62.5 62.9 50.6 50.7 52.5 SEQ ID NO: 754 PtIP-83Ci-like 99.9 79.0 76.8 68.1 58.9 59.9 49.9 49.8 49.3 SEQ ID NO: 759 PtIP-83Ci — 79.1 76.9 68.2 59.1 59.9 50.1 49.9 49.4 SEQ ID NO: 758 PtIP-83Cj-like — — 97.0 71.7 61.1 62.7 50.7 50.7 51.5 SEQ ID NO: 763 PtIP-83Cj — — — 69.7 61.6 60.7 50.3 50.3 50.4 SEQ ID NO: 762 PtIP-83Da — — — — 61.4 71.7 43.5 43.0 44.4 SEQ ID NO: 19 PtIP-83Ea — — — — — 51.6 38.7 38.6 38.7 SEQ ID NO: 21 PtIP-83Eb — — — — — — 38.8 38.2 37.9 SEQ ID NO: 23 PtIP-83Fa — — — — — — — 97.1 48.4 SEQ ID NO: 3 PtIP-83Fb — — — — — — — — 48.7 SEQ ID NO: 716 PtIP-83Fd — — — — — — — — — SEQ ID NO: 756 PtIP-83Fe — — — — — — — — — SEQ ID NO: 757 PtIP-83Ff-like — — — — — — — — — SEQ ID NO: 761 PtIP-83Ff — — — — — — — — — SEQ ID NO: 760 PtIP-83Fg — — — — — — — — — SEQ ID NO: 766 PtIP-83Fh — — — — — — — — — SEQ ID NO: 767 PtIP-83Fi-like — — — — — — — — — SEQ ID NO: 769 PtIP-83Fi — — — — — — — — — SEQ ID NO: 768 PtIP-83Ga-like — — — — — — — — — SEQ ID NO: 765 PtIP-83Aa 51.0 51.1 50.8 49.8 47.3 50.2 50.2 34.5 34.6 SEQ ID NO: 1 PtIP-83Ca 49.0 49.2 49.2 47.8 45.6 47.4 47.4 35.0 35.1 SEQ ID NO: 5 PtIP-83Cb 50.5 51.0 51.0 48.0 47.3 47.4 47.4 34.5 34.6 SEQ ID NO: 7 PtIP-83Cc 49.2 49.7 49.7 48.1 46.0 47.6 47.6 35.0 35.1 SEQ ID NO: 9 PtIP-83Cd 49.3 49.8 49.8 48.2 46.1 47.7 47.7 35.1 35.2 SEQ ID NO: 11 PtIP-83Ce 49.0 49.5 49.5 48.2 46.0 47.7 47.7 35.0 35.1 SEQ ID NO: 13 PtIP-83Cf 52.5 51.5 51.5 49.7 48.3 49.3 49.3 35.5 35.6 SEQ ID NO: 15 PtIP-83Cg 50.7 50.4 50.4 47.8 46.9 47.2 47.2 34.5 34.6 SEQ ID NO: 17 PtIP-83Ch-like 52.4 51.5 51.6 49.7 48.4 49.4 49.4 34.6 34.7 SEQ ID NO: 755 PtIP-83Ch 52.4 51.5 51.6 49.7 48.1 49.7 49.7 34.7 34.8 SEQ ID NO: 754 PtIP-83Ci-like 49.9 50.9 50.5 47.9 47.0 47.6 47.6 34.6 34.7 SEQ ID NO: 759 PtIP-83Ci 50.1 51.0 50.7 48.0 47.1 47.7 47.7 34.5 34.6 SEQ ID NO: 758 PtIP-83Cj-like 51.5 51.5 51.5 49.3 46.7 49.2 49.2 35.2 35.3 SEQ ID NO: 763 PtIP-83Cj 50.4 50.2 50.2 48.9 46.1 48.8 48.8 34.8 34.9 SEQ ID NO: 762 PtIP-83 Da 44.6 44.6 44.6 42.5 40.5 42.0 42.0 30.5 30.6 SEQ ID NO: 19 PtIP-83 Ea 38.6 38.7 38.7 39.6 36.9 39.3 39.3 29.0 29.1 SEQ ID NO: 21 PtIP-83 Eb 38.1 38.7 38.7 36.6 36.1 36.4 36.4 27.4 27.5 SEQ ID NO: 23 PtIP-83 Fa 48.3 48.9 49.5 73.4 64.6 71.9 71.9 31.8 31.9 SEQ ID NO: 3 PtIP-83Fb 48.8 48.9 48.9 73.0 64.3 71.8 71.8 31.9 32.0 SEQ ID NO: 716 PtIP-83Fd 96.5 72.9 73.0 49.9 47.7 49.2 49.3 33.8 33.7 SEQ ID NO: 756 PtIP-83Fe — 72.9 73.0 50.0 47.7 49.2 49.3 33.5 33.4 SEQ ID NO: 757 PtIP-83Ff-like — — 99.9 49.1 46.5 48.4 48.5 33.1 33.1 SEQ ID NO: 761 PtIP-83Ff — — — 49.1 46.5 48.4 48.5 33.2 33.2 SEQ ID NO: 760 PtIP-83Fg — — — — 66.4 94.8 94.9 31.8 31.9 SEQ ID NO: 766 PtIP-83Fh — — — — — 65.3 65.4 31.1 31.1 SEQ ID NO: 767 PtIP-83Fi-like — — — — — — 99.9 32.1 32.2 SEQ ID NO: 769 PtIP-83Fi — — — — — — — 32.2 32.3 SEQ ID NO: 768 PtIP-83Ga-like — — — — — — — — 99.9 SEQ ID NO: 765 Example 4
Transient Expression in Leaves and Insect Bioassay
Transient Leaf Disc Consumption (Scale 1 to 9) expression FAW CEW SBL ECB PtIP-83Aa 8.3 8.3 8.6 8.9 1 leaf disk is greater than 90% consumed 2 leaf disk is 70-80% consumed 3 leaf disk is 60-70% consumed 4 leaf disk is 50-60% consumed 5 leaf disk is 40-50% consumed 6 leaf disk is less than 30% consumed 7 leaf disk is less than 10% consumed 8 leaf disk has only a few pinholes 9 leaf disk is untouched by the insect Transient Leaf Disc Consumption (Scale 1 to 9) experiment FAW CEW SBL ECB PtIP-83Fa 1.0 6.8 8.1 7.4 Vector control 1.7 2.3 1.1 1.8 blank 1.0 1.1 1.4 1.0 PtIP-83Aa 1 + + + + PtIP-83Ca 5 − + + + PtIP-83Cb 7 + + + − PtIP-83Cc 9 + + + + PtIP-83Cd 11 + + + + PtIP-83Ce 13 − + + + PtIP-83Cf 15 − − + − PtIP-83Cg 17 + + + + PtIP-83Da 19 − − − − PtIP-83Ea 21 − − − + PtIP-83Eb 23 − − − − PtIP-83Fa 3 − + + + PtIP-83Fb 716 + + + PtIP-83Ch 754 − − − + PtIP-83Ch- 755 − − − + like PtIP-83Fd 756 − − + − PtIP-83Fe 757 − − − − PtIP-83Ci 758 + + + + PtIP-83Ci- 759 + + + + like PtIP-83Ff 760 − − − − PtIP-83Ff- 761 + − + + like PtIP-83Fk 958 − + + ND PtIP-83Fl 959 + + + + PtIP-83Fm 960 + + − ND PtIP-83Fn 961 + + − ND PtIP-83Cl 962 + + + + PtIP-83Cm 963 + + + − PtIP-83Cn 964 + + + − PtIP-83Co 965 − − + + PtIP-83Fj 966 − − − + PtIP-83Fo 967 + − − + PtIP-83Gb 968 + + + + PtIP-83Fp 969 − − − − PtIP-83Fq 970 − − − − PtIP-83Fr 971 − − − − PtIP-83Fs 972 − − − + PtIP-83Ft 973 − − − + PtIP-83Gc 974 − − − − PtIP-83Fu 975 + − − + PtIP-83Ha 976 + − − + PtIP-83Gd 977 − − − − PtIP-83Hb 978 − − − − PtIP-83Cq 979 − − + + PtIP-83Cr 980 − − + + PtIP-83Cs 981 − − − + PtIP-83Ct 982 − − − + PtIP-83Cu 983 − − + + PtIP-83Cv 984 − − − + PtIP-83Cw 985 − − − + PtIP-83Cx 986 − − + + PtIP-83Ed 987 − − − + PtIP-83Ec 988 − − − + PtIP-83Fv 989 + − + − PtIP-83Fw 990 + − + − PtIP-83Fx 991 − − − − PtIP-83Fy 992 + − + − PtIP-83Fz 993 − − + + PtIP-83Faa 994 − − − − PtIP-83Hc 995 − − − − PtIP-83Fab 996 − − − − PtIP-83Gf 997 − − − − PtIP-83Gg 998 − − − − PtIP-83Gh 999 + − − + PtIP-83Gi 1000 − − − − PtIP-83Gj 1001 − − − − PtIP-83Gk 1002 − + + − PtIP-83Fac 1003 − − − + PtIP-83Fad 1004 − − − + PtIP-83Cy 1005 − − + + PtIP-83Fae 1006 − − − − PtIP-83Faf 1007 − − + + PtIP-83Fah 1008 − − + + PtIP-83Fai 1009 − − − − PtIP-83Faj 1010 − − − − PtIP-83Fak 1011 − − − − PtIP-83Fal 1012 − − − − PtIP-83Fam 1013 − − − − PtIP-83Fan 1014 − − − − PtIP-83Fat 1015 + − + + PtIP-83Fau 1016 + − + + PtIP-83Fav 1017 + − + + PtIP-83Faw 1018 + − + + PtIP-83Fas 1019 + − + + PtIP-83Faq 1020 + + − + PtIP-83Fap 1021 − + − + PtIP-83Far 1022 − − − − PtIP-83Gl 1023 − − − − PtIP-83Gm 1024 − − − − PtIP-83Gn 1025 − − − − PtIP-83Fao 1026 − + + + Example 5
Baculovirus Expression of PtIP-83Aa polypeptides
Example 6
Example 7
Transformation and Regeneration of Soybean (
Stock Solutions:
Media (Per Liter):
Soybean Embryogenic Suspension Culture Initiation:
Culture Conditions:
Preparation of DNA for Bombardment:
Selection of Transformed Embryos and Plant Regeneration:
Example 8
Particle Bombardment Transformation and Regeneration of Transgenic Plants
Example 9
Insect Control Efficacy of Stable Transformed Soybean and Corn Plants Against Broad Spectrum of Lepidopteran Insects
Example 10
Chimeras Between PtIP-83Aa (SEQ ID NO: 1) and PtIP-50Aa (SEQ ID NO: 34)
Chimera 1 SEQ ID Q334 S473 94 No SEQ ID NO: 634 NO: 640 Chimera 2 SEQ ID G469 N615 95 No SEQ ID NO: 635 NO: 641 Chimera 3 SEQ ID P610 E713 95 Yes SEQ ID NO: 636 NO: 642 Chimera 4 SEQ ID P754 E873 94 No SEQ ID NO: 637 NO: 643 Chimera 5 SEQ ID F823 E873 98 Yes SEQ ID NO: 638 NO: 644 Chimera 6 SEQ ID Q334 E713 85 No SEQ ID NO: 639 NO: 645 Crossover position numbers are based on the alignment shown in FIG. 3 Example 11
Identification of Motifs Affecting the Protein Function of PtIP-83Aa
V53 083SM-V53-F SEQ ID NO: 38 A, C, D, E, F, G, H, K, L, N, A, C, T P, Q, R, S, T, Y K54 083SM-K54-F SEQ ID NO: 39 A, C, D, E, F, G, H, I, L, M, A, C, D, E, G, H, I, L, 083SM-K54-R SEQ ID NO: 40 N, P, Q, R, S, T, V, W, Y M, N, Q, R, S, T R55 083SM-R55-F SEQ ID NO: 41 A, D, E, F, G, H, K, L, M, N, A, D, E, F, G, H, K, L, 083SM-R55-R SEQ ID NO: 42 P, Q, S, T, V, W, Y M, N, Q, S, T, V, W, Y L56 083SM-L56-F SEQ ID NO: 43 A, D, E, F, G, I, M, N, P, Q, E, F, I, M, T, V 083SM-L56-R SEQ ID NO: 44 R, S, T, V, W, Y Y57 083SM-Y57-F SEQ ID NO: 45 A, C, D, E, G, H, I, K, L, M, C, I, L, M, T, V 083SM-Y57-R SEQ ID NO: 46 N, P, Q, R, S, T, V V58 083SM-V58-F SEQ ID NO: 47 A, C, D, F, G, H, I, K, L, N, C, I, L 083SM-V58-R SEQ ID NO: 48 P, Q, R, S, T, W, Y F59 083SM-F59-F SEQ ID NO: 49 A, C, D, E, G, H, I, K, L, M, L, M, V, Y 083SM-F59-R SEQ ID NO: 50 N, P, Q, R, S, T, V, Y A60 083SM-A60-F SEQ ID NO: 51 C, D, E, F, G, H, I, L, M, N, C, G, S, T, V 083SM-A60-R SEQ ID NO: 52 P, Q, R, S, T, V, Y D61 083SM-D61-F SEQ ID NO: 53 C, E, F, G, H, I, K, L, N, P, E, H, S 083SM-D61-R SEQ ID NO: 54 Q, R, S, T, V, W, Y V62 083SM-V62-F SEQ ID NO: 55 A, C, D, E, F, G, H, I, K, L, A, C, I, L, T 083SM-V62-R SEQ ID NO: 56 M, N, P, R, S, T, Y V63 083SM-V63-F SEQ ID NO: 57 A, C, G, H, I, K, L, M, N, P, A, C, I, L, M, T 083SM-V63-R SEQ ID NO: 58 Q, R, S, T, W, Y E64 083SM-E64-F SEQ ID NO: 59 A, C, F, G, H, I, L, M, N, P, A, C, F, G, H, I, L, M, 083SM-E64-R SEQ ID NO: 60 Q, R, S, T, V, W, Y N, Q, R, S, T, V, W, Y L65 083SM-L65-F SEQ ID NO: 61 A, C, D, F, G, H, I, M, N, P, A, C, F, H, I, M, N, Q, 083SM-L65-R SEQ ID NO: 62 Q, R, S, T, V, W, Y T, V, W P66 083SM-P66-F SEQ ID NO: 63 A, C, D, E, F, G, I, K, L, M, D, G, M, Q, R 083SM-P66-R SEQ ID NO: 64 N, Q, R, S, T, V, W, Y † Active substitutions: average activity score <=60% of leaf disk eaten Q363 083SM-Q363-F SEQ ID NO: 65 A, C, E, F, G, H, K, L, N, P, A, C, E, F, G, H, K, L, N, R, 083SM-Q363-R SEQ ID NO: 66 R, S, T, V, W S, T, V, W I364 083SM-I364-F SEQ ID NO: 67 A, C, D, E, F, G, H, K, L, M, A, C, E, F, H, K, L, M, N, Q, 083SM-I364-R SEQ ID NO: 68 N, P, Q, R, S, T, V, W, Y S, T, V, W, Y L365 083SM-L365-F SEQ ID NO: 69 A, E, F, G, H, I, K, M, N, P, A, E, F, G, H, I, K, M, N, R, 083SM-L365-R SEQ ID NO: 70 R, S, T, V, W, Y V, W, Y G366 083SM-G366-F SEQ ID NO: 71 A, C, E, F, H, I, K, L, M, N, A, C, F, H, I, K, L, M, N, S, 083SM-G366-R SEQ ID NO: 72 P, R, S, T, V, W T, V S367 083SM-S367-F SEQ ID NO: 73 A, C, D, E, F, G, H, I, L, M, A, C, D, E, F, G, H, I, L, M, 083SM-S367-R SEQ ID NO: 74 N, P, Q, R, T, V, W N, P, Q, R, T, V, W Y368 083SM-Y368-F SEQ ID NO: 75 A, C, D, E, F, G, H, I, K, L, A, C, D, E, F, G, H, I, K, L, 083SM-Y368-R SEQ ID NO: 76 M, N, P, Q, R, S, T, V, W M, N, P, Q, R, S, T, V, W L369 083SM-L369-F SEQ ID NO: 77 A, C, D, F, G, H, I, M, N, P, A, C, D, F, G, I, M, T, V 083SM-L369-R SEQ ID NO: 78 R, S, T, V L370 083SM-L370-F SEQ ID NO: 79 A, C, D, E, F, G, H, I, K, M, A, C, D, E, F, G, H, I, K, M, 083SM-L370-R SEQ ID NO: 80 N, P, Q, R, S, T, V, W, Y Q, R, S, T, V, W, Y Q371 083SM-Q371-F SEQ ID NO: 81 A, C, D, E, F, G, I, K, L, N, A, C, D, E, F, G, I, K, L, N, 083SM-Q371-R SEQ ID NO: 82 R, S, T, V, W R, S, T, V, W Q372 083SM-Q372-F SEQ ID NO: 83 A, C, D, F, G, H, I, L, N, R, A, C, D, F, G, H, I, L, N, R, 083SM-Q372-R SEQ ID NO: 84 S, T, V, Y S, V, Y N373 083SM-N373-F SEQ ID NO: 85 A, C, D, F, G, H, I, K, L, M, A, C, D, F, G, H, I, K, Q, S, 083SM-N373-R SEQ ID NO: 86 P, Q, R, S, T, V, W, Y T, V W556 083SM-W556-F SEQ ID NO: 87 A, C, D, F, G, I, K, L, M, N, F, T, Y 083SM-W556-R SEQ ID NO: 88 P, Q, R, S, T, V, Y R557 083SM-R557-F SEQ ID NO: 89 C, D, G, H, I, K, L, M, N, P, C, D, G, H, I, K, L, M, N, P, 083SM-R557-R SEQ ID NO: 90 Q, S, T, V, W, Y Q, S, T, V, W, Y A558 083SM-A558-F SEQ ID NO: 91 C, D, F, G, H, I, K, L, N, P, C, D, F, G, H, I, K, L, N, P, 083SM-A558-R SEQ ID NO: 92 Q, R, S, V, W, Y Q, R, S, V, W, Y K559 083SM-K559-F SEQ ID NO: 93 A, C, F, G, H, I, L, N, P, Q, A, C, F, G, H, I, L, N, Q, R, 083SM-K559-R SEQ ID NO: 94 R, S, T, V, Y S, T, V, Y C560 083SM-C560-F SEQ ID NO: 95 A, D, F, G, H, I, K, L, M, N, A, F, G, I, M, N, R, S, T, V 083SM-C560-R SEQ ID NO: 96 P, Q, R, S, T, V, Y K561 083SM-K561-F SEQ ID NO: 97 A, C, D, E, F, G, H, I, L, M, A, C, D, E, F, G, H, I, L, M, 083SM-K561-R SEQ ID NO: 98 N, P, R, S, T, V, Y N, R, S, T, V, Y N562 083SM-N562-F SEQ ID NO: 99 A, C, D, E, F, G, H, K, L, M, C, D, E, G, H, L, M, R, S, T, 083SM-N562-R SEQ ID NO: 100 P, R, S, T, V, W, Y V, Y V563 083SM-V563-F SEQ ID NO: 101 A, C, D, F, G, H, I, K, L, M, A, C, D, F, H, I, L, M, N, Q, 083SM-V563-R SEQ ID NO: 102 N, P, Q, R, S, T, W T, W A564 083SM-A564-F SEQ ID NO: 103 C, D, F, G, H, I, K, L, M, N, C, G, M, Q, S, T, V, W, Y 083SM-A564-R SEQ ID NO: 104 P, Q, R, S, T, V, W, Y L646 083SM-L646-F SEQ ID NO: 105 A, C, D, E, F, G, H, I, K, M, A, C, G, I, M, N, Q, S, T, V 083SM-L646-R SEQ ID NO: 106 N, P, Q, R, S, T, V, W, Y L647 083SM-L647-F SEQ ID NO: 107 A, D, F, G, H, I, K, M, N, P, D, G, M, N, Q, T 083SM-L647-R SEQ ID NO: 108 Q, R, S, T, V, W, Y M648 083SM-M648-F SEQ ID NO: 109 A, C, D, E, F, G, H, K, L, N, A, C, D, E, F, G, H, K, L, N, 083SM-M648-R SEQ ID NO: 110 P, Q, R, S, T, V, W, Y P, Q, R, S, T, V, W, Y P649 083SM-P649-F SEQ ID NO: 111 A, C, D, E, F, G, H, I, K, L, A, C, D, E, F, G, H, K, M, N, 083SM-P649-R SEQ ID NO: 112 M, N, Q, R, S, T, V, W, Y Q, R, S, T, W, Y T650 083SM-T650-F SEQ ID NO: 113 A, C, D, F, G, H, I, K, L, M, A, C, D, F, G, H, I, K, L, M, 083SM-T650-R SEQ ID NO: 114 P, Q, R, S, V, Y P, Q, R, S, V, Y E651 083SM-E651-F SEQ ID NO: 115 A, C, D, G, H, I, K, L, M, N, A, C, D, G, H, I, L, M, N, P, 083SM-E651-R SEQ ID NO: 116 P, Q, R, S, T, V, W, Y Q, R, S, T, V, Y L652 083SM-L652-F SEQ ID NO: 117 A, C, D, E, F, G, H, I, K, M, C, F, I, K, M, P, R, S, T, V 083SM-L652-R SEQ ID NO: 118 N, P, Q, R, S, T, V, Y T653 083SM-T653-F SEQ ID NO: 119 C, D, E, F, G, H, I, K, L, P, C, D, E, F, G, H, I, K, L, P, 083SM-T653-R SEQ ID NO: 120 R, S, V, W R, S, V, W T654 083SM-T654-F SEQ ID NO: 121 A, C, F, H, I, K, L, M, N, P, A, C, F, I, K, L, M, P, R, S, 083SM-T654-R SEQ ID NO: 122 Q, R, S, V, W, Y V, W, Y W655 083SM-W655-F SEQ ID NO: 123 A, C, E, F, G, L, N, Q, R, S, F, Y 083SM-W655-R SEQ ID NO: 124 T, V, Y R771 083SM-R771-F SEQ ID NO: 125 A, C, D, E, F, G, H, I, K, L, A, D, E, F, G, H, I, K, L, 083SM-R771-R SEQ ID NO: 126 H, P, S, T, V, W, Y N, S, T, V, W, Y R772 083SM-R772-F SEQ ID NO: 127 A, C, D, E, F, G, H, I, K, L, A, C, D, E, F, G, H, I, K, 083SM-R772-R SEQ ID NO: 128 M, P, Q, S, T, V, W, Y L, M, P, Q, S, T, V, W, Y D773 083SM-D773-F SEQ ID NO: 129 A, C, E, F, G, H, I, K, L, M, A, E, F, G, H, I, K, L, M, 083SM-D773-R SEQ ID NO: 130 N, P, Q, R, S, T, V, W, Y N, Q, R, S, T, V, W, Y Q774 083SM-Q774-F SEQ ID NO: 131 A, D, G, H, I, K, L, M, N, P, A, D, G, H, I, K, L, M, N, 083SM-Q774-R SEQ ID NO: 132 R, S, T, V, W, Y P, R, S, T, V, W, Y V775 083SM-V775-F SEQ ID NO: 133 A, C, D, E, G, H, I, L, M, N, A, C, D, E, G, H, I, N, P, 083SM-V775-R SEQ ID NO: 134 P, Q, R, S, T, Y Q, R, S, T, Y L776 083SM-L776-F SEQ ID NO: 135 A, C, D, E, F, G, H, I, K, N, A, C, D, E, F, G, H, I, K, 083SM-L776-R SEQ ID NO: 136 P, Q, R, S, T, V, W, Y N, P, Q, R, S, T, V, Y P777 083SM-P777-F SEQ ID NO: 137 A, C, D, E, F, G, H, K, L, M, A, C, D, E, F, G, H, K, L, 083SM-P777-R SEQ ID NO: 138 N, Q, R, S, T, V, W, Y M, N, Q, S, T, V, W, Y F778 083SM-F778-F SEQ ID NO: 139 A, D, G, H, I, K, L, M, N, P, A, H, I, L, M, N, Q, S, V, 083SM-F778-R SEQ ID NO: 140 Q, R, S, T, V, W, Y W, Y Q779 083SM-Q779-F SEQ ID NO: 141 A, C, D, E, F, G, H, I, K, L, A, C, D, E, G, H, K, L, N, 083SM-Q779-R SEQ ID NO: 142 N, P, R, S, T, V, W P, R, S, T, V A780 083SM-A780-F SEQ ID NO: 143 C, D, E, F, G, H, K, L, N, P, C, N, P, Q, S 083SM-A780-R SEQ ID NO: 144 Q, R, S, T, V, W, Y A781 083SM-A781-F SEQ ID NO: 145 C, D, E, F, G, H, I, L, M, N, C, D, E, F, G, H, I, N, Q, 083SM-A781-R SEQ ID NO: 146 P, Q, R, S, T, V, W, Y R, S, T, V, W, Y A782 083SM-A782-F SEQ ID NO: 147 C, D, E, F, G, H, I, K, L, M, C, D, E, F, G, H, I, K, M, 083SM-A782-R SEQ ID NO: 148 N, P, Q, R, S, T, V, W, Y P, Q, R, S, T, V, W, Y P783 083SM-P783-F SEQ ID NO: 149 A, C, D, E, F, G, H, I, L, M, A, C, D, E, G, H, N, Q, R, 083SM-P783-R SEQ ID NO: 150 N, Q, R, S, T, V, Y S, T, V L784 083SM-L784-F SEQ ID NO: 151 A, C, D, E, F, G, H, I, K, M, A, S, F, H, I, K, M, N, P, 083SM-L784-R SEQ ID NO: 152 N, P, Q, R, S, T, V, W, Y Q, S, T, V, W N785 083SM-N785-F SEQ ID NO: 153 A, C, E, F, G, H, I, K, L, M, A, C, E, F, G, H, I, K, L, 083SM-N785-R SEQ ID NO: 154 P, Q, R, S, T, V, W, Y M, Q, R, S, T, V, W, Y Y786 083SM-Y786-F SEQ ID NO: 155 C, D, E, F, G, H, I, K, L, M, F, I, L, W 083SM-Y786-R SEQ ID NO: 156 N, P, Q, R, S, T, V, W Example 12
PtIP-83Aa Variants with Multiple Amino Acid Substitutions in Motif A or Motif C
Motif A 83M1- CTCGAGGGAGCCGAGAAAGTGADGCRSYT Combi-1 CombiF1 CTATRTCTTKDSCGACRTCVTCGWGVTCC CAGTCGTGGAATGGCGGTGG SEQ ID NO: 157 — 83M1- CTCGAGGGAGCCGAGAAAGTGADGCRSYT CombiF2 CVTCRTCTTKDSCGACRTCVTCGWGVTCC CAGTCGTGGAATGGCGGTGG SEQ ID NO: 158 — 83M1- CCACCGCCATTCCACGACTGGGABCWCGA CombiRC1 BGAYGTCGSHMAAGAYATAGARSYGCHTC ACTTTCTCGGCTCCCTCGAG SEQ ID NO: 159 — 83M1- CCACCGCCATTCCACGACTGGGABCWCGA CombiRC2 BGAYGTCGSHMAAGAYGABGARSYGCHTC ACTTTCTCGGCTCCCTCGAG SEQ ID NO: 160 Motif A 83M1Cmb2-R CGGCCACCGCCATTCCACGACTGGTAGCW Combi-2 CGABAAYGTCGSHAAAAAYATACAASYGC HTCACTTTCTCGGCTCCCTCGAGCTG SEQ ID NO: 161 — GZ550- AATCTCTCATCTAAGAGGCTGGATCCTAG 83Aa-F GATGGCTCTCGTGGATTACGGC SEQ ID NO: 162 — GZ550- TGGCCAATCCAGAAGATGGACAAGTCTAG 83Aa-R ACTACTCTTCGTCGTGCCGCCAG SEQ ID NO: 163 — 83M1Cmb2- CTACCAGTCGTGGAATGGCGGTGGCCG 3p-F SEQ ID NO: 164 Motif C PtIP-83- GTCTCGGAGGTTCCGGTGTGGABSGBCMR Combi MotifC- GTGCAASWSCGTGGCTGCACTGGGTCGGG Combi-F1 AGATG SEQ ID NO: 165 — PtIP-83- GTCTCGGAGGTTCCGGTGTGGCWSGBCMR MotifC- GTGCAASWSCGTGGCTGCACTGGGTCGGG Combi-F2 AGATG SEQ ID NO: 166 — PtIP-83- GTCTCGGAGGTTCCGGTGTGGABSGBCMR MotifC- GTGCAASMATGTGGCTGCACTGGGTCGGG Combi-F3 AGATG SEQ ID NO: 167 — PtIP-83- GTCTCGGAGGTTCCGGTGTGGCWSGBCMR MotifC- GTGCAASMATGTGGCTGCACTGGGTCGGG Combi-F4 AGATG SEQ ID NO: 168 — GZ550- AATCTCTCATCTAAGAGGCTGGATCCTAG 83Aa-F GATGGCTCTCGTGGATTACGGC SEQ ID NO: 162 — GZ550- TGGCCAATCCAGAAGATGGACAAGTCTAG 83Aa-R ACTACTCTTCGTCGTGCCGCCAG SEQ ID NO: 163 — PtIP-83- CACCGGAACCTCCGAGACTTCCGTT MotifC- SEQ ID NO: 171 Gibson-R PtIP-83Aa SEQ ID NO: 2 VKRLYVFADVVELP (a.a. 53- 0 SEQ ID NO: 1 66 of SEQ ID NO: 1) PtIP-83cmbM1-1 SEQ ID NO: 172 VKHLYIFCDVIELP (a.a. 53- 4 SEQ ID NO: 236 66 of SEQ ID NO: 236) PtIP-83cmbM1-2 SEQ ID NO: 173 VKHLYIFCDVVELP (a.a. 53- 3 SEQ ID NO: 237 66 of SEQ ID NO: 237) PtIP-83cmbM1-3 SEQ ID NO: 174 VKHLYIFSDIIELP (a.a. 53- 5 SEQ ID NO: 238 66 of SEQ ID NO: 238) PtIP-83cmbM1-4 SEQ ID NO: 175 VKHLYIFTDVLELP (a.a. 53- 4 SEQ ID NO: 239 66 of SEQ ID NO: 239) PtIP-83cmbM1-5 SEQ ID NO: 176 VKHLYVFADIIVLP (a.a. 53- 4 SEQ ID NO: 240 66 of SEQ ID NO: 240) PtIP-83cmbM1-6 SEQ ID NO: 177 VKHLYVFADVIELP (a.a. 53- 2 SEQ ID NO: 241 66 of SEQ ID NO: 241) PtIP-83cmbM1-7 SEQ ID NO: 178 VKHLYVFGDVIELP (a.a. 53- 3 SEQ ID NO: 242 66 of SEQ ID NO: 242) PtIP-83cmbM1-8 SEQ ID NO: 179 VKHLYVFSDVIELP (a.a. 53- 3 SEQ ID NO: 243 66 of SEQ ID NO: 243) PtIP-83cmbM1-9 SEQ ID NO: 180 VKHLYVFSDVLVLP (a.a. 53- 4 SEQ ID NO: 244 66 of SEQ ID NO: 244) PtIP-83cmbM1-10 SEQ ID NO: 181 VKQLIIFSDIIELP (a.a. 53- 6 SEQ ID NO: 245 66 of SEQ ID NO: 245) PtIP-83cmbM1-11 SEQ ID NO: 182 VKQLYIFCDIIELP (a.a. 53- 5 SEQ ID NO: 246 66 of SEQ ID NO: 246) PtIP-83cmbM1-12 SEQ ID NO: 183 VKQLYIFCDVLELP (a.a. 53- 4 SEQ ID NO: 247 66 of SEQ ID NO: 247) PtIP-83cmbM1-13 SEQ ID NO: 184 VKQLYIFGDVIELP (a.a. 53- 4 SEQ ID NO: 248 66 of SEQ ID NO: 248) PtIP-83cmbM1-14 SEQ ID NO: 185 VKQLYIFSDIIELP (a.a. 53- V24I 6 SEQ ID NO: 249 66 of SEQ ID NO: 249) PtIP-83cmbM1-15 SEQ ID NO: 186 VKQLYVFCDILELP (a.a. 53- 4 SEQ ID NO: 250 66 of SEQ ID NO: 250) PtIP-83cmbM1-16 SEQ ID NO: 187 VKQLYVFSDILELP (a.a. 53- 4 SEQ ID NO: 251 66 of SEQ ID NO: 251) PtIP-83cmbM1-17 SEQ ID NO: 188 VKQLYVFSDVLVLP (a.a. 53- 4 SEQ ID NO: 252 66 of SEQ ID NO: 252) PtIP-83cmbM1-18 SEQ ID NO: 189 VKRFYIFADIVELP (a.a. 53- 3 SEQ ID NO: 253 66 of SEQ ID NO: 253-) PtIP-83cmbM1-19 SEQ ID NO: 190 VKRFYIFSDIIELP (a.a. 53- 5 SEQ ID NO: 254 66 of SEQ ID NO: 254) PtIP-83cmbM1-20 SEQ ID NO: 191 VKRFYVFSDIVELP (a.a. 53- 3 SEQ ID NO: 255 66 of SEQ ID NO: 255) PtIP-83cmbM1-21 SEQ ID NO: 192 VKRLVILGDIIVVP (a.a. 53- 8 SEQ ID NO: 256 66 of SEQ ID NO: 256) PtIP-83cmbM1-22 SEQ ID NO: 193 VKRLYIFADIIELP (a.a. 53- 3 SEQ ID NO: 257 66 of SEQ ID NO: 257) PtIP-83cmbM1-23 SEQ ID NO: 194 VKRLYIFCDIIVLP (a.a. 53- 5 SEQ ID NO: 258 66 of SEQ ID NO: 258) PtIP-83cmbM1-24 SEQ ID NO: 195 VKRLYIFCDIVELP (a.a. 53- 3 SEQ ID NO: 259 66 of SEQ ID NO: 259) PtIP-83cmbM1-25 SEQ ID NO: 196 VKRLYIFGDIIELP (a.a. 53- P74A 5 SEQ ID NO: 260 66 of SEQ ID NO: 260) PtIP-83cmbM1-26 SEQ ID NO: 197 VKRLYIFGDVIELP (a.a. 53- 3 SEQ ID NO: 261 66 of SEQ ID NO: 261) PtIP-83cmbM1-27 SEQ ID NO: 198 VKRLYIFSDIIVLP (a.a. 53- 5 SEQ ID NO: 262 66 of SEQ ID NO: 262) PtIP-83cmbM1-28 SEQ ID NO: 199 VKRLYIFSDILELP (a.a. 53- 4 SEQ ID NO: 263 66 of SEQ ID NO: 263) PtIP-83cmbM1-29 SEQ ID NO: 200 VKRLYIFSDVIVLP (a.a. 53- 4 SEQ ID NO: 264 66 of SEQ ID NO: 264) PtIP-83cmbM1-30 SEQ ID NO: 201 VKRLYIFTDVIELP (a.a. 53- 3 SEQ ID NO: 265 66 of SEQ ID NO: 265) PtIP-83cmbM1-31 SEQ ID NO: 202 VKRLYVFCDIIELP (a.a. 53- 3 SEQ ID NO: 266 66 of SEQ ID NO: 266) PtIP-83cmbM1-32 SEQ ID NO: 203 VKRLYVFCDIIVLP (a.a. 53- 4 SEQ ID NO: 267 66 of SEQ ID NO: 267) PtIP-83cmbM1-33 SEQ ID NO: 204 VKRLYVFGDIVELP (a.a. 53- 2 SEQ ID NO: 268 66 of SEQ ID NO: 268) PtIP-83cmbM1-34 SEQ ID NO: 205 VKRLYVFGDVVELP (a.a. 53- 1 SEQ ID NO: 269 66 of SEQ ID NO: 269) PtIP-83cmbM1-35 SEQ ID NO: 206 VKRLYVFSDIIELP (a.a. 53- 3 SEQ ID NO: 270 66 of SEQ ID NO: 270) PtIP-83cmbM1-36 SEQ ID NO: 207 VKRLYVFSDIVELP (a.a. 53- 2 SEQ ID NO: 271 66 of SEQ ID NO: 271) PtIP-83cmbM1-37 SEQ ID NO: 208 VKRLYVFSDVIELP (a.a. 53- 2 SEQ ID NO: 272 66 of SEQ ID NO: 272) PtIP-83cmbM1-38 SEQ ID NO: 209 VKRLYVFTDVIVLP (a.a. 53- 3 SEQ ID NO: 273 66 of SEQ ID NO: 273) PtIP-83cmbM1-39 SEQ ID NO: 210 VKRLYVFTDVVVLP (a.a. 53- 2 SEQ ID NO: 274 66 of SEQ ID NO: 274) PtIP-83cmbM1-40 SEQ ID NO: 211 VMHLYIFADVIELP (a.a. 53- 4 SEQ ID NO: 275 66 of SEQ ID NO: 275) PtIP-83cmbM1-41 SEQ ID NO: 212 VMQLYIFCDILELP (a.a. 53- P74T 7 SEQ ID NO: 276 66 of SEQ ID NO: 276) PtIP-83cmbM1-42 SEQ ID NO: 213 VMRLYIFADVVVLP (a.a. 53- 3 SEQ ID NO: 277 66 of SEQ ID NO: 277) PtIP-83cmbM1-43 SEQ ID NO: 214 VMRLYIFCDVIELP (a.a. 53- 4 SEQ ID NO: 278 66 of SEQ ID NO: 278) PtIP-83cmbM1-44 SEQ ID NO: 215 VMRLYVFCDIIELP (a.a. 53- 4 SEQ ID NO: 279 66 of SEQ ID NO: 279) PtIP-83cmbM1-45 SEQ ID NO: 216 VMRLYVFCDILVLP (a.a. 53- 5 SEQ ID NO: 280 66 of SEQ ID NO: 280) PtIP-83cmbM1-46 SEQ ID NO: 217 VMRLYVFSDIIVLP (a.a. 53- 5 SEQ ID NO: 281 66 of SEQ ID NO: 281) PtIP-83cmbM1-47 SEQ ID NO: 218 VRHLYIFADIIELP (a.a. 53- 5 SEQ ID NO: 282 66 of SEQ ID NO: 282) PtIP-83cmbM1-48 SEQ ID NO: 219 VRHLYIFADVVELP (a.a. 53- 3 SEQ ID NO: 283 66 of SEQ ID NO: 283) PtIP-83cmbM1-49 SEQ ID NO: 220 VRHLYIFCDVIELP (a.a. 53- 5 SEQ ID NO: 284 66 of SEQ ID NO: 284) PtIP-83cmbM1-50 SEQ ID NO: 221 VRHLYIFSDVIELP (a.a. 53- 5 SEQ ID NO: 285 66 of SEQ ID NO: 285) PtIP-83cmbM1-51 SEQ ID NO: 222 VRHLYIFSDVVELP (a.a. 53- 4 SEQ ID NO: 286 66 of SEQ ID NO: 286) PtIP-83cmbM1-52 SEQ ID NO: 223 VRHLYVFTDVLELP (a.a. 53- 4 SEQ ID NO: 287 66 of SEQ ID NO: 287) PtIP-83cmbM1-53 SEQ ID NO: 224 VRQLYIFCDVIVLP (a.a. 53- 6 SEQ ID NO: 288 66 of SEQ ID NO: 288) PtIP-83cmbM1-54 SEQ ID NO: 225 VRQLYIFSDVVVLP (a.a. 53- 5 SEQ ID NO: 289 66 of SEQ ID NO: 289) PtIP-83cmbM1-55 SEQ ID NO: 226 VRQLYVFCDVLVLP (a.a. 53- 5 SEQ ID NO: 290 66 of SEQ ID NO: 290) PtIP-83cmbM1-56 SEQ ID NO: 227 VRRLYIFADILELP (a.a. 53- 4 SEQ ID NO: 291 66 of SEQ ID NO: 291) PtIP-83cmbM1-57 SEQ ID NO: 228 VRRLYIFADIVELP (a.a. 53- P74A 4 SEQ ID NO: 292 66 of SEQ ID NO: 292) PtIP-83cmbM1-58 SEQ ID NO: 229 VRRLYIFGDIVELP (a.a. 53- 4 SEQ ID NO: 293 66 of SEQ ID NO: 293) PtIP-83cmbM1-59 SEQ ID NO: 230 VRRLYIFTDIIELP (a.a. 53- 5 SEQ ID NO: 294 66 of SEQ ID NO: 294) PtIP-83cmbM1-60 SEQ ID NO: 231 VRRLYVFADIIDLP (a.a. 53- 4 SEQ ID NO: 295 66 of SEQ ID NO: 295) PtIP-83cmbM1-61 SEQ ID NO: 232 VRRLYVFADIVVLP (a.a. 53- 3 SEQ ID NO: 296 66 of SEQ ID NO: 296) PtIP-83cmbM1-62 SEQ ID NO: 233 VRRLYVFCDVVVLP (a.a. 53- 3 SEQ ID NO: 297 66 of SEQ ID NO: 297) PtIP-83cmbM1-63 SEQ ID NO: 234 VRRLYVFTDIIELP (a.a. 53- 4 SEQ ID NO: 298 66 of SEQ ID NO: 298) PtIP-83cmbM1-64 SEQ ID NO: 235 VRRLYVFTDVLVLP (a.a. 53- 4 SEQ ID NO: 299 66 of SEQ ID NO: 299) PtIP-83Aa SEQ ID NO: 2 WRAKCKNVA (a.a. 556- 0 SEQ ID NO: 1 564 of SEQ ID NO: 1) PtIP-83cmbM3-1 SEQ ID NO: 300 WHARCKSVA (a.a. 556- 3 SEQ ID NO: 334 564 of SEQ ID NO: 334) PtIP-83cmbM3-2 SEQ ID NO: 301 WHGKCKNVA (a.a. 556- 2 SEQ ID NO: 335 564 of SEQ ID NO: 335) PtIP-83cmbM3-3 SEQ ID NO: 302 WIAKCKCVA (a.a. 556- 2 SEQ ID NO: 336 564 of SEQ ID NO: 336) PtIP-83cmbM3-4 SEQ ID NO: 303 WIAKCKSVA (a.a. 556- 2 SEQ ID NO: 337 564 of SEQ ID NO: 337) PtIP-83cmbM3-5 SEQ ID NO: 304 WIGKCKNVA (a.a. 556- 2 SEQ ID NO: 338 564 of SEQ ID NO: 338) PtIP-83cmbM3-6 SEQ ID NO: 305 WIGKCKSVA (a.a. 556- 3 SEQ ID NO: 339 564 of SEQ ID NO: 339) PtIP-83cmbM3-7 SEQ ID NO: 306 WIGKCNNVA (a.a. 556- 3 SEQ ID NO: 340 564 of SEQ ID NO: 340) PtIP-83cmbM3-8 SEQ ID NO: 307 WIVKCKSVA (a.a. 556- 3 SEQ ID NO: 341 564 of SEQ ID NO: 341) PtIP-83cmbM3-9 SEQ ID NO: 308 WLARCKNVA (a.a. 556- 2 SEQ ID NO: 342 564 of SEQ ID NO: 342) PtIP-83cmbM3-10 SEQ ID NO: 309 WLARCKSVA (a.a. 556- 3 SEQ ID NO: 343 564 of SEQ ID NO: 343) PtIP-83cmbM3-11 SEQ ID NO: 310 WLGRCKNVA (a.a. 556- 3 SEQ ID NO: 344 564 of SEQ ID NO: 344) PtIP-83cmbM3-12 SEQ ID NO: 311 WLGRCKSVA (a.a. 556- 4 SEQ ID NO: 345 564 of SEQ ID NO: 345) PtIP-83cmbM3-13 SEQ ID NO: 312 WLVKCKCVA (a.a. 556- 3 SEQ ID NO: 346 564 of SEQ ID NO: 346) PtIP-83cmbM3-14 SEQ ID NO: 313 WMAKCKNVA (a.a. 556- A502S 2 SEQ ID NO: 347 564 of SEQ ID NO: 347) PtIP-83cmbM3-15 SEQ ID NO: 314 WMGRCKSVA (a.a. 556- 4 SEQ ID NO: 348 564 of SEQ ID NO: 348) PtIP-83cmbM3-16 SEQ ID NO: 315 WMVKCKNVA (a.a. 556- 2 SEQ ID NO: 349 564 of SEQ ID NO: 349) PtIP-83cmbM3-17 SEQ ID NO: 316 WMVKCKSVA (a.a. 556- 3 SEQ ID NO: 350 564 of SEQ ID NO: 350) PtIP-83cmbM3-18 SEQ ID NO: 317 WMVRCKNVA (a.a. 556- 3 SEQ ID NO: 351 564 of SEQ ID NO: 351) PtIP-83cmbM3-19 SEQ ID NO: 318 WQARCKHVA (a.a. 556- 3 SEQ ID NO: 352 564 of SEQ ID NO: 352) PtIP-83cmbM3-20 SEQ ID NO: 319 WQARCKNVA (a.a. 556- K505N 3 SEQ ID NO: 353 564 of SEQ ID NO: 353) PtIP-83cmbM3-21 SEQ ID NO: 320 WQGRCKNVA (a.a. 556- 3 SEQ ID NO: 354 564 of SEQ ID NO: 354) PtIP-83cmbM3-22 SEQ ID NO: 321 WQVRCKSVA (a.a. 556- 4 SEQ ID NO: 355 564 of SEQ ID NO: 355) PtIP-83cmbM3-23 SEQ ID NO: 322 WRARCKNVA (a.a. 556- T573A 2 SEQ ID NO: 356 564 of SEQ ID NO: 356) PtIP-83cmbM3-24 SEQ ID NO: 323 WRGKCKSVA (a.a. 556- 2 SEQ ID NO: 357 564 of SEQ ID NO: 357) PtIP-83cmbM3-25 SEQ ID NO: 324 WRGRCKTVA (a.a. 556- 3 SEQ ID NO: 358 564 of SEQ ID NO: 358) PtIP-83cmbM3-26 SEQ ID NO: 325 WSARCKSVA (a.a. 556- 3 SEQ ID NO: 359 564 of SEQ ID NO: 359) PtIP-83cmbM3-27 SEQ ID NO: 326 WSVKCKHVA (a.a. 556- 3 SEQ ID NO: 360 564 of SEQ ID NO: 360) PtIP-83cmbM3-28 SEQ ID NO: 327 WTGRCKTVA (a.a. 556- 4 SEQ ID NO: 361 564 of SEQ ID NO: 361) PtIP-83cmbM3-29 SEQ ID NO: 328 WTGRCNHVA (a.a. 556- R568Q 6 SEQ ID NO: 362 564 of SEQ ID NO: 362) PtIP-83cmbM3-30 SEQ ID NO: 329 WTVKCKNVA (a.a. 556- 2 SEQ ID NO: 363 564 of SEQ ID NO: 363) PtIP-83cmbM3-31 SEQ ID NO: 330 WTVKCKSVA (a.a. 556- 3 SEQ ID NO: 364 564 of SEQ ID NO: 364) PtIP-83cmbM3-32 SEQ ID NO: 331 WTVRCKNVA (a.a. 556- 3 SEQ ID NO: 365 564 of SEQ ID NO: 365) PtIP-83cmbM3-33 SEQ ID NO: 332 WRARCKHVA (a.a. 556- 2 SEQ ID NO: 366 564 of SEQ ID NO: 366) PtIP-83cmbM3-34 SEQ ID NO: 333 WIGRCKSVA (a.a. 556- 4 SEQ ID NO: 367 564 of SEQ ID NO: 367) Example 13
PtIP-83Aa Variants with Multiple Amino Acid Substitutions in Motif A and Motif C
Motif A PtIP-83cmbM1-1 SEQ ID NO: 236 PtIP-83cmbM1-2 SEQ ID NO: 237 PtIP-83cmbM1-4 SEQ ID NO: 239 PtIP-83cmbM1-6 SEQ ID NO: 241 PtIP-83cmbM1-12 SEQ ID NO: 247 PtIP-83cmbM1-15 SEQ ID NO: 250 PtIP-83cmbM1-16 SEQ ID NO: 251 PtIP-83cmbM1-18 SEQ ID NO: 253 PtIP-83cmbM1-21 SEQ ID NO: 256 PtIP-83cmbM1-22 SEQ ID NO: 257 PtIP-83cmbM1-30 SEQ ID NO: 265 PtIP-83cmbM1-31 SEQ ID NO: 266 PtIP-83cmbM1-32 SEQ ID NO: 267 PtIP-83cmbM1-35 SEQ ID NO: 270 PtIP-83cmbM1-36 SEQ ID NO: 271 PtIP-83cmbM1-37 SEQ ID NO: 272 PtIP-83cmbM1-44 SEQ ID NO: 279 PtIP-83cmbM1-49 SEQ ID NO: 284 PtIP-83cmbM1-51 SEQ ID NO: 286 PtIP-83cmbM1-55 SEQ ID NO: 290 PtIP-83cmbM1-56 SEQ ID NO: 291 PtIP-83cmbM1-60 SEQ ID NO: 295 PtIP-83cmbM1-62 SEQ ID NO: 297 PtIP-83cmbM1-64 SEQ ID NO: 299 Motif C PtIP-83cmbM3-2 SEQ ID NO: 335 PtIP-83cmbM3-5 SEQ ID NO: 338 PtIP-83cmbM3-9 SEQ ID NO: 342 PtIP-83cmbM3-11 SEQ ID NO: 344 PtIP-83cmbM3-16 SEQ ID NO: 349 PtIP-83cmbM3-19 SEQ ID NO: 352 PtIP-83cmbM3-20 SEQ ID NO: 353 PtIP-83cmbM3-23 SEQ ID NO: 356 PtIP-83cmbM3-24 SEQ ID NO: 357 PtIP-83cmbM3-25 SEQ ID NO: 358 PtIP-83cmbM3-30 SEQ ID NO: 363 PtIP-83Aa SEQ ID NO: 2 VKRLYVFADVVELP WRAKCKNVA 0 SEQ ID NO: 1 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 1) 564 of SEQ ID NO: 1) PtIP-83cmbM1xM3-1 SEQ ID NO: 368 VKHLYIFTDVLELP WHGKCKNVA S533F 7 SEQ ID NO: 398 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 398) 564 of SEQ ID NO: 398) PtIP-83cmbM1xM3-2 SEQ ID NO: 369 VKHLYIFTDVLELP WLARCKNVA 6 SEQ ID NO: 399 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 399) 564 of SEQ ID NO: 399) PtIP-83cmbM1xM3-3 SEQ ID NO: 370 VKHLYIFTDVLELP WQARCKHVA 7 SEQ ID NO: 400 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 400) 564 of SEQ ID NO: 400) PtIP-83cmbM1xM3-4 SEQ ID NO: 371 VKHLYVFADVIELP WQARCKHVA 5 SEQ ID NO: 401 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 401) 564 of SEQ ID NO: 401) PtIP-83cmbM1xM3-5 SEQ ID NO: 372 VKHLYVFADVIELP WRARCKNVA 3 SEQ ID NO: 402 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 402) 564 of SEQ ID NO: 402) PtIP-83cmbM1xM3-6 SEQ ID NO: 373 VKQLYIFCDVLELP WQARCKNVA 6 SEQ ID NO: 403 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 403) 564 of SEQ ID NO: 403) PtIP-83cmbM1xM3-7 SEQ ID NO: 374 VKRFYIFADIVELP WIGKCKNVA 5 SEQ ID NO: 404 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 404) 564 of SEQ ID NO: 404) PtIP-83cmbM1xM3-8 SEQ ID NO: 375 VKRFYIFADIVELP WTVKCKNVA 5 SEQ ID NO: 405 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 405) 564 of SEQ ID NO: 405) PtIP-83cmbM1xM3-9 SEQ ID NO: 376 VKRLYIFADIIELP WMVKCKNVA 5 SEQ ID NO: 406 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 406) 564 of SEQ ID NO: 406) PtIP-83cmbM1xM3-10 SEQ ID NO: 377 VKRLYIFADIIELP WQARCKNVA 5 SEQ ID NO: 407 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 407) 564 of SEQ ID NO: 407) PtIP-83cmbM1xM3-11 SEQ ID NO: 378 VKRLYIFADIIELP WRGKCKSVA K52E, 7 SEQ ID NO: 408 (a.a. 53-66 of (a.a. 556- K505N SEQ ID NO: 408) 564 of SEQ ID NO: 408) PtIP-83cmbM1xM3-12 SEQ ID NO: 379 VKRLYIFADIIELP WRGRCKTVA 6 SEQ ID NO: 409 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 409) 564 of SEQ ID NO: 409) PtIP-83cmbM1xM3-13 SEQ ID NO: 380 VKRLYIFTDVIELP WIGKCKNVA 5 SEQ ID NO: 410 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 410) 564 of SEQ ID NO: 410) PtIP-83cmbM1xM3-14 SEQ ID NO: 381 VKRLYVFCDIIELP WLARCKNVA 5 SEQ ID NO: 411 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 411) 564 of SEQ ID NO: 411) PtIP-83cmbM1xM3-15 SEQ ID NO: 382 VKRLYVFSDIIELP WIGKCKNVA 5 SEQ ID NO: 412 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 412) 564 of SEQ ID NO: 412) PtIP-83cmbM1xM3-16 SEQ ID NO: 383 VKRLYVFSDIIELP WRGRCKTVA 6 SEQ ID NO: 413 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 413) 564 of SEQ ID NO: 413) PtIP-83cmbM1xM3-17 SEQ ID NO: 384 VKRLYVFSDVIELP WRGKCKSVA 4 SEQ ID NO: 414 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 414) 564 of SEQ ID NO: 414) PtIP-83cmbM1xM3-18 SEQ ID NO: 385 VKRLYVFSDVIELP WRVKCKNVA 3 SEQ ID NO: 415 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 415) 564 of SEQ ID NO: 415) PtIP-83cmbM1xM3-19 SEQ ID NO: 386 VMRLYIFADVVELP WRGKCKSVA 4 SEQ ID NO: 416 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 416) 564 of SEQ ID NO: 416) PtIP-83cmbM1xM3-20 SEQ ID NO: 387 VRHLYIFCDVIELP WIGKCKNVA 7 SEQ ID NO: 417 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 417) 564 of SEQ ID NO: 417) PtIP-83cmbM1xM3-21 SEQ ID NO: 388 VRHLYIFSDVVELP WMVKCKNVA 6 SEQ ID NO: 418 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 418) 564 of SEQ ID NO: 418) PtIP-83cmbM1xM3-22 SEQ ID NO: 389 VRHLYIFSDVVELP WRGKCKSVA K505N 7 SEQ ID NO: 419 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 419) 564 of SEQ ID NO: 419) PtIP-83cmbM1xM3-23 SEQ ID NO: 390 VRQLYVFCDVLVLP WHGKCKNVA 7 SEQ ID NO: 420 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 420) 564 of SEQ ID NO: 420) PtIP-83cmbM1xM3-24 SEQ ID NO: 391 VRQLYVFCDVLVLP WLGRCKNVA 8 SEQ ID NO: 421 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 421) 564 of SEQ ID NO: 421) PtIP-83cmbM1xM3-25 SEQ ID NO: 392 VRQLYVFCDVLVLP WRGKCKSVA M1I 8 SEQ ID NO: 422 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 422) 564 of SEQ ID NO: 422) PtIP-83cmbM1xM3-26 SEQ ID NO: 393 VRRLYIFADILELP WMVKCKNVA 6 SEQ ID NO: 423 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 423) 564 of SEQ ID NO: 423) PtIP-83cmbM1xM3-27 SEQ ID NO: 394 VRRLYVFCDVVVLP WRARCKNVA 4 SEQ ID NO: 424 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 424) 564 of SEQ ID NO: 424) PtIP-83cmbM1xM3-28 SEQ ID NO: 395 VRRLYVFTDVLVLP WIGKCKNVA 6 SEQ ID NO: 425 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 425) 564 of SEQ ID NO: 425) PtIP-83cmbM1xM3-29 SEQ ID NO: 396 VRRLYVFTDVLVLP WRARCKNVA 5 SEQ ID NO: 426 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 426) 564 of SEQ ID NO: 426) PtIP-83cmbM1xM3-30 SEQ ID NO: 397 VRRLYVFTDVLVLP WTVKCKNVA 6 SEQ ID NO: 427 (a.a. 53-66 of (a.a. 556- SEQ ID NO: 427) 564 of SEQ ID NO: 427) Example 14
PtIP-83Aa Variants with Multiple Amino Acid Substitutions
76 S04359885 SEQ ID NO: 428 SEQ ID NO: 518 76 S04359888 SEQ ID NO: 429 SEQ ID NO: 519 73 S04359896 SEQ ID NO: 430 SEQ ID NO: 520 73 S04359899 SEQ ID NO: 431 SEQ ID NO: 521 77 S04359902 SEQ ID NO: 432 SEQ ID NO: 522 76 S04359909 SEQ ID NO: 433 SEQ ID NO: 523 77 S04359911 SEQ ID NO: 434 SEQ ID NO: 524 75 S04359942 SEQ ID NO: 435 SEQ ID NO: 525 74 S04359944 SEQ ID NO: 436 SEQ ID NO: 526 73 S04359948 SEQ ID NO: 437 SEQ ID NO: 527 81 S04359951 SEQ ID NO: 438 SEQ ID NO: 528 80 S04359988 SEQ ID NO: 439 SEQ ID NO: 529 81 S04359991 SEQ ID NO: 440 SEQ ID NO: 530 77 S04360034 SEQ ID NO: 441 SEQ ID NO: 531 76 S04360059 SEQ ID NO: 442 SEQ ID NO: 532 73 S04360064 SEQ ID NO: 443 SEQ ID NO: 533 73 S04360087 SEQ ID NO: 444 SEQ ID NO: 534 73 S04360095 SEQ ID NO: 445 SEQ ID NO: 535 77 S04360104 SEQ ID NO: 446 SEQ ID NO: 536 74 S04360110 SEQ ID NO: 447 SEQ ID NO: 537 77 S04360119 SEQ ID NO: 448 SEQ ID NO: 538 73 S04360122 SEQ ID NO: 449 SEQ ID NO: 539 75 S04360130 SEQ ID NO: 450 SEQ ID NO: 540 78 S04360132 SEQ ID NO: 451 SEQ ID NO: 541 93 S04360136 SEQ ID NO: 452 SEQ ID NO: 542 93 S04360141 SEQ ID NO: 453 SEQ ID NO: 543 77 S04360143 SEQ ID NO: 454 SEQ ID NO: 544 76 S04360146 SEQ ID NO: 455 SEQ ID NO: 545 75 S04360160 SEQ ID NO: 456 SEQ ID NO: 546 79 S04360435 SEQ ID NO: 457 SEQ ID NO: 547 77 S04360466 SEQ ID NO: 458 SEQ ID NO: 548 77 S04360467 SEQ ID NO: 459 SEQ ID NO: 549 73 S04360469 SEQ ID NO: 460 SEQ ID NO: 550 78 S04360485 SEQ ID NO: 461 SEQ ID NO: 551 80 S04360504 SEQ ID NO: 462 SEQ ID NO: 552 76 S04360545 SEQ ID NO: 463 SEQ ID NO: 553 77 S04360574 SEQ ID NO: 464 SEQ ID NO: 554 76 S04360579 SEQ ID NO: 465 SEQ ID NO: 555 74 S04360592 SEQ ID NO: 466 SEQ ID NO: 556 79 S04360619 SEQ ID NO: 467 SEQ ID NO: 557 77 S04360626 SEQ ID NO: 468 SEQ ID NO: 558 77 S04360660 SEQ ID NO: 469 SEQ ID NO: 559 78 S04360664 SEQ ID NO: 470 SEQ ID NO: 560 77 S04360699 SEQ ID NO: 471 SEQ ID NO: 561 76 S04360787 SEQ ID NO: 472 SEQ ID NO: 562 99 S04363576 SEQ ID NO: 473 SEQ ID NO: 563 97 S04363577 SEQ ID NO: 474 SEQ ID NO: 564 95 S04363578 SEQ ID NO: 475 SEQ ID NO: 565 97 S04363579 SEQ ID NO: 476 SEQ ID NO: 566 97 S04363580 SEQ ID NO: 477 SEQ ID NO: 567 95 S04363584 SEQ ID NO: 478 SEQ ID NO: 568 97 S04363585 SEQ ID NO: 479 SEQ ID NO: 569 96 S04363587 SEQ ID NO: 480 SEQ ID NO: 570 96 S04363588 SEQ ID NO: 481 SEQ ID NO: 571 97 S04363593 SEQ ID NO: 482 SEQ ID NO: 572 95 S04363594 SEQ ID NO: 483 SEQ ID NO: 573 96 S04363600 SEQ ID NO: 484 SEQ ID NO: 574 97 S04363605 SEQ ID NO: 485 SEQ ID NO: 575 96 S04363608 SEQ ID NO: 486 SEQ ID NO: 576 96 S04363609 SEQ ID NO: 487 SEQ ID NO: 577 97 S04363612 SEQ ID NO: 488 SEQ ID NO: 578 94 S04363619 SEQ ID NO: 489 SEQ ID NO: 579 97 S04363623 SEQ ID NO: 490 SEQ ID NO: 580 94 S04363625 SEQ ID NO: 491 SEQ ID NO: 581 93 S04363626 SEQ ID NO: 492 SEQ ID NO: 582 97 S04363629 SEQ ID NO: 493 SEQ ID NO: 583 96 S04363631 SEQ ID NO: 494 SEQ ID NO: 584 95 S04363632 SEQ ID NO: 495 SEQ ID NO: 585 94 S04363638 SEQ ID NO: 496 SEQ ID NO: 586 98 S04363643 SEQ ID NO: 497 SEQ ID NO: 587 97 S04363644 SEQ ID NO: 498 SEQ ID NO: 588 97 S04363646 SEQ ID NO: 499 SEQ ID NO: 589 95 S04363648 SEQ ID NO: 500 SEQ ID NO: 590 96 S04363659 SEQ ID NO: 501 SEQ ID NO: 591 94 S04363660 SEQ ID NO: 502 SEQ ID NO: 592 96 S04363662 SEQ ID NO: 503 SEQ ID NO: 593 97 S04363663 SEQ ID NO: 504 SEQ ID NO: 594 64 S04367796 SEQ ID NO: 505 SEQ ID NO: 595 83 S04367808 SEQ ID NO: 506 SEQ ID NO: 596 76 S04367849 SEQ ID NO: 507 SEQ ID NO: 597 78 S04367850 SEQ ID NO: 508 SEQ ID NO: 598 80 S04367851 SEQ ID NO: 509 SEQ ID NO: 599 78 S04367860 SEQ ID NO: 510 SEQ ID NO: 600 77 S04367872 SEQ ID NO: 511 SEQ ID NO: 601 77 S04367882 SEQ ID NO: 512 SEQ ID NO: 602 79 S04367903 SEQ ID NO: 513 SEQ ID NO: 603 78 S04367917 SEQ ID NO: 514 SEQ ID NO: 604 78 S04367945 SEQ ID NO: 515 SEQ ID NO: 605 80 S04367977 SEQ ID NO: 516 SEQ ID NO: 606 78 S04367983 SEQ ID NO: 517 SEQ ID NO: 607 87 S04371015 SEQ ID NO: 718 SEQ ID NO: 728 88 S04371039 SEQ ID NO: 719 SEQ ID NO: 729 84 S04371062 SEQ ID NO: 720 SEQ ID NO: 730 86 S04371086 SEQ ID NO: 721 SEQ ID NO: 731 73 S04382521 SEQ ID NO: 722 SEQ ID NO: 732 84 S04382532 SEQ ID NO: 723 SEQ ID NO: 733 98 S04382574 SEQ ID NO: 724 SEQ ID NO: 734 88 S04382581 SEQ ID NO: 725 SEQ ID NO: 735 89 S04382591 SEQ ID NO: 726 SEQ ID NO: 736 87 S04382601 SEQ ID NO: 727 SEQ ID NO: 737 99 1 S04363576 98 2 S04363643, S04382574 97 12 S04363646, S04363629, S04363612, S04363663, S04363585, S04363580, S04363623, S04363579, S04363605, S04363644, S04363593, S04363577 96 8 S04363662, S04363587, S04363631, S04363659, S04363608, S04363600, S04363588, S04363609 95 5 S04363648, S04363632, S04363584, S04363594, S04363578 94 4 S04363660, S04363619, S04363625, S04363638 93 3 S04363626, S04360136, S04360141 89 1 S04382591 88 2 S04371039, S04382581 87 2 S04371015, S04382601 86 1 S04371086 84 2 S04371062, S04382532 83 1 S04367808 81 2 S04359951, S04359991 80 4 S04360504, S04367851, S04367977, S04359988 79 3 S04367903, S04360435, S04360619 78 8 S04367983, S04367945, S04367850, S04360485, S04367917, S04360664, S04360132, S04367860 77 14 S04367872, S04360467, S04360119, S04367882, S04360104, S04360626, S04359902, S04360143, S04359911, S04360034, S04360660, S04360574, S04360466, S04360699 76 9 S04359909, S04360787, S04359888, S04359885, S04360579, S04360146, S04360059, S04367849, S04360545 75 3 S04359942, S04360130, S04360160 74 3 S04360592, S04360110, S04359944 73 9 S04359896, S04360122, S04360469, S04360087, S04359899, S04360064, S04360095, S04359948, S04382521 64 1 S04367796 Example 14
Specific Binding of Certain PtIP-83 Proteins to Insect Brush Border Membrane Vesicle (BBMV) and Heterologous Competition Binding Studies
Heterologous Competition Binding Results Labeled Protein Unlabeled Protein CEW SBL FAW PtIP-83Aa PtIP-83Cb No No No (SEQ ID NO: 1) (SEQ ID NO: 7) PtIP-83Cb PtIP-83Aa No No No (SEQ ID NO: 7) (SEQ ID NO: 1) PtIP-83Aa PtIP-83Gb No NT No (SEQ ID NO: 1) (SEQ ID NO: 798) PtIP-83Gb PtIP-83Aa No NT No (SEQ ID NO: 798) (SEQ ID NO: 1) PtIP-83Cb PtIP-83Gb Yes NT NT (SEQ ID NO: 7) (SEQ ID NO: 798) PtIP-83Gb PtIP-83Cb Yes NT NT (SEQ ID NO: 798) (SEQ ID NO: 7) *Yes—binding sites are shared in heterologous competition binding assay; No—binding sites are not shared in heterologous binding assay; NT—Not tested