A submersible fluid system for operating submerged in a body of water includes a fluid-end with a fluid rotor disposed in a fluid-end housing. An electric machine housing is coupled to the fluid-end housing and has a hermetically sealed cavity containing a fluid at a pressure less than a hydrostatic pressure at a specified depth at which the submersible fluid system is designed to operate. An electric machine is disposed in the cavity of the electric machine housing and includes an electric machine rotor coupled to the fluid rotor and an electric machine stator.
1. A submersible fluid system for operating submerged in a body of water at a specified depth, comprising:
a fluid-end comprising a fluid rotor disposed in a fluid-end housing; an electric machine housing coupled to the fluid-end housing and comprising a hermetically sealed cavity containing a fluid at a pressure less than a hydrostatic pressure at the specified depth; an electric machine disposed in the cavity of the electric machine housing, the electric machine comprising an electric machine stator and an electric machine rotor coupled to the fluid rotor; and a skid; wherein the fluid-end, electric machine housing, and electric machine are carried by the skid, and wherein the skid, fluid-end, electric machine housing, and electric machine are submersible for operation in an open body of water outside of a well. 2. The submersible fluid system of 3. The submersible fluid system of 4. The submersible fluid system of 5. The submersible fluid system of 6. The submersible fluid system of 7. The submersible fluid system of 8. The submersible fluid system of 9. A submersible fluid system for operating submerged in a body of water at a specified depth, comprising:
a fluid-end comprising a fluid rotor disposed in a fluid-end housing; an electric machine housing coupled to the fluid-end housing and comprising a hermetically sealed cavity containing a fluid at a pressure less than a hydrostatic pressure at the specified depth; and an electric machine disposed in the cavity of the electric machine housing, the electric machine comprising an electric machine stator and an electric machine rotor coupled to the fluid rotor; wherein the fluid contained in the sealed cavity of the electric machine housing is about one atmosphere pressure when the submersible fluid system is residing at atmospheric conditions and also when submerged at a specified depth. 10. The submersible fluid system of 11. The submersible fluid system of 12. The submersible fluid system of 13. A method, comprising:
operating, at a depth underwater in an open body of water outside of a well, an electric machine with a rotor of the electric machine and a portion of a stator of the electric machine proximate the rotor residing in a gas environment, the gas being at a pressure less than a hydrostatic pressure at the depth; and operating a fluid-end coupled to the electric machine with a rotor of the fluid-end rotating in unison with the rotor of the electric machine. 14. The method of 15. The method of 16. The method of the method further comprises communicating rotation of the rotor of the electric machine to the rotor of the fluid-end using a magnetic coupling. 17. The method of 18. A submersible fluid system for operating submerged in a body of water at a specified depth, comprising:
a fluid-end comprising a fluid rotor disposed in a fluid-end housing; an electric machine housing coupled to the fluid-end housing and comprising a hermetically sealed cavity containing a gas at a pressure of about one atmosphere when the submersible fluid system is residing at atmospheric conditions and less than a hydrostatic pressure when the submersible fluid system is residing at the specified depth; and an electric machine disposed in the cavity of the electric machine housing, the electric machine comprising an electric machine stator and an electric machine rotor coupled to the fluid rotor; and a skid; wherein the fluid-end, electric machine housing, and electric machine are carried by the skid, and wherein the skid, fluid-end, electric machine housing, and electric machine are submersible for operation in an open body of water outside of a well. 19. The submersible fluid system of 20. The submersible fluid system of
This application is a U.S. National Stage of PCT/US2012/054868 filed on Sep. 12, 2012. Operation of fluid systems such as pumps, compressors, mixers, separators and other such systems submerged underwater is difficult because the operating environment is harsh, particularly if that environment is deep seawater. The water surrounding the system and often the process fluid flowing through the system is corrosive. The ambient environment can be cold, making many materials brittle and causing large thermal expansion/contraction of equipment as the equipment cycles between hot operating and cold not-operating states. The hydrostatic pressure of the water and/or process fluid can be substantial. Furthermore, installation and access to the fluid systems for maintenance and repair is difficult and expensive because the systems are often deployed in geographically remote locations and at depths inaccessible by divers, therefore requiring purpose-built vessels, skilled personnel and robotic equipment. The concepts herein encompass a submersible fluid system for operating submerged in a body of water. The submersible fluid system includes a fluid-end with a fluid rotor disposed in a fluid-end housing. An electric machine housing is coupled to the fluid-end housing and has a hermetically sealed cavity containing a fluid at a pressure less than a hydrostatic pressure at a specified depth at which the submersible fluid system is designed to operate. An electric machine is disposed in the cavity of the electric machine housing and includes an electric machine rotor coupled to the fluid rotor and an electric machine stator. The concepts herein encompass a method where an electric machine is operated, at a depth underwater, with a rotor of the electric machine and a portion of a stator of the electric machine proximate the rotor residing in a gas environment. The gas is at a pressure less than a hydrostatic pressure at the depth. A fluid-end coupled to the electric machine is operated with a rotor of the fluid-end rotating in unison with the rotor of the electric machine. The concepts herein encompass a submersible fluid system for operating submerged in a body of water at a specified depth. The fluid system includes a fluid-end with a fluid rotor disposed in a fluid-end housing. An electric machine housing is coupled to the fluid-end housing and has a hermetically sealed cavity containing a gas at a pressure of about one atmosphere when the submersible fluid system is residing at atmospheric conditions and less than a hydrostatic pressure when the submersible fluid system is residing at the specified depth. An electric machine is disposed in the cavity of the electric machine housing. The electric machine has an electric machine rotor coupled to the fluid rotor and has an electric machine stator. The concepts above can include some, none or all of the following features. In certain instances, the fluid contained in the sealed cavity of the electric machine housing is about one atmosphere pressure when the submersible fluid system is residing at surface atmospheric conditions. In certain instances, the fluid in the cavity is substantially gas when the submersible fluid system is residing at surface atmospheric conditions. The gas can be chemically inert. In certain instances, the fluid system has a plurality of seals sealing the cavity and where the seals are entirely static seals. In certain instances, a magnetic coupling couples the electric machine rotor to the fluid rotor, and in some implementations, with the electric machine rotor out of physical contact with the fluid rotor. In certain instances, the electric machine rotor and the fluid rotor are coupled to rotate at the same speed. In certain instances, the electric machine stator and the electric machine rotor are wholly contained within the sealed cavity. In certain instances, the electric machine has a magnetic bearing supporting the electric machine rotor to rotate within the electric machine stator, and the bearing is wholly contained within the sealed cavity. In certain instances, electric machine is a motor and the fluid rotor includes a pump rotor. In certain instances, the electric machine rotor has a permanent magnet that interacts with the stator to rotate the electric machine rotor relative to the stator or generate electricity when moved relative to the stator. In certain instances, the electric machine housing is radially supported by and in conductive heat transfer with the electric machine stator. In certain instances, the stator has a stator core and electric conductor windings carried by the stator core that cooperate in forming a magnetic field of the stator. The electric conductor windings have end turns that protrude from the stator core. A heat conductive potting compound is provided that fills spaces between the end turns, stator core, and the electric machine housing to facilitate conductive heat transfer there between. Fluid systems of the type disclosed herein act on fluids (“process fluids”) that may comprise substantially single phases, e.g. water, oil or gas, or a mixture of more than one phase (“multiphase”) that may include two or more phases and often entrained solids, e.g. sand, metal particles and/or rust flakes, wax and/or scale agglomerations, etc. Fluid system 100 may be operated submerged in open water e.g. outside of a hydrocarbon production or injection well in a lake, river, ocean or other body of water. To this end, fluid-end 102 and electric machine 104 are packaged within a pressure vessel sealed to prevent passage of fluid between the interior of the pressure vessel and the surrounding environment (e.g. surrounding water). Fluid system 100 components are constructed to withstand ambient pressure about fluid system 100 and thermal loads exerted by the surrounding environment, as well as pressures and thermal loads incurred in operating electric machine 104 and fluid-end 102. In certain instances, e.g. subsea applications, fluid-end 102, electric machine 104 and fluid separator system 108 may be carried on a skid 110 or other structure of fluid system 100 that aligns with, and engages other subsea structures, e.g. by way of guide tubes 112 that capture guide posts of a corresponding subsea structure, or through interaction of a large cone-to-cone-plus-pin-and-cam arrangement (not shown but familiar to those skilled in the art of guidelineless subsea systems). When the fluid system is referred to as a “subsea” fluid system, it is not to say that the fluid system is designed to operate only under the sea. Rather, the subsea fluid system is of a type that is designed to operate under the rigors encountered at or near the bottom of an open body of water, such as an ocean, a lake, a river or other body of salt or fresh water. An auxiliary source of liquids 114 can be interfaced to skid 110 to provide liquids to the system, e.g. corrosion, scale and hydrate inhibiting chemicals. One or more dampers 120 may be affixed external to the fluid system 100 to damp impact of the fluid system 100 with surfaces, such as on a subsea structure or a transportation vessel deck. The dampers 120 may be configured to maintain a level orientation of the fluid system 100 in situations where the surface is not level. The dampers 120 may be fluid dampers or other types of shock or impact absorbing devices. As described in more detail below, electric machine 104 is an alternating current (AC), synchronous, permanent magnet (PM) electric machine having a rotor that includes permanent magnets and a stator that includes a plurality of formed or cable windings and a (typically) stacked-laminations core. In other instances electric machine 104 can be another type of electric machine such as an AC, asynchronous, induction machine where both the rotor and the stator include windings and laminations, or even another type of electric machine. Electric machine 104 can operate as a motor producing mechanical movement from electricity, a generator producing electric power from mechanical movement, or alternate between generating electric power and motoring. In motoring, the mechanical movement output from electric machine 104 can drive fluid-end 102. In generating, fluid-end 102 supplies mechanical movement to electric machine 104, and electric machine 104 converts the mechanical movement into electric power. In instances where fluid-end 102 is driven by electric machine 104, fluid-end 102 can include any of a variety of different devices. For example, fluid-end 102 can include one or more rotating and/or reciprocating pumps, rotating and/or reciprocating compressors, mixing devices, or other devices. Some examples of pumps include centrifugal, axial, rotary vane, gear, screw, lobe, progressing cavity, reciprocating, plunger, diaphragm and/or other types of pumps. Some examples of compressors include centrifugal, axial, rotary vane, screw, reciprocating and/or other types of compressors, including that class of compressors sometimes referred to as “wet gas compressors” that can accommodate a higher liquid content in the gas stream than is typical for conventional compressors. In other instances fluid-end 102 may include one or more of a fluid motor operable to convert fluid flow into mechanical energy, a gas turbine system operable to combust an air/fuel mixture and convert the energy from combustion into mechanical energy, an internal combustion engine, and/or other type of prime mover. In any instance, fluid-end 102 can be single or multi-stage device. While Although shown with a single fluid-end 102, electric machine 104 can also be coupled to two or more fluid-ends 102 (to drive and/or be driven by the fluid-ends 102). In certain instances, one or more fluid-ends 102 can be provided at each end of electric machine 104, and in any orientation relative to electric machine 104. For example, in a configuration with two fluid-ends 102, one may be provided at one end of electric machine 104 and another provided at an opposing end of electric machine 104, and the fluid-ends 102 may be oriented at different angles relative to electric machine 104. In another example, a configuration with two fluid-ends 102 can have one provided at one end of electric machine 104 and another coupled to the first fluid-end 102. Also, if multiple fluid-ends 102 are provided, they need not all be of the same type of device and they need not operate on the same fluid, i.e., they could operate on different fluids. Electric machine 202 disposed within electric machine housing 210 includes an electric machine stator 218 and an electric machine rotor 220. Electric machine housing 210 is coupled to the fluid-end housing 208 and includes a hermetically sealed cavity. The cavity has a gas at a pressure less than the hydrostatic pressure at the specified underwater depth. The electric machine 202 is disposed within the cavity of the electric machine housing. Electric machine stator 218 is interfaced with an external power supply by penetrators/connectors 238 which pass-through lower end-bell 214 Permanent magnets 226 are secured to rotor shaft 221 by a sleeve 228 including any material and/or material construct that does not adversely affect the magnetic field and that satisfies all other design and functional requirements. In certain instances sleeve 228 can be made from an appropriate non-ferrous metal, e.g. American Iron and Steel Institute (AISI) 316 stainless steel or a nickel chromium alloy, e.g. Inconel (a product of Inco Alloys, Inc.), or it can include a composite construct of high strength fibers such as carbon-fiber, ceramic fiber, basalt fiber, aramid fiber, glass fiber, and/or another fiber in e.g. a thermoplastic or thermoset matrix. Permanent magnets 226 provide a magnetic field that interacts with a magnetic field of stator 218 to at least one of rotate electric machine rotor 220 relative to stator 218 in response to electric power supplied to stator 218, or to generate electricity in stator 218 when rotor 220 is moved relative to stator 218. Electric machine rotor 220 is supported to rotate in stator 218 by magnetic bearings 230 Other elements of electric machine 202 are intimately associated with integrated fluid-end 204, and an overview of a few higher-level attributes for submersed fluid system 200 at this juncture may facilitate reader understanding of the functions and integrated operating nature of those other electric machine 202 elements. Certain embodiments of subsea fluid system 200 may include: An electric machine 202 the contents of which operate in a gas environment at nominally 1-atmosphere pressure delivering lower losses than existing technologies (e.g. while its electric machine housing 210 is exposed externally to potentially deep water and associated high pressure); an electric machine 202 that utilizes magnetic bearings 230 While the contents of electric machine 202 was previously described as operating in a nominally 1-atmosphere pressure environment, the fluid system 200 could alternately be configured to maintain the contents of electric machine 202 in an environment compensated to be substantially equal to the pressure of the water around fluid system 200. While the magnetic coupling 258 was previously described with the inner portion 262 in the process fluid and the outer portion 293 in the nominally 1-atmosphere pressure environment of electric machine 202, as an alternative, the magnetic coupling 258 could be provided with the opposite topology, having an inner portion in the nominally 1-atmosphere pressure environment and an outer portion in the process fluid. Electric machine housing 210 (and associated parts) plus magnetic coupling 258 combined with sleeve 235 (and associated parts) establish three substantially separate environments that can be exploited for unprecedented value for submersed fluid systems 200, i.e.: A potentially process-gas-environment inside sleeve 235 at the upper end of fluid-end 204 (otherwise process multiphase fluid or liquid); a nominally 1-atmosphere gas environment outside sleeve 235 and inside electric machine housing 210; an underwater environment outside of electric machine housing 210 (and also outside fluid-end housing 208). In an alternative embodiment, the environment inside electric machine housing 210 may be pressurized (e.g. with gas or liquid) a little or a lot (i.e. any of various levels up to and including that of the process fluid), with accordant tradeoffs in overall system efficiency (increased losses), possibly different cross-section for e.g. electric machine housing 210, upper sleeve 296 and lower sleeve 298, reduced cross-section of sleeve 235 and therefore increased efficiency of magnetic coupling 258, different pressure field across e.g. electric power penetrators, different heat management considerations, etc. With the preceding context, additional description will now be provided for electric machine 202 components and other subsea fluid system 200 components. Consistent with the present disclosure, it is to be understood that process fluid may be used to lubricate and cool fluid-film or other types of bearings 264 In instances where the upstream process fluid is used for lubrication and/or cooling, and the source does not exist at a pressure greater than that at the intended point of use, such process fluid may need to be “boosted.” That is, the pressure of such process fluid may be increased using e.g. a dedicated/separate ancillary pump, an impeller integrated with a rotating element inside subsea fluid system 200, or by some other means. In certain implementations the pressure drop across the fluid-end inlet homogenizer (i.e. mixer) 249 can create a pressure bias sufficient to deliver desired fluids from upstream thereof to e.g. upper radial bearing 264 Regardless the process fluid source, it may be refined and/or cleaned prior to being delivered to the point(s) of use. For example, multiphase fluid may be separated into gas, one or more liquid streams, and solids (e.g. sand, metal particles, etc.), with solids typically diverted to flow into fluid-end 204 via its main inlet 250 and/or collected for disposal. Such fluid separation may be achieved using e.g. gravitational, cyclonic centrifugal and/or magnetic means (among other mechanisms) to achieve fluid properties desired for each point of use. After the fluid has been cleaned, it may also be cooled by passing the refined fluid through e.g. thin-walled pipes and/or thin plates separating small channels, etc. (i.e. heat exchangers) exposed to the water surrounding fluid system 200. Electric machine 202 includes a cap 233 secured to upper end-bell 214 In certain instances sleeve 235 can be a gas-impermeable ceramic and/or glass cylinder maintained “in-compression” for all expected load conditions by an integrated support system, e.g. external compression sleeve 292 for radial support and stub 234-plus-sleeve support ring 270 for axial support. Sleeve 235 including external compression sleeve 292 are ideally made of materials and/or are constructed in such a way as to not significantly obstruct the magnetic field of magnetic coupling 258, and to generate little if any heat from e.g. eddy currents associated with the coupling rotating magnetic field. In certain instances, external compression sleeve 292 can be a composite construct of high strength fibers, such as carbon-fiber, ceramic fiber, basalt fiber, aramid fiber, glass fiber and/or another fiber in e.g. a thermoplastic or thermoset matrix. In certain instances, sleeve 235 can have metalized end surfaces and/or other treatments to facilitate e.g. a metal-to-metal seal with the corresponding surfaces of stub 234 and sleeve support ring 270. In certain embodiments of subsea fluid system 200 electric machine 202 is filled with gas, e.g. air or an inert gas such as nitrogen or argon, at or near 1-atmosphere pressure. Other than vacuum, which is difficult to establish and maintain, and which provides poor heat transfer properties, a very low gas pressure environment provides the best conditions for operating an electric machine efficiently (e.g. low drag loss, etc.), assuming heat produced by the machine can be removed efficiently. When submerged in deep water the pressure outside gas-filled electric machine 202 will collapse e.g. electric machine housing 210 if it is not adequately strong or internally supported. In certain embodiments of subsea fluid system 200 electric machine housing 210 is thin and possibly “finned” to improve transfer of heat between electric machine 202 and the surrounding environment. Machine housing 210 may be tightly fit around stator core 222 and sleeves 296, 298, and its ends similarly may be tightly-fit over support surfaces provided on end-bells 214 Friction between spinning process fluid rotor 206 and fluid inside coupling chamber 244 tends to “drag” the latter along (in the same direction) with the former (and resists motion of the former, consuming energy), but because friction also exists between static sleeve 235 and said fluid (tending to resist fluid motion), the fluid will typically not spin at the same speed as process fluid rotor 206. Centrifugal forces will be established in the spinning process fluid which will cause heavier elements (e.g. solids and dense liquid components) to move outward (toward sleeve 235) while lighter elements (e.g. less dense liquid components and gas that might have been mixed with heavier elements prior to being “spun”) will be relegated to a central core, proximate spinning process fluid rotor 206. The described relative motion between mechanical parts and the fluid, and between different components of the fluid, among other phenomena, produces heat that is later removed from coupling chamber 244 by various mechanisms. Less heat will be generated and less energy will be consumed by spinning process fluid rotor 206 if the fluid proximate spinning process fluid rotor 206 has low density and is easily sheared, which are characteristics of gas. Fluid system 100 can supply gas into coupling chamber 244 whenever gas is available from the process stream, e.g. via stub 234 internal axial conduit 242 (and associated conduits). Regardless the properties of fluid within coupling chamber 244, that (made-hot-by-shearing, etc.) fluid may be displaced with cooler fluid to avoid over-heating proximate and surrounding (e.g. motor) components. The fluid inlet portion of The majority of process fluid enters fluid-end 204 via main inlet 250. Coupling coolant enters electric machine 202 via a port 245 in cap 233, and is directed to coupling chamber 244 by conduit 242. Coolant for radial bearing 264 For fluid in coupling chamber 244 to reach coolant flows mixing chamber 253 it traverses bearing 264 Fluid may also exit bearing chamber 247 by way of seal 256 to emerge in coolant flows mixing chamber 253. An example of a seal that could be used as seal 256 is described more fully below in relation to seal 282 associated with sump top plate 280. Seal 256 has a much smaller clearance relative to rotor sleeve 267 than does cage ring 268 (located at the top of bearing 264 Keeping gas out of bearing chamber 247 and removing it quickly should it come to be present in bearing chamber 247 will promote good performance and long life for fluid-film bearing 264 In some embodiments of subsea fluid system 200, process fluid combined immediately upstream of first impeller 241 at the all-inlets flows-mixing area 243 is downstream-thereof increased in pressure by hydraulic stages including impellers secured to process fluid rotor 206 interacting with interspersed static diffusers (a.k.a. stators). Static and dynamic seals are provided at appropriate locations within the hydraulic stages to minimize back-flow from higher-to-lower pressure regions, thereby improving the hydraulic performance of fluid-end 204. The highest pressure in certain embodiments of subsea fluid system 200 may occur immediately downstream of final-stage impeller 255. By passing through openings 278 provided in balance device stator 263, process fluid enters outlet gallery 257 at a slightly lower pressure, and exits into process fluid outlet 272 which is connected to a downstream pipe system. Total pressure change from final-stage impeller 255 to the point of entry to the downstream pipe may be a reduction (small, if e.g. care is taken in design of balance device stator 263 fluid paths 278, volute geometry is provided in outlet gallery 257, and the transition from outlet gallery 257 is carefully contoured, etc.) or an increase (for some embodiments with some fluids for a well-executed volute). When submersible fluid system 200 is not operating, i.e. when process fluid rotor 206 is not spinning, fluid entering fluid-end housing 208 at inlet 250 and flowing past the hydraulics stages (impellers/diffusers) to exit through outlet 272 will impart relatively little axial force on process fluid rotor 206. When process fluid rotor 206 is spinning, the interaction of the impellers, diffusers and associated components creates pressure fields that vary in magnitude depending on local fluid properties existing at many physical locations within fluid-end 204. Those multiple-magnitude pressure fields act on various geometric areas of process fluid rotor 206 to produce substantial thrust. Such thrust generally tends to drive process fluid rotor 206 in the direction of inlet 250, however various operating scenarios may produce “reverse thrust”. Depending on thrust magnitude and direction, thrust bearing 291 may possess sufficient capacity to constrain process fluid rotor 206. In the event thrust acting on process fluid rotor 206 exceeds the capacity of a practical thrust bearing 291, considering the many complex tradeoffs known to those skilled in the art of fluid-ends design, a thrust balance device 259 may be used. Thrust bearing 291 is located near the lower end of fluid-end housing 204. Thrust bearing 291 includes an upward-facing bearing surfaces on thrust collar 294 (coupled to fluid rotor 206), and downward-facing bearing surfaces on the fluid-end housing 208, the bearing surfaces cooperate to support the upward thrust of the fluid rotor 206. Similar components and associated surfaces are provided on the opposite side of thrust collar 294 to resist “reverse thrust” and other scenarios causing fluid rotor 206 to tend to move downward. Various types of thrust balance devices are known, with the two most common being referred to as “disk” and “piston” (or “drum”) types. Each type of device has positive and negative attributes, and sometimes a combination of the two and/or a different device altogether is appropriate for a given application. Embodiments described herein include a piston-type thrust balance device; however, other types may be implemented. A piston-type thrust balance device is essentially a carefully-defined-diameter radial-clearance rotating seal created between process fluid rotor 206 and a corresponding interface to generate a desired pressure-drop by exploiting pressure fields already existing in fluid-end 204 to substantially balance the thrust loads acting on process fluid rotor 206. The thrust balance device includes two main components (not including process fluid rotor 206), however a fluid conduit (balance circuit conduit 276) connecting the low pressure-side of thrust balance device 259 to inlet 250 pressure is also provided. Balance device rotor 265 is secured to process fluid rotor 206 in a way that provides a pressure-tight seal there-between. As an alternative, the profile of balance device rotor 265 may be provided as an integral part of fluid rotor 206. Balance device stator 263 is secured to fluid-end housing 208 via sealed interfaces with other components. A small clearance gap is provided between balance device rotor 265 and stator 263 to establish a “rotating seal.” High pressure from final-stage impeller 255 acts on one side of balance device rotor 265 while low pressure corresponding to that in inlet 250 acts on the other side. Inlet 250 pressure is maintained on the low pressure side of balance device 259 despite high pressure-to-low pressure fluid leakage across the clearance gap (between the balance device rotor 265 and stator 263) because such leakage is small compared to the volume of fluid that can be accommodated by balance circuit conduit 276. Balance circuit outlet device 261 collects and redirects fluid exiting balance device 259 to deliver it to balance circuit conduit 276. The nominal diameter of the clearance gap (which defines the geometric areas on which relevant pressures act) is selected to achieve the desired degree of residual thrust that must be carried by thrust bearing 291 (note that some residual is valuable from bearing loading and rotor dynamic stability perspectives). Returning briefly to thrust bearing 291, the side that is normally loaded in operation is referred to as the “active” side (upper side in Sump top plate 280 in combination with seals 282 and 273 substantially isolate fluid in sump 271 from interacting with fluid-end 204 process fluid. Sump 271 contains fluid-film type radial bearing 264 Seal 282 may be substantially the same as seal 256 associated with upper radial bearing 264 Prior to deployment, and using port(s) 277 provided for such purpose (as well as for refilling sump and/or flushing sump of gas and/or debris, etc.), sump 271 may be filled with a fluid ideally having attractive properties for the target field application, e.g. chemically compatible with process fluid and chemicals that might be introduced into process stream and/or sump 271, density greater than process fluid, useful viscosity over wide temperature range, good heat-transfer performance, low gas-absorption tendency, etc. Following installation and upon commissioning (during which time subsea fluid system 200 is operated), fluid-end 204 will be pressurized in accordance with its design and sump 271 temperature will rise significantly, the latter causing sump fluid to expand. The ability of Seal 282 to transfer fluid axially in both directions ensures pressure in sump 271 will not rise significantly as a result, and further ensures that pressure in sump 271 will substantially match fluid-end 204 inlet 250 pressure during operating and non-operating states, except during process fluid rotor 206 axial position transients (explained below). The low-leakage-rate, static sealing and hydrodynamic sealing capabilities of seal 282, combined with an otherwise “sealed” sump 271, provide unique and valuable attributes to fluid-end 204. Seal 282 provides a low leakage rate even when subject to sudden high-differential pressure, and therefore equalizes pressure more or less gradually depending mainly on the initial pressure differential and properties of fluid involved (e.g. liquid, gas, multiphase, high/low viscosity, etc.). In one scenario, prior to starting to spin process fluid rotor 206, an operator may inject liquid into port 277 at a rate sufficient to create a pressure differential across seal 282 adequate to elevate process fluid rotor 206, thereby avoiding a potential rotor dynamic instability that might accompany transitioning from the “inactive” side of thrust bearing 291 (not normally used) to the “active” side (used during normal operations) upon start-up. In another scenario, almost the reverse process may be employed. That is, prior to stopping rotation of process fluid rotor 206, liquid may be injected into port 277 at a rate sufficient to maintain elevation thereof. Upon shut-down, process fluid rotor 206 will continue to be elevated until it has ceased to spin, at which point liquid injection through port 277 can be halted to allow process fluid rotor 206 to land softly, without rotation, onto the inactive surfaces of thrust bearing 291. That will reduce damage potential and thereby promote long bearing life. In another scenario, any tendency to drive process fluid rotor 206 into sump 271 (“reverse thrust”) will encounter “damped resistance” owing to the fact fluid must typically bypass seal 282 (which happens only slowly) in order for process fluid rotor 206 to move axially. Similar resistance will be encountered if process fluid rotor 206 is motivated to rise quickly from its fully-down position, however fluid must pass seal 282 to enter sump 271 in that case. The foregoing “damped-axial translation” attribute will protect thrust bearing 291 and thereby promote long-life for submersed fluid system 200. In another scenario, in the event process gas permeates sump fluid, and inlet 250 (which dictates sump nominal pressure) is subsequently subject to a sudden pressure drop, seal 282 will only gradually equalize sump pressure to the lower inlet 250 pressure and thereby prevent a sudden expansion of sump gas that might otherwise evacuate the sump. This is a scenario for which designing seal 282 to “reduce its clearance relative to rotor sleeve 275 when subject to differential pressure transients” (described previously) may be applicable. As noted previously, maintaining liquid in sump 271 will facilitate the health of bearings 264 Significant heat will be generated in sump 271 caused by fluid-shear and other phenomena associated with spinning process fluid rotor 206 and attached thrust collar 294. Cooling sump fluid to optimize its properties for maintenance of bearing performance is achieved by circulating the fluid through a heat exchanger 301 positioned in water surrounding fluid-end 204. Careful positioning of flow paths in and around bearings 264 It is unlikely that process fluid-borne solids of significant size or volume will make their way into sump 271 of fluid system 200. As noted previously, sump 271 is normally pressure-balanced with respect to inlet 250 via balance circuit conduit 276, so there is normally no fluid flow between sump 271 and fluid-end 204 process fluid-containing areas. Additionally, seal 282 allows only small-volume and low-rate fluid transfer there-across (even during high differential pressure transients). Furthermore, a convoluted path with multiple interspersed axial and radial surfaces exists between the underside of balance device rotor retainer 298 and the top of sump top-plate 280, so solids must intermittently move upward against gravity and inward against the centrifugal force before they can approach the top of seal 282. Regardless, two or more ports 277 may be provided to circulate liquid through sump 271 and/or heat exchanger 301 to effectively flush same, at least one port for supplying fluid and one for evacuating fluid (e.g. to any conduit or vessel located upstream of inlet 250 or downstream of outlet 272). Ports 277 may be provided to intersect sump lower cavity 285 (as shown in Multiphase fluid enters subsea fluid system 300 at inlet 310 for transport through inlet pipe 311 to buffer tank 306. Raw hydrocarbon production fluids delivered to subsea fluid system 300 from wells, directly or by way of e.g. manifolds, may at various times include as much as 100% gas or 100% liquids, as well as all fractional combinations of gas and liquids (often with some volume of solids in addition). Transition between gas-dominated and liquid-dominated multiphase streams may occur frequently (e.g. time frame of seconds or less) or rarely, and such transitions may be gradual or abrupt. Abrupt changes from very high Gas Volume Fraction (GVF) streams to very low GVF streams, and vice-versa (typically referred to as “slugging”), can be harmful to submersed fluid system 300 for reasons known to those skilled in the art of fluid-boosting devices and associated pipe systems. Buffer tank 306 can accommodate even rapidly changing fluid conditions at inlet 319 and reduce the abruptness of such fluid condition changes at its main outlet 320, and in so doing moderate the detrimental effects on downstream fluid system 300. Buffer tank 306 amounts to a “fat spot” in inlet pipe 311 that allows fluid to reside there long enough for gravity to drive heavier streams/elements (liquid, solids) to the bottom of the tank while simultaneously forcing gas to rise to the top of the tank. A perforated stand-pipe 312 or similar device controls the rate at which the separated streams/elements are rejoined before exiting the tank at main outlet 320. Notably, when a high-GVF multiphase flow stream enters buffer tank 306 the volume of gas in the tank may increase relative to the volume of liquid/solids already in the tank, and similarly when a low-GVF stream enters the tank the opposite may occur. Meanwhile, the GVF of the fluid exiting the tank will typically be different from that entering because the exit-stream GVF is automatically (and gradually) adjusted in accordance with the volume of gas and liquid/solids permitted to enter perforated stand-pipe 312. The gas/liquid interface level in buffer tank 306 dictates the flow area (number of holes) accessible to each stream. In certain embodiments of subsea fluid system 300, separated gas 313 and separated liquid 314 may be extracted from buffer tank 306 through gas-tap 315 and liquid-tap 316, respectively. It is beneficial that no solids enter conduits downstream of gas-tap 315 and liquid tap 316. Solids in the fluid stream entering buffer tank 306 will typically be carried there-through with the liquid phase(s), therefore, while some scenarios may be envisioned for which solids may enter gas-tap 315 (typically accompanied by liquids) or be formed in gas conduit 321, subsea fluid system 300 is operated to minimize the chance for those scenarios occurring. The large size of liquid-tap 316 relative to the small size of, and flow rate in, conduits downstream thereof enables a substantially quiescent environment to establish within liquid-tap 316 that allows solids to settle-out therein. The steep angle of liquid-tap 316 suggested in Downstream of liquid-tap 316 is normally-open valve 318 through which ideally only liquid will pass to enter liquid reservoir 307. Level monitor 327 provides the sensory feedback needed for an associated control system to command valve 318 to close if buffer tank 306 liquid level gets close to liquid-tap 316 level and threatens to permit an unacceptable volume of gas to enter liquid reservoir 307 by that route. Liquid reservoir 307 and the conduit including valve 318 may be vertically oriented, and they are attached to liquid-tap 316 in such a way that solids possibly remaining in fluid delivered to those spaces may settle and drop into liquid-tap 316 (and subsequently, buffer tank 306) so as not to be carried downstream of liquid reservoir 307. Fluid in liquid reservoir 307 will typically be quite still and under certain circumstances reside therein for several minutes before the liquid phase makes its way further downstream, substantially free of solids and free-gas. There are two other flow paths into/out-of liquid reservoir 307, specifically gas conduit-link 322 with normally-open isolation valve 323 and liquid conduit-link 324 with normally-open isolation valve 325. It is beneficial that only gas flows through gas conduit-link 322, and that only liquid flows through liquid conduit-link 324. Level monitor 329 provides the sensory feedback needed for an associated control system to command valve 325 to close if liquid reservoir 307 liquid level gets close to liquid conduit-link 324 level and threatens to permit free-gas to enter there-into. The main scenario for which valve 323 might be closed is related to flushing of solids from liquid reservoir 307, which is described elsewhere in this disclosure. Liquid reservoir 307 liquid level may be forced higher in an absolute sense than that in buffer tank 306 by manipulating isolation valves 323, 325 and gas flow-control device (a.k.a. choke or process control valve) 326. Maintaining liquid reservoir 307 substantially full of liquid is necessary for optimum performance. Using choke 326 to reduce pressure in gas conduit 321 relative to pressure in buffer tank 306 (therefore also in liquid tap 316 and liquid reservoir 307) will cause fluid in liquid reservoir 307 to flow toward (into) gas conduit 321. Gas in liquid reservoir 307, whether introduced through liquid tap 316 (as free-gas or gas-in-solution) or gas conduit-link 322, will naturally collect near the top of liquid reservoir 307 and therefore be exhausted into gas conduit 321 before liquids entering from below during the “liquid reservoir filling” process. Level monitor 329 provides the sensory feedback needed to effect a level-control system for liquid reservoir 307. Liquid reservoir 307 is provided to hold a volume of liquid sufficient to lubricate bearing 264 Nozzle 328 is the inlet to liquid conduit-link 324, and it may also be used as an outlet device for a function described later in this disclosure. It may be configured in any number of ways and/or associated with devices e.g. baffles and/or deflectors to passively resist intake of solids that might remain in liquid entering or stored in liquid reservoir 307. Typically one or more substantially side-directed or downward-directed ports may be used instead of a port or ports angled upward to avoid the undesirable tendency of the latter alternatives to collect solids that might settle-out of liquid reservoir 307 fluids, then transfer such solids to elements downstream thereof. One or more of any number of filtering features and/or devices may also be provided to resist intake of solids, regardless the orientation of the noted ports. Unless forced to behave otherwise by e.g. a flow restriction and/or added flow-boosting device, fluid (e.g. liquid) will exit liquid reservoir 307 to flow through liquid conduit 330 into bearing 264 A sufficiently sophisticated control system possibly including automation algorithms will be able to operate the various valves and especially chokes/process control valves (326 and that which is an alternative to isolation valve 334) to optimize coolant flows for bearing 264 Normally-open isolation valve 338 is provided in gas conduit 321 so that it may be closed on select specific occasions, e.g. following shut-down of submersible fluid system 200 when the duration of such shut-down is expected to be sufficiently long that process fluids may undergo property changes that might be detrimental to subsequent operation of fluid system 300 (and 200). With isolation valve 338 closed, chemicals supplied by supplementary fluid conduit 308 can be routed selectively to alternative locations throughout submersible fluid system 300 to displace potentially undesirable process fluids and/or to otherwise protect against undesirable consequences, e.g. formation of hydrates, wax, etc. Note that the ability to provide heat to critical locations within submersible fluid systems described herein may be desirable, and may be accomplished using known techniques e.g. electric heat-tracing and/or heated fluids circulated through dedicated conduits, etc. Several functions have been described already for supplementary fluid conduit 308. Another function is to provide liquid to bearing 264 Fluid systems disclosed herein are sophisticated devices designed to perform complex and challenging functions reliably over extended periods of time. They contain many active devices including electric machines, fluid-ends, auxiliary pumps, valves and sensing instruments, among others. Condition and Performance Monitoring (CPM) of such devices and sub-systems is recommended, and that requires that equally sophisticated data collection, reduction, historian, control and potentially automation systems be implemented. A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other embodiments are within the scope of the following claims.CLAIM OF PRIORITY
BACKGROUND
SUMMARY
DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION