патент
№ RU 2760309
МПК C23C8/38

СПОСОБ ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННЫХ ЛЕГИРОВАННЫХ СТАЛЕЙ

Авторы:
Петрова Лариса Георгиевна Вдовин Виктор Максимович Демин Петр Евгеньевич
Все (6)
Номер заявки
2020138100
Дата подачи заявки
20.11.2020
Опубликовано
23.11.2021
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к комбинированным процессам металлизации с азотированием стали. Способ обработки изделий из конструкционной легированной стали включает размещение изделий в камере герметичной вакуумной установки, осуществление нагрева и изотермической выдержки в азотосодержащей газовой среде в плазме тлеющего разряда. Изотермическую выдержку осуществляют в интервале температур Т=750-850°С в течение 30-60 мин и после изотермической выдержки проводят охлаждение. Упомянутые нагрев, изотермическую выдержку и охлаждение изделий проводят в атмосфере аммиака NH3, а затем проводят металлизацию путем магнетронного напыления на азотированную поверхность изделий паров хрома и никеля в защитной атмосфере углекислого газа СО2с формированием конденсированного металлического слоя. Обеспечивается повышение коррозионной стойкости изделий при сокращении времени на обработку за счет сокращения количества подготовительных технологических операций. 1 табл., 2 ил.

Формула изобретения

Способ обработки изделий из конструкционной легированной стали, включающий размещение изделий в камере герметичной вакуумной установки, осуществление нагрева и изотермической выдержки в азотосодержащей газовой среде в плазме тлеющего разряда, отличающийся тем, что изотермическую выдержку осуществляют в интервале температур Т=750-850°С в течение 30-60 мин и после изотермической выдержки проводят охлаждение, при этом упомянутые нагрев, изотермическую выдержку и охлаждение изделий проводят в атмосфере аммиака NH3, а затем проводят металлизацию путем магнетронного напыления на азотированную поверхность изделий паров хрома и никеля в защитной атмосфере углекислого газа СО2 с формированием конденсированного металлического слоя.

Описание

[1]

Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к комбинированным процессам металлизации с азотированием сталей, и может быть использовано при изготовлении деталей из конструкционных легированных сталей, работающих в условиях коррозии и износа.

[2]

Известен способ формирования износостойкого покрытия на поверхности изделий из конструкционной стали, который заключается в ионно-плазменном азотировании в среде реактивного газа - азота, очистке поверхности детали и нанесение нитрида титана из плазменной фазы. Азотирование, очистку поверхности и нанесение нитрида титана осуществляют в одной вакуумной камере в плазме дугового и газового разрядов с накаленным катодом в едином цикле при давлении реактивного газа 5*10-3-2*10-2 мм рт. ст., отрицательном напряжении смещения на деталях 300-1000 В и плотности ионного тока 2-8 мА/см2 в течение 30-90 мин, очистку проводят в плазме инертного газа - аргона при давлении 3*10-4-7*10-4 мм рт. ст. и плотности тока 3-5 мА/см2, а нанесение нитрида титана осуществляют со скоростью 2 мкм/ч в течение 60 - 90 мин (см. патент РФ №2131480, МПК С23С 14/06, С23С 14 /48, опубл. 1999 г.). Недостатком данного способа является неудовлетворяющая требованиям коррозионная стойкость.

[3]

Известен способ азотирования изделия из стали в плазме тлеющего разряда, принятый в качестве прототипа, включающий размещение изделия в вакуумной камере и присоединение изделия к высоковольтному источнику питания, герметизацию вакуумной камеры и создание в ней высокого вакуума с последующей заменой на атмосферу чистого азота, получение стабильной плазмы тлеющего разряда в атмосфере чистого азота с помощью высоковольтного источника питания и потока электронов от вольфрамовой нити накала, установленной параллельно оси вакуумной камеры (см. патент РФ №2590439, МПК С23С 8/36, С23С 14/06, опубл. 2016 г.). Под действием магнитного поля происходит активация ионов азота, увеличивается их количество, что приводит к интенсификации диффузионных процессов при азотировании.

[4]

Недостатком данного способа является снижение коррозионной стойкости, а как следствие, недостаточная износостойкость.

[5]

Технической задачей, на решение которой направлено изобретение, является повышение коррозионной стойкости изделий, при сокращении времени на обработку, за счет сокращения количества подготовительных технологических операций.

[6]

Поставленная техническая задача решается тем, что в способе ионного азотирования изделий из конструкционных легированных сталей который заключается в том, что изделия размещают в камере герметичной вакуумной установки и осуществляют их нагрев в азотосодержащей газовой среде, используя плазменный тлеющий разряд, и последующие изотермическую выдержку в плазме тлеющего разряда до достижения необходимой глубины диффузионного слоя и охлаждение, согласно изобретению после изотермической выдержки проводят процесс металлизации путем магнетронного напыления на поверхность изделия паров хрома и никеля с возможностью формирования на азотированной поверхности изделий слоя конденсированного металла, при этом процесс металлизации проводится в защитной атмосфере углекислого газа СО2.

[7]

На решение поставленной технической задачи направлено также то, что нагрев, изотермическую выдержку и охлаждение изделий проводят в атмосфере аммиака NH3, причем изотермическую выдержку осуществляют в интервале температур Т=750…850°С в течении 30-60 минут.

[8]

Решение поставленной технической задачи достигается за счет магнетронного напыления хрома и никеля, образующего слой с высокой коррозионной стойкостью, предварительное ионное азотирование, позволяет повысить износостойкость и твердость диффузионного слоя. За счет диффузионной природы протекающих процессов слои, полученные комбинированным способом, имеют хорошую адгезию.

[9]

Способ ионного азотирования изделий из конструкционных легированных сталей заключается в том, что изделия помещают в камеру вакуумной установки, после чего проводят ее герметизацию. Затем подают азотосодержащий газ, а именно, диссоциированный аммиак NH3 и зажигают газовый разряд для нагрева. Изделия выдерживают в плазме тлеющего разряда до достижения необходимой глубины диффузионного слоя. Последующий процесс металлизации проводят методом конденсации паров, содержащих никель и хром, полученных путем магнетронного распыления проволоки из хромели. Нагрев, изотермическую выдержку и охлаждение изделий проводят в атмосфере аммиака NH3. Нанесение металла проводят с помощью магнетронного напыления в защитной атмосфере углекислого газа СО2, причем изотермическую выдержку осуществляют в интервале температур Т=750…850°С в течении 30-60 мин.

[10]

Предлагаемый способ реализуется следующим образом.

[11]

1. В специальный контейнер помещают проволоку из хромели, затем контейнер помещают в реактор.

[12]

2. Детали из конструкционных легированных сталей помещают в камеру, камеру герметизируют и производят подачу диссоциированного аммиака NH3.

[13]

3. Далее проводят процесс ионного азотирования в течение 60 мин. в атмосфере диссоциированного аммиака NH3 при давлении 3-12 мм.рт.ст., что позволяет получить диффузионный слой необходимой глубины.

[14]

4. После охлаждения изделий в атмосфере аммиака проводят металлизацию поверхности детали с помощью магнетронного распыления паров металла содержащих никель и хром в защитной атмосфере углекислого газа СО2. Металл, формирующий модифицированное покрытие, осаждается из парообразного состояния путем конденсации на изделии.

[15]

Таким образом, способ ионного азотирования изделий представляет собой комбинированный способ азотирования и металлизации, который позволяет получить на поверхности деталей из конструкционных сталей модифицированные слои с толщиной до 150-200 мкм и 15-20 мкм, соответственно, за счет осуществления комплексной обработки деталей в одном технологическом цикле работы установки.

[16]

Изобретение поясняется иллюстрациями где, на фиг. 1 и 2 представлены фотографии структуры упрочненного слоя образцов из конструкционных легированных сталей соответственно 30ХГСА и 18Х2Н4ВА. Показаны толщины упрочненного и напыленного hi слоев.

[17]

Для сравнения заявляемого способа с прототипом были проведены исследования деталей-образцов из сталей 18ХГТ, 30ХГСА и 18Х2Н4ВА, подвергнутых только ионному азотированию. Осуществимость и преимущества предлагаемого способа могут быть рассмотрены на представленных ниже примерах.

[18]

1. Обработка методом азотирования деталей-образцов из сталей 18ХГТ, 30ХГСА, 18Х2Н4ВА по способу, изложенному в прототипе. Детали - образцы азотировали в среде чистого азота при температуре Т=750…850°С, выдерживали 3 часа, затем охлаждали в камере. Толщина упрочненного слоя и значения коррозионной стойкости указаны в таблице.

[19]

2. Обработка деталей-образцов из сталей 18ХГТ, 30ХГСА, 18Х2Н4ВА по предлагаемому способу. Детали - образцы азотировали в камере вакуумной установки при температуре Т=750…850°С в течение 60 минут, затем охлаждали и проводили процесс металлизации из сплава, содержащего никель и хром (хромель) в течение 1 часа. Толщина слоя и значения коррозионной стойкости указаны в таблице. Сравнение коррозионной стойкости деталей - образцов, обработанных по предлагаемому способу и обработанных способом, указанным в прототипе, показывает, что она значительно выше для всех испытываемых материалов деталей-образцов.

[20]

[21]

Из таблицы видно, что способ изложенный в прототипе - процесс азотирования в среде чистого азота - показывает невысокую коррозионную стойкость.

[22]

Предлагаемый комбинированный способ ионного азотирования, совмещенный с процессом металлизации, позволяет повысить коррозионную стойкость и сократить время на их обработку.

[23]

Оценка коррозионной стойкости проводилось путем подсчета количества точек поверхностной коррозии на 1 см2. Испытание на коррозионную стойкость определяется «Коррозией пятен» (см. СТАНДАРТИЗОВАННЫЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ, Казань 2011, 55 стр.)

[24]

Предлагаемый способ позволяет осуществлять комплексную обработку в одном технологическом цикле работы установки, состоящем из диффузионного насыщения поверхности азотом и металлизации методом осаждения из паров, содержащих никель и хром на поверхность, в результате чего формируется слой конденсированного металла на азотированной поверхности. При этом толщина модифицированного слоя составляет до h2=150-200 мкм, а слоя конденсированного металла до h1=20 мкм.

[25]

Таким образом, способ ионного азотирования изделий из конструкционных легированных сталей позволяет повысить коррозионную стойкость изделий и сократить время на их обработку.

Как компенсировать расходы
на инновационную разработку
Похожие патенты