The present invention provides an optical transmitter that enables to distinguish failure modes of the auto-power control (APC) of the laser diode (LD). The transmitter provides the APC circuit comprised of the driver for supplying the driving current, the LD, the PD for monitoring a portion of the output light from the LD, and the control unit for setting the driving current. The control unit monitors, at regular intervals, the bias current to the LD and the time differential of the bias current. The control unit only stops the APC circuit when both the bias current and the time differential of the bias current exceed respective references.
1. An optical transmitter, comprising:
a semiconductor laser diode that emits an optical signal; a driver that provides a driving current for the laser diode; a photodiode configured to sense a portion of the optical signal emitted from the laser diode and to generate a sensing signal corresponding to the portion of the optical signal; and a control unit configured to provide a control signal to the driver based on the sensing signal to keep the sensing signal constant, wherein the control unit is configured to monitor the driving current at regular intervals to generate a monitoring signal corresponding to a magnitude of the driving current and a time differential of the monitoring signal, to compare the monitoring signal with a first reference and the time differential of the monitoring signal with a second reference, to set an alarm when the monitoring signal exceeds the first reference, and to set the control signal so as to stop a supply of the driving current to the laser diode when the monitoring signal exceeds the first reference and the time differential of the monitoring signal exceeds the second reference. 2. The optical transmitter according to wherein the control unit includes a temperature sensor, the first reference being changed depending on the temperature. 3. The optical transmitter according to wherein the control unit generates the monitoring signal through a monitoring of the control signal at regular intervals. 4. The optical transmitter according to further comprising a current monitor for directly monitoring the driving current, wherein the control unit generates the monitoring signal by averaging the control signal to be provided to the driver and an output of the current monitor of the driving current. 5. A method for controlling an auto-power control for a semiconductor laser diode installed in an optical transmitter, the auto-power control being configured by the laser diode, a photodiode for monitoring an optical output from the laser diode, a driver for providing a driving current to the laser diode, and a control unit configured to compare the optical output with a reference and to generate a control signal so as to become the optical output substantially equal to the reference, the driver setting the driving current based on the control signal output from the control unit, the method comprising steps of:
(a) monitoring the driving current at regular intervals; (b) comparing a magnitude of the driving current with a first reference, and a time differential of the driving current with a second reference; (c) setting an alarm when the magnitude of the driving current exceeds a first reference; and (d) setting the control signal by the control unit so as to stop the driving current when the magnitude of the driving current exceeds the first reference and the time differential of the driving current exceeds a second reference. 6. The method according to wherein the controller includes a memory for storing a set of first references in connection with temperatures and a sensing unit including a temperature sensor, wherein the step (b) includes steps of, (b-1) reading the temperature of the optical transmitter by the temperature sensor, (b-2) reading one of the first references corresponding to the temperature, (b-3) comparing the magnitude of the driving current with the one of the first references, and (b-4) comparing the time differential of the driving current with the second reference. 7. The method according to wherein the step (b-2) includes steps of, reading a plurality of first references in connection with the temperature sensed by the temperature sensor at the step (b-1), and calculating a value corresponding to the first reference to be compared with the magnitude of the driving current by the interpolation or the extrapolation of the first references read from the memory. 8. The method according to wherein the step (a) includes, reading the control signal provided to the driver, reading the driving current supplied to the laser diode, and averaging the read control signal and the read driving current to obtain a value to be compared with the first reference. 9. The method according to wherein the control unit includes a memory to store conditions for the driving current in connection with the temperature, wherein the step (b) includes, (b-1) reading a first condition from the memory in connection with the present temperature, (b-2) reading a second condition from the memory in connection with a temperature under which a previous driving current is monitored, (b-3) correcting the previously monitored driving current by multiplying a ratio of the first condition to the second condition, and (b-4) calculating the time differential of the driving current by a difference between the presently monitored driving current and the corrected driving current. 10. The method according to wherein the controller includes a memory for storing a set of first references in connection with temperatures and a sensing unit including a temperature sensor, wherein the step (b) includes steps of, (b-1) sensing the temperature of the LD by the temperature sensor, (b-2) reading the first references corresponding to the temperature sensed by the temperature sensor at the step (b-1), (b-3) comparing the magnitude of the driving current with the one of the first references, and (b-4) comparing the time differential of the driving current with the second reference.
1. Field of the Invention The present invention relates to an optical transmitter with an auto-power control (hereafter denoted as APC) circuit able to detect a time differential of a bias current applied to a semiconductor laser diode (LD). 2. Related Prior Art Conventional optical transmitter generally installs the APC circuit to stabilize an average power and an extinction ratio of an optical output from the transmitter. A photodiode (PD) installed within the optical transmitter detects a portion of the output light from the LD, and a controller that is also installed within the transmitter adjusts bias and modulation currents provided to the LD so as to keep the detected output light constant. To detect an extraordinary status of the APC circuit, various techniques have been well known such as methods disclosed in Japanese Patent published as JP-2000-022631A or in the U.S. Pat. No. 6,952,531. The former prior art has disclosed the APC circuit that, when the bias current to the LD abnormally increases due to the degradation of the LD, sets an alarm of the bias current and changes the driving mode of the LD to generate an optical power with a predetermined strength. The latter art has disclosed another APC circuit configured to compare signals each input from the transmitter and the receiver with a reference and to turn off the transceiver according to the comparison. Various factors to cause an abnormally status in the APC circuit are: (1) excess power from the LD due to a failure in the monitoring circuit including the PD, and (2) insufficient power of the LD due to the aging of the LD. These failures are detectable by the controller as an extraordinary in the bias current. For the former case, it is preferable to turn off the LD promptly from the view point of the eye safety or to prevent the optical receiver from being damaged by the excess powered light. On the other hand, for the second case, it is preferable only to set an alarm flag for the upper system but to continue the optical output to maintain the optical communication because, even the output power degrades, the optical communication may be often carried out. However, the conventional APC circuit sometimes fails to maintain the optical transmission because, when the LD is replaced due to the degradation of the optical output by the aging, a fixed reference can not be adapted to the new LD. This is due to a reason that above two cases are undistinguishable to each other by the conventional system when the alarm is detected at the replacement of the LD. While, the method for shutting down the optical output based on the comparison of the optical output with the reference sometimes causes the failure of the whole communication system because of the complete shutting down of the optical signal. The present invention has a feature to provide an optical transmitter that enables, in the APC circuit, to control the optical output depending on reasons to set the alarm. One aspect of the present invention relates to a configuration of an optical transmitter that includes a semiconductor laser diode, a driver, a photodiode, and a control unit. The laser diode emits an optical signal with a magnitude by being provided with a driving current from the driver. The photodiode monitors a portion of the optical signal. The control unit, by receiving the output of the photodiode and by comparing this output with a preset reference, outputs a condition for the driver so as to keep the output from the photodiode substantially equal to the preset reference. Thus, the laser diode, photodiode, the driver and the control unit configure an auto-power control circuit for the laser diode. In the present optical transmitter according to the invention further provides a function in the control unit that the control unit (a) monitors the driving current directly or indirectly at regular intervals, (b) generates a monitoring signal corresponding to a magnitude of the driving current and a time differential of the monitoring signal, (c) compares the monitoring signal with a first reference and the time differential with a second reference, (d) sets an alarm when the monitoring signal exceeds the first reference, and (e) sets the control signal to the driver so as to stop the supply of the driving current when two failures, one of which is the driving current exceeds the first reference and the other of which is the time differential of the driving current exceeds the second reference, occur. Another aspect of the present invention relates to a method for controlling the auto-power control circuit that is comprised of the laser diode, the photodiode, the control unit and the driver. A feature of the present method is that the control unit is configured to monitor the driving current at regular intervals, to compare the magnitude of the driving current with the first reference and the time differential of the driving current with the second reference, to set the alarm only when the magnitude of the driving current exceeds the first reference, and to set the control signal provided to the driver by the control unit so as to stop the driving current only when both modes, one of which is that the driving current exceeds the first reference and the other of which is that the time differential of the driving current exceeds the second reference, occur. According to the present invention, the control unit only sets the alarm when the driving current exceeds the first reference, and sets the control signal to the driver so as to stop the supply of the driving current only when two modes occur, one is that the driving current exceeds the first reference and the other is that the time differential exceeds the second reference. Thus, the present invention may distinguish two types of failures. One is a fatal failure when the feedback loop of the auto-power control breaks down due to, for instance, a breakdown of devices, which accompany with a large time differential of the driving current. While, the other failure, such as an aging of the laser diode, often accompanies with an increase of the driving current but no large time differential of the driving current. The control unit of the present invention only sets the alarm flag for the latter failure, thus, the optical transmitter may continue to emit the optical signal. Next, preferred embodiments of the present invention will be described as referring to accompanying drawings. In the description of drawings, the same numerals or the same symbols will refer to the same elements without overlapping explanations. The anode of the LD 2 receives the bias supply Vcc, while the cathode thereof is connected with output terminals of the driver 3. The driver 3, depending on control signals, Cm and Cb, provides the modulation current IM and the bias current IB to the LD 2. The driver 3 modulates the modulation current IM by the input signals, Data+ and Data− complementary to each other, which are provided from the outside of the optical transmitter The power supply Vcc is provided to the anode of the LD 2 and the cathode of the PD 4. The PD 4, by receiving a portion of the signal light SOUT, generates a photocurrent IMON corresponding to the magnitude of the light SOUT. The control unit 5 includes a logic unit 6, two digital-to-analog converters (hereafter denoted as D/A-C), 7 The monitoring unit 8 includes a resistor 10 and an analog-to-digital converter 12 (hereafter denoted as A/D-C). The resistor 11, connected to the anode of the PD 4, converts the photocurrent IMON into a corresponding voltage signal VMON. The A/D-C 12, connected to a node between the PD 4 and the resistor 11, converts the voltage signal VMON to a digital signal. The sensing unit 9 includes a sensor 13, such as thermistor, installed within the transmitter 1 and a second A/D-C 14 interposed between the sensor and the logic unit 6 to convert an analog signal VT that corresponds to the temperature of the optical transmitter 1 into a digital signal to guide it to the logic unit 6. The logic unit 6, which is an arithmetic unit including a central processing unit (CPU) or a digital signal processor, is configured to receive a digital signal that corresponds to the signal VMON, to compare this digital signal with a reference, and to output control signals with a digital form to respective D/C-Cs, 7 The operation of the logic unit will be specifically described. The logic unit 6 sets two digital signals to the D/A-Cs, 7 Moreover, the logic unit 6 of the present embodiment provides a function to detect an extraordinary mode of the APC operation. That is, the logic unit 6 monitors the bias current IB for the LD 2 at regular intervals Δt, and evaluates a time differential of the bias current. The logic unit 6, when the magnitude of the bias current or the time differential thereof shows an extraordinary state, outputs an alarm signal ALM to the port 16 and stops the supply of the driving current including the bias current and the modulation current to the LD 2. Specifically, the logic unit 6 monitors the bias current, or the control signal in a digital form to set the bias current IB, at a regular interval Δt. Assuming the control signal for the bias current at a time t and at a time t−Δt are, IB(t) and IB(t−Δt), respectively, the control unit 6 may calculate the time differential ΔIB/Δt of the control signal by:
The memory 1 may store a set of first references each corresponding to a temperature of the optical transmitter 1, that is, the memory 10 The description above assumes that the second reference ΔIBTh is constant, but the memory 10 The interval Δt to evaluate the time differential is preferable to be shorter than 100 msec from a view point of the eye safety, which brings to an advantage that, during such relatively shorter interval, the temperature of the optical transmitter 1 may be unchanged and is unnecessary to consider the temperature dependence for the second reference. When the logic unit 6 is forced to set the interval Δt relatively longer, sometimes longer than 1 minute, due to the performance of the logic unit 6 themselves, or occasionally it is unnecessary to consider the eye safety, the logic unit 6 may determine the time differential ΔIB/Δt by reading out data stored in another memory 10 That is, the memory stores a set of initial conditions for the bias current, IINIT(T0), IINIT(T1), . . . , IINIT(Tn), each corresponding to the temperatures, T0, T1, . . . , Tn. These initial conditions for the bias current IB may be measured at the production of the optical transmitter 1 when the characteristics of the LD 2 including the temperature dependence of various parameters thereof are measured as varying the temperatures. The logic unit 6, assuming the bias current and the temperature at a time t are IB(t) and Temp (t), respectively, may read out the initial condition IBINIT(Temp(t) ) from the memory 10 According to thus described optical transmitter 1, the driving currents, IM and IB, are controlled by monitoring the photocurrent IMON in the APC circuit including the LD 2, the PD 4, the control unit 5 and the driver 3. Concurrently, the logic unit 6 within the control unit 5 compares the bias current IM(t) at a time t with the reference IBTh and, in addition to this comparison, the logic unit 6 compares at a time differential of the bias current ΔIB/Δt with the second reference ΔIBTh. Then, depending on these comparisons, the control unit 5 sends the alarm ALM to the host system and/or stops the supply of the driving current, IB and IM, to the LD 2. Thus, the transmitter 1 enables to distinguish two modes of the failure, due to the substantial breakdown of the APC circuit or due to the aging of the LD, and to shut down the transmitter only when the former mode of the failure occurs. The references IBTh to be compared with the bias current IB are variable depending on the temperature of the optical transmitter 1, which takes the temperature dependence of the I-L characteristic of the LD shown in In the above description, the logic unit 6 monitors the bias current IB thorough the control parameter given to the D/A-C 7 In a modification, the logic unit 6 may detect the modulation current IM and the time differential thereof in addition to or instead of the bias current IB. Further, in a case that the APC circuit controls the maximum IB+IM and the minimum IB of the driving current, or controls the average (IB+IM)/2 and the amplitude of the modulation signal given to the LD 2, the logic unit 6 may compare such various parameters and time differentials thereof with respective references. Moreover, the memory, 10 In the present optical transmitter 1, the memory 10 The embodiment above described senses the temperature of the optical transmitter 1. However, the sensor 13 within the sensing unit 9 may detect a temperature of the LD 2, and the memory 10BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF DRAWINGS
DESCRIPTION OF PREFERRED EMBODIMENTS
Δ
Then, the logic unit 6 reads a first reference, which depends on the temperature of the optical transmitter 1, from a memory 10
Thus, the logic unit 6 may calculate the time differential ΔIB/Δt with omitting the influence of the change in the temperature.