An aircraft with swept back wings has winglets (202) at the outer ends of its wings (200). The winglets (202) curve upwardly as they extend outwardly from their intersection (204) with the wings (200). The curvature of the winglets (202) at least approximates a conical section curvature, e.g. an elliptical based on an ellipse having a major axis that extends vertically and coincides with the intersection (204) of the outer end of the wing (200) and the inner end of the winglet (202).
1. An aircraft, comprising: a wing having an inner end, an outer end, an upper surface, a lower surface, a leading edge, and a trailing edge; and a winglet having an inner end, an outer end tip, an upper surface, a lower surface, a leading edge and a trailing edge; wherein the inner end of said winglet is connected to the outer end of said wing; wherein the upper and lower surfaces of the winglet and the leading and trailing edges of the winglet are continuations of the upper and lower surfaces of the wing and leading and trailing edges of the wing; wherein said winglet curves as it extends from its inner end out to its outer end tip and said curve has an increasing radius as it extends from the inner end of the winglet out to the outer end tip of the winglet; and wherein the curve that is followed by the winglet is from the group of curves consisting of a generally elliptical curve, a generally parabolic curve and a generally hyperbolic curve. 2. The aircraft of 3. The aircraft of 4. The aircraft of 5. An aircraft, comprising: a wing having an inner end, an outer end tip, an upper surface, a lower surface, a leading edge, and a trailing edge; and a winglet having an inner end, an outer end, an upper surface, a lower surface, a leading edge and a trailing edge; wherein the inner end of said winglet is connected to the outer end of said wing; wherein the upper and lower surfaces of the winglet and the leading and trailing edges of the winglet are continuations of the upper and lower surfaces of the wing and the leading and trailing edges of the wing; and wherein said winglet follows a generally elliptical curve as it extends from its inner end out to its outer end tip and said elliptical curve has a major axis that extends substantially perpendicular to the wing reference plane and substantially intersects the location where the outer end of the wing is joined to the inner end of the winglet. 6. The aircraft of 7. The aircraft of 8. The aircraft of 9. The aircraft of 10. The aircraft of 11. The aircraft of 12. The aircraft of 13. The aircraft of
This invention relates to winglets adapted to reduce the induced drag created by an aircraft's wings when they create lift. More particularly, it relates to the provision of a winglet that is continuously curved from where it joins the outer end of the wing out to its outer end or tip and the curvature at least closely approximates the curvature of a conical section, viz. has elliptical, parabolic or hyperbolic curvature. Lifting surfaces (wings) create drag when they create lift. This drag-due-to-lift is called “induced drag.” Aerodynamic theory shows that for essentially planar wings (wings that line essentially in the x-y plane), that the induced drag is minimized if the lift on the wing is distributed elliptically along the span of the wing. That is, the lift per unit span as a function of spanwise position should vary elliptically, with the largest lift per unit span at the wing centerline, and with the lift per unit span gradually dropping in an elliptical manner as the tip is approached. This theoretical result is well known, and many aircraft wings have been constructed with elliptical wing planforms to ensure that the lift does, in fact, vary in an elliptical fashion. The British Spitfire is a classic example of an aircraft wing constructed in an elliptical shape to take advantage of this theoretical result. The purpose and operation of “winglets” is described in “Aerodynamics, Aeronautics and Flight Mechanics”, by Barnes W. McCormick, and published 1979 by John Wiley & Sons, Inc. (pages 215-221). Known winglet constructions in the patent literature are disclosed by U.S. Patents: No. 4,017,041, granted Apr. 12, 1977 to Wilbur C. Nelson; No. 4,190,219, granted Feb. 26, 1980, to James E. Hackett; No. 4,205,810, granted Jun. 3, 1980, to Kichio K. Ishimitsu; No. 4,240,597, granted Dec. 23, 1990, to Roger R. Ellis, W. Martin Gertsen and Norman E. Conley; No. 4,245,804, granted Jan. 20, 1981, to Kichio K. Ishimitsu and Neal R. Van Devender; No. 4,714,215, granted Dec. 22, 1987, to Jeffrey A. Jupp and Peter H. Rees; No. 5,275,358, granted Jan. 4, 1994 to Mark I. Goldhammer and Karela Schippers; No. 5,348,253, granted Sep. 20, 1994 to Lewis B. Gratzer and No. 5,407,153, granted Apr. 18, 1995 to Phillip S. Kirk and Richard Whitcomb. Referring to The second feature is a continuous monotonic variation of cant angle. It is stated that the rate of curvature R must be large enough to accommodate the chord variation in the transition section and allow the practical achievement of optimum aerodynamic loading and minimum interference between wing and winglet. The radius and curvature criteria is given below in terms of a parameter, Krhaving fairly narrow limits: where, h=winglet height measured along a normal to the wing chord plane φ4=cant angle of the planar section ΛH=maximum sweep angle of the leading edge curve 7 KR=curvature parameter (select lower limit if practical) More details respecting the winglet curvature are set forth in U.S. Pat. No. 5,348,253. The present invention includes the discovery that when winglets are attached to the wing tips, the minimum induced drag is obtained when the lift is distributed in a generally elliptical fashion both in the spanwise and vertical directions. The present invention utilizes winglets having a generally elliptical shape in the z-y plane, assuring that the wing loading closely approximates the ideal lift distribution. This results in minimum induced drag and reduced fuel consumption. The present invention also includes the discovery that the winglets will provide reduced induced drag when the winglets have a generally parabolic shape or a generally hyperbolic shape in the y-z plane. The present invention includes providing the wings of an aircraft with winglets of a unique curvature. Each wing has an inner end, an outer end, an upper surface, a lower surface, a leading edge and a trailing edge. Each winglet has an inner end, an outer end, an upper surface, a lower surface, a leading edge and a trailing edge. The inner end of each winglet is connected to the outer end of its wing. The upper and lower surfaces of the winglets and the leading and trailing edges of the winglets are continuations of the upper and lower surfaces of the wing and the leading and trailing edges of the wing. Each winglet follows a generally elliptical curve as it extends from its inner end out to its outer end. The generally and said elliptical curve has a major axis that extends substantially perpendicular to the wing reference plane and substantially intersects the location where the outer end of the wing is joined to the inner end of the winglet. In preferred form, the generally elliptical curve has a minor axis substantially perpendicular to the major axis, and that is spaced above the outer end of the winglet. The minor axis intersects the major axis at a center and a diagonal line extends from the center out to the outer end of the winglet and makes an acute angle of about forty-five to ninety (45°-90°) degrees with the major axis. In preferred form, at its outer end the winglet has a cant angle of substantially about forty-five to about ninety degrees (45°-90°). In preferred form, each wing has a dihedral angle of substantially about zero to fifteen degrees (0°-15°). Other objects, advantages and features of the invention will become apparent from the description of the best mode set forth below, from the drawings, from the claims and from the principles that are embodied in the specific structures that are illustrated and described. Like reference numerals are used to designate like parts throughout the several views of the drawing, and: The aircraft shown by Referring first to A cross sectional view taken at intersection 204 and looking outwardly towards the winglet 202 in elevation would look substantially like FIG. 2. The winglet 202 has a generally trapezoidal shape in side elevation ( The winglet 202 preferably has a curvature in the y-z plane that at least approximates a sector of an ellipse measured from intersection station 204 outwardly to the winglet outer end or tip 214. At intersection station 204, the curvature of the winglet surfaces meets the wing surfaces substantially at a tangent. As the winglet 202 extends outwardly from intersection station 204, its curvature in the y-z plane changes in substantially the same way that an elliptical surface changes. The elliptical sector is identified in Referring to Referring to The invention differs from all prior art winglet designs in two important aspects. First, in preferred form, the present design closely follows the ideal elliptical shape, while no prior winglet follows the ideal elliptical shape, or even attempts to approximate it. The other conic sections, viz. a parabolic section and a hyperbolic section, include curves that approximate the ideal elliptical shape and thus they are included in the invention. These curves are shown by The superior performance of the elliptical winglet design in comparison to the prior art is illustrated in FIG. 14. This figure shows the percentage reduction in induced drag obtained when an MD-80 aircraft is fitted with an elliptical winglet, and a winglet designed in conformance with Pat. No. 5,348,253. The figure shows that the elliptical winglet reduces the MD-80 induced drag by approximately ½ percent in comparison to the prior art. This ½ percent reduction in induced drag would result in an annual fuel cost savings of approximately $15,000 for an MD-80 in commercial airline service, based on a fuel cost of approximately $0.90 per gallon. This savings clearly illustrates the value of the elliptical winglet described in this patent. The illustrated embodiments are only examples of the present invention and, therefore, are non-limitive. It is to be understood that many changes in the particular structure, materials and features of the invention may be made without departing from the spirit and scope of the invention. Therefore, it is my intention that my patent rights not be limited by the particular embodiments illustrated and described herein, but rather determined by the following claims, interpreted according to accepted doctrines of claim interpretation, including use of the doctrine of equivalents and reversal of parts.TECHNICAL FIELD
BACKGROUND OF THE INVENTION
BRIEF SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
DETAILED DESCRIPTION OF THE INVENTION