There is provided a prober provided with a plurality of inspection chambers. Each inspection chambers includes: a probe card having a plurality of probes; a probe card holder configured to hold the probe card; a chuck top configured to place a cleaning wafer thereon; an aligner configured to drive the chuck top in a vertical direction when the probe card is cleaned using the cleaning wafer; a seal mechanism configured to allow a sealed space to be provided between the probe card holder and the chuck top; a pressure sensor configured to detect an internal pressure of the sealed space, which fluctuates with an operation of the chuck top driven by the aligner; and an electro-pneumatic regulator configured to control the internal pressure of the sealed space by performing an intake or exhaust operation with respect to the sealed space based on the internal pressure detected by the pressure sensor.
1. A prober comprising a plurality of inspection chambers,
wherein each of the plurality of inspection chambers comprises: a probe card provided with a plurality of probes; a probe card holder configured to hold the probe card; a chuck top configured to place a cleaning wafer thereon; an aligner configured to drive the chuck top in a vertical direction when the probe card is cleaned using the cleaning wafer; a seal mechanism configured to allow a sealed space to be provided between the probe card holder and the chuck top; a pressure sensor configured to detect an internal pressure of the sealed space, which fluctuates with an operation of the chuck top driven by the aligner; and an electro-pneumatic regulator configured to control the internal pressure of the sealed space by performing an intake or exhaust operation with respect to the sealed space based on the internal pressure detected by the pressure sensor. 2. The prober of a check valve configured to exhaust the sealed space when the internal pressure of the sealed space exceeds a preset pressure. 3. The prober of 4. The prober of 5. A method of cleaning a probe card, the method comprising:
transferring a chuck top on which a cleaning wafer is placed to a position below a probe card having probes provided to be brought into contact with a wafer; forming, by a seal mechanism, a sealed space between a probe card holder configured to hold the probe card and the chuck top; operating an aligner configured to drive the chuck top in a vertical direction such that the cleaning wafer comes into contact with the probes; and controlling an internal pressure of the sealed space by performing, using an electro-pneumatic regulator, an intake or exhaust operation with respect to the sealed space, based on the internal pressure of the sealed space, wherein the internal pressure fluctuates with an operation of the chuck top driven by the aligner.
This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2019-156110, filed on Aug. 28, 2019, the entire contents of which are incorporated herein by reference. The present disclosure relates to a prober and a probe card cleaning method. A prober can be thought of as an inspection apparatus for inspecting a wafer on which a large number of semiconductor devices are formed. The prober includes a probe card having probes that are a plurality of column-shaped contact terminals. In the prober, each probe is brought into contact with an electrode pad or solder bump in each semiconductor device by bringing the wafer into contact with the probe card. Further, the prober supplies electric current to the electric circuit of a semiconductor device, which is connected to each electrode pad or each solder bump, thereby inspecting the conduction state of the electric circuit. Patent Document 1: Japanese Laid-Open Patent Publication No. 2017-112259 According to one embodiment of the present disclosure, there is provided a prober provided with a plurality of inspection chambers, wherein each of the plurality of inspection chambers comprises: a probe card provided with a plurality of probes; a probe card holder configured to hold the probe card; a chuck top configured to place a cleaning wafer thereon; an aligner configured to drive the chuck top in a vertical direction when the probe card is cleaned using the cleaning wafer; a seal mechanism configured to allow a sealed space to be provided between the probe card holder and the chuck top; a pressure sensor configured to detect an internal pressure of the sealed space, which fluctuates with an operation of the chuck top driven by the aligner; and an electro-pneumatic regulator configured to control the internal pressure of the sealed space by performing an intake or exhaust operation with respect to the sealed space based on the internal pressure detected by the pressure sensor. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the present disclosure, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the present disclosure. Hereinafter, embodiments of a prober and a probe card cleaning method disclosed herein will be described in detail with reference to the drawings. The technology disclosed herein is not limited by the following embodiments. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, systems, and components have not been described in detail so as not to unnecessarily obscure aspects of the various embodiments. In recent years, in order to improve wafer inspection efficiency, there has been developed a prober that has a plurality of inspection chambers and is capable of inspecting semiconductor devices of a wafer in one inspection chamber while a wafer is being transferred to another inspection chamber by a transfer device. In this prober, when the wafer is brought into contact with the probe card, the wafer is placed on a chuck top and a space between the probe card and the chuck top is evacuated so as to bring the wafer into contact with the probe card. Here, when the wafer is brought into contact with the probe card, the chuck top is placed on a stage, and the stage moves the chuck top toward the probe card. Then, the chuck top is attracted to the probe card and is separated from the stage. However, as the wafer inspection is repeated, the contact between the electrode pads and the like on the wafer and the probes are repeatedly performed. As a result, tips of the probes may be worn away, and metallic scraps, which are generated due to scraping of the electrode pads or the like, may be attached to the tips of the probes. In view of this, there has been proposed a technique for polishing probes by placing a polishing wafer on a chuck top in a state of being placed on a bulged member and operating an aligner in a Z-axis direction (vertical direction). When the bulged member is used, a space between the probe card and the chuck top is not closed, and thus the operation of the aligner in the Z-axis direction is not hindered. However, the bulged member is required to have a thin structure and be extremely flat. This increases costs. Meanwhile, when the bulged member is not used, the space between the probe card and the chuck top is closed so that the operation of the aligner in the Z-axis direction may be hindered due to a fluctuation in pressure of the space. Therefore, the probes are required to be cleaned without hindering the operation of the aligner in the Z-axis direction even if the space is in the closed state. That is, the probes are required to be cleaned without having to use the bulged member. A plurality of testers 15, each serving as a wafer inspection interface, are arranged in the inspection area 12, and a plurality of inspection chambers 12 The accommodation area 13 is divided into a plurality of accommodation spaces 17. A port 17 In the transfer area 14, a transfer device 18 configured to be movable to the inspection area 12 and the accommodation area 13 is arranged. The transfer device 18 receives the wafer W from the port 17 While the transfer device 18 transfers one wafer W between one inspection chamber 12 In The probe card 19 includes a disk-shaped body 24, a large number of electrodes (not illustrated) arranged on substantially one surface of the top surface of the body 24, and the large number of probes 25 arranged so as to protrude downwards from the bottom surface of the body 24. Each electrode is connected to the respective probe 25. When the wafer W comes into contact with the probe card 19, each probe 25 is brought into close contact with an electrode pad or a solder bump of each semiconductor device formed on the wafer W. The pogo frame 20 includes a substantially flat plate-shaped body 26 and a plurality of pogo block insertion holes 27, which are through-holes formed to be bored in the vicinity of the central portion of the body 26. A pogo block 28 formed by a plurality of pogo pins arranged therein is inserted into each pogo block insertion hole 27. Each pogo block 28 is connected to an inspection circuit (not illustrated) included in the tester 15, and comes into contact with the large number of electrodes on the top surface of the body 24 of the probe card 19 mounted on the pogo frame 20. The pogo block 28 supplies electric current to each probe 25 of the probe card 19 connected to the respective electrode, and also supplies, to the inspection circuit, electric current flowing thereto from the electric circuit of each semiconductor device of the wafer W through each probe 25. The flange 22 is provided with an upper flange 22 Until the chuck top 29 comes into contact with the lower flange 22 A space between the pogo frame 20 and a base 21 of the tester 15 is sealed by a seal member 30 and is evacuated. Thus, the base 21 is attached to the pogo frame 20. A space between the pogo frame 20 and the probe card 19 is also sealed by a seal member 31 and is evacuated. Thus, the probe card 19 is attached to the pogo frame 20. The transfer device 18 includes an aligner 32. The chuck top 29 is placed on the aligner 32, and the wafer W is placed on the upper surface of the chuck top 29. In In addition, the chuck top 29 includes a flow path 50 and a heater 51 provided therein. A coolant is supplied to the flow path 50 from a chiller unit (not illustrated). The coolant supplied to the flow path 50 flows through the flow path 50, and then returns to the chiller unit. A heater power supply (not illustrated) is connected to the heater 51. When power is supplied to the heater 51, the chuck top 29 is heated. The temperature of the chuck top 29 is adjusted by cooling by the coolant circulating throughout the flow path 50 and heating by the heater 51. The transfer device 18 may be moved below the probe card 19 in the inspection chamber 12 The sealed space S is a space formed between the pogo frame 20 and the chuck top 29 when the chuck top 29 comes into contact with the lower flange 22 Meanwhile, during cleaning using the cleaning wafer PW, the sealed space S is not evacuated, and thus the chuck top 29 is not vacuum-suctioned. In this case, since the aligner 32 is moved up and down in the Z-axis direction (vertical direction) in order to repeatedly bring the cleaning wafer PW into contact with the probes 25, the internal pressure of the sealed space S changes. Therefore, the internal pressure of the sealed space S is controlled by the electro-pneumatic regulator 12 The pressure sensor 52 detects the internal pressure of the sealed space S and feeds the same back to the electro-pneumatic regulator 12 A check valve 53 is connected to the sealed space S via an exhaust line 26 The aligner 32 adjusts the position and inclination of the chuck top 29 relative to the probe card 19. Temperature adjustment parts, such as the flow path 50, the heater 51 and the like, implement an inspection under a high-temperature environment or a low-temperature environment. Therefore, the aligner 32 adjusts the position and inclination of the chuck top 29 which are associated with the deformation of the probe card 19 or the chuck top 29 due to the radiation of heat from the heater 51 or the absorption of heat to the flow path 50 in an inspection under a high-temperature environment or a low-temperature environment. The temperature range of the chuck top 29 may be, for example, a range of 130 degrees C. to −30 degrees C. The aligner 32 includes bases and rail-shaped guides corresponding to the X-, Y-, and Z-axis directions, respectively. Each base is movable along each guide. A Z-block provided on the Z base is provided with a substantially disk-shaped chuck base. The chuck base has a chuck top suction surface on the top surface thereof, and the chuck top 29 is vacuum-suctioned to the chuck top suction surface. As a result, the chuck top 29 is placed on and attached to the aligner 32. At this time, the position of the chuck top 29 with respect to the chuck base is defined using a positioning pin, a positioning block or the like. In addition, the aligner 32 includes an upper monitoring camera for monitoring a degree of inclination of the probe card 19 and the pogo frame 20. In addition, the aligner 32 is capable of adjusting the inclination of the chuck top 29 placed thereon by lifting the chuck base using an actuator. Next, a probe card cleaning method according to the first embodiment will be described. In the inspection chamber 12 The chuck top 29 is raised so as to bring the seal mechanism 33 into contact with the lower flange 22 The cleaning of the probe card 19 is performed by controlling the electro-pneumatic regulator 12 Thus, even when the sealed space S is formed, the probes 25 can be cleaned without hindering the operation of the aligner 32 in the Z-axis direction. That is, it is possible to suppress occurrence of a phenomenon in which the cleaning wafer PW excessively collides with the probes 25 or does not come into contact with the probes 25, wherein the phenomenon occurs due to a fluctuation in the pressure. That is, it is possible to clean the probes 25 without having to use the bulged member. In the first embodiment, the cleaning of the probes 25 is performed without vacuum-suctioning the chuck top 29 to the pogo frame 20, but the present disclosure is not limited thereto. For example, the cleaning may be performed by controlling the internal pressure of the sealed space S in the state in which the chuck top 29 is vacuum-suctioned to the pogo frame 20. In this case, the chuck top 29 and the aligner 32 are in the state of being separated from each other, and the contact between the cleaning wafer PW and the probes 25 is repeated through the pressure control performed by the electro-pneumatic regulator 12 In the first embodiment, the pressure detected by the pressure sensor 52 is fed back so that the electro-pneumatic regulator 12 In the first embodiment, the internal pressure of the sealed space S is controlled. However, by controlling the height of the lower flange 22 Compared to the first embodiment, the second embodiment includes a pogo frame 60 and flanges 61 and 62 instead of the pogo frame 20 and the flange 22. As illustrated in The flange 61 has an upper flange 61 The flange 62 has an upper flange 62 The sealed space 64 is formed by the upper flange 62 As described above, in the second embodiment, by moving the lower flange 61 In the second embodiment described above, the space T is not sealed by using the two flanges 61 and 62. However, the space T may not be sealed by providing and evacuating the sealed space within the flange 22 of the first embodiment. In the present modification, the same components as those in the first embodiment are designated by the same reference numerals, and descriptions of the configurations and operations that overlap with the first embodiment will be omitted. Compared to the first embodiment, the modification of the second embodiment includes a pogo frame 70 and a flange 72 instead of the pogo frame 20 and the flange 22. As illustrated in The flange 72 has an upper flange 72 Until the chuck top 29 comes into contact with the lower flange 72 The sealed space 74 is formed by the upper flange 72 As described above, in the modification of the second embodiment, by moving the lower flange 72 As described above, according to the first embodiment, the prober 10 is a prober including the plurality of inspection chambers 12 According to the first embodiment, there is provided the check valve 53 configured to perform the exhaust of gas from the sealed space S when the internal pressure of the sealed space S exceeds a preset pressure. As a result, it is possible to improve followability to the control of the internal pressure of the sealed space S by the electro-pneumatic regulator 12 In addition, according to the first embodiment, the electro-pneumatic regulator 12 According to the present disclosure in some embodiments, it is possible to clean probes without having to use a bulged member. While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosures. Indeed, the embodiments described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosures. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosures.CROSS-REFERENCE TO RELATED APPLICATION
TECHNICAL FIELD
BACKGROUND
PRIOR ART DOCUMENT
Patent Document
SUMMARY
BRIEF DESCRIPTION OF DRAWINGS
DETAILED DESCRIPTION
Configuration of Prober
Probe Card Cleaning Method
Modification
Second Embodiment of Configuration of Prober
Modification of Second Embodiment