патент
№ RU 2745437
МПК E01C7/36

Полимерный стабилизатор грунта, применяемый для укрепления и стабилизации грунтов при промышленном и гражданском строительстве, и полимерцементогрунтовая смесь

Авторы:
Давыдов Денис Иванович Руфф Олег Владимирович Будасов Сергей Борисович
Все (6)
Номер заявки
2020103570
Дата подачи заявки
28.01.2020
Опубликовано
25.03.2021
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

[23]

Группа изобретений относится к дорожному строительству, а именно к укреплению несущего слоя грунта при строительстве оснований дорог, зданий, тротуарных дорожек, пригодно для использования на песчаных, супесчаных и глинистых грунтах в комбинации с другими материалами, например асфальтовым гранулятом, а также без него. Полимерный стабилизатор грунта состоит из растворенных в воде полимерных макромолекул – полиакриламида, сополимера акриламида и акрилата натрия, сополимера акриламида и метакрилата натрия с добавлением оксиэтилированного сорбитана – полисорбата-80, полисорбата-60, полисорбата-20 в качестве эмульгатора и гидрофобизатора, синтетического азокрасителя – тартразина, при этом полимерные макромолекулы имеют среднюю молекулярную массу от 8 до 20 МДа, при следующем соотношении компонентов, мас.%: полимерные макромолекулы 0,25–3,0, оксиэтилированный сорбитан 0,1–1,0, тартразин 0,005, вода - остальное. Полимерцементогрунтовая смесь содержит, мас.%: грунт 85–93,9, портландцемент 6,0–7,0, водный раствор указанного выше полимерного стабилизатора грунта, предварительно разбавленного водой до необходимой концентрации, 0,1–8,0. Технический результат – повышение гидрофобизации и прочностных характеристик укрепленного грунта. 2 н. и 1 з.п. ф-лы, 4 табл.

Формула изобретения

1. Полимерный стабилизатор грунта, характеризующийся тем, что состоит из растворенных в воде полимерных макромолекул – полиакриламида, сополимера акриламида и акрилата натрия, сополимера акриламида и метакрилата натрия с добавлением оксиэтилированного сорбитана – полисорбата-80, полисорбата-60, полисорбата-20 в качестве эмульгатора и гидрофобизатора, синтетического азокрасителя – тартразина, при этом полимерные макромолекулы имеют среднюю молекулярную массу от 8 до 20 МДа, при следующем соотношении компонентов, мас.%: полимерные макромолекулы 0,25–3,0, оксиэтилированный сорбитан 0,1–1,0, тартразин 0,005, вода - остальное.

2. Полимерный стабилизатор грунта по п.1, отличающийся тем, что количество звеньев акрилата натрия не превышает 30% от общего числа мономерных звеньев в составе полимолекулы сополимера, количество звеньев метакрилата натрия не превышает 25% от общего числа мономерных звеньев в составе полимолекулы сополимера.

3. Полимерцементогрунтовая смесь с использованием полимерного стабилизатора грунта по п. 1 или 2, содержащая компоненты при следующем соотношении, мас.%: грунт 85–93,9, портландцемент 6,0–7,0, водный раствор полимерного стабилизатора грунта, предварительно разбавленный водой до необходимой концентрации, 0,1–8,0.

Описание

[1]

Изобретение относится к области создания водорастворимой полимерной композиции, применимой с целью укрепления несущего слоя грунта при строительстве оснований дорог, зданий, тротуарных дорожек. Изобретение пригодно для использования на песчаных, супесчаных и глинистых грунтах естественного происхождения в комбинации с другими материалами, например асфальтовым гранулятом или портландцементом, а также без них.

[2]

В мировой практике известны различные способы укрепления грунтов с применением как минеральных вяжущих средств, так и различных органических добавок, а именно: продуктов нефтепереработки, различных поверхностно-активных веществ, водоразбавляемых связующих полимерного типа. Так, например, для незаселенных грунтов, применяемых при строительстве дорог, аэродромов и подобных сооружений предлагается использовать высокосмолистую нефть с добавкой катионоактивного продукта на основе третичных аминов и хлорметилированных фенольных масел (авт. свид. СССР №360356, 28.11.1972).

[3]

При укреплении глинистых грунтов для повышения прочности, водостойкости и морозостойкости в глинистый грунт предлагается вносить полимеризованный амин жирного ряда, известь, каменноугольную смолу (авт. свид. СССР №487204, 05.10.1975) или, наряду с этим, использовать смесь сернокислой меди с анилином в виде отдельных составляющих или более эффективно в виде медно-анилинового комплексного соединения (авт. свид. СССР №834306, 30.05.1981). Однако перечисленные способы укрепления грунтов предусматривают применение довольно токсичных амино- и фенольных производных органических соединений, а также медно-анилинового комплекса, при этом в соответствующих описаниях изобретений нет каких-либо фактических данных, подтверждающих достигаемый уровень упрочнения грунтов за счет рекомендуемых добавок.

[4]

Известна дорожная смесь, состоящая из грунта и пластифицирующей добавки, в качестве которой предлагается использовать дивинилстирольный латекс, его количество по отношению к 100 мас.ч. грунта составляет 2-4 мас.ч. (авт. свид. СССР №481661, 25.08.1975). Недостатком данного изобретения является довольно большой объем для достижения требуемых показателей дорогостоящего дивинилстирольного латекса при укреплении грунта. Кроме того, не указывается в описании и формуле изобретения никаких требований к составу сополимера в латексе, заряду и размеру его латексных частиц, коллоидно-химических характеристик, радикально влияющих на совместимость латекса с грунтом, природа грунта и достигаемые конечные результаты от укрепления.

[5]

Известна смесь для грунтобетона, относящаяся к стройматериалам, а именно к грунтобетонам, применяемым для стабилизации глинистых грунтов в дорожных основаниях (пат. №2392244, «Смесь для грунтобетона», от 20.06.2010 г.), содержит, мас.%: глинистый грунт – 78-83, портландцемент – 4-8, химическую добавку – ферментный препарат "Дорзин" – 0,03-0,06, вода – остальное.

[6]

Наиболее близкой по технической сущности к заявляемому изобретению является дорожная полимерцементогрунтовая смесь (пат. №2373321 от 20.11.2009 г.), относящаяся преимущественно к строительству автомобильных дорог, содержит, мас.% (на сухое): грунт 90, цемент 9,35-9,4, латекс СКС-65ГП 0,5, механоактивированная целлюлоза 0,1-0,15.

[7]

Недостатком данной смеси, а также всех вышеуказанных смесей, является недостаточная несущая способность грунтового основания, более длительный набор необходимого, согласно ГОСТ 23558-94, класса прочности М100, а также высокий расход неорганического вяжущего – цемента.

[8]

Целью, при разработке предлагаемого изобретения, является создание состава полимерного стабилизатора несущего слоя грунта, применяемого совместно с портландцементом с целью модификации эксплуатационных свойств грунта, а именно повышения прочностных характеристик, а также увеличения гидрофобизации.

[9]

Указанная цель и технический результат реализуются следующим образом. Предлагаемый полимерный стабилизатор грунта состоит из растворенных в воде полимерных макромолекул – полиакриламида, сополимера акриламида и акрилата натрия, сополимера акриламида и метакрилата натрия с добавлением оксиэтилированногосорбитана – полисорбата-80, полисорбата-60, полисорбата-20 в качестве эмульгатора и гидрофобизатора, синтетического азокрасителя – тартразина для придания стабилизатору грунта приятных органолептических свойств, при этом полимерные макромолекулы имеют среднюю молекулярную массу от 8 до 20 МДа, при следующем соотношении компонентов, мас.%: полимерные макромолекулы 0,25 – 3,0, оксиэтилированный сорбитан 0,1 – 1,0, тартразин 0,005, вода - остальное. Количество звеньев акрилата натрия не превышает 30% от общего числа мономерных звеньев в составе полимолекулы сополимера, количество звеньев метакрилата натрия не превышает 25% от общего числа мономерных звеньев в составе полимолекулы сополимера. Предлагаемая полимерцементогрунтовая смесь с использованием указанного выше полимерного стабилизатора грунта содержит компоненты при следующем соотношении, мас.%: грунт 85 – 93,9, портландцемент 6,0 – 7,0, водный раствор полимерного стабилизатора грунта, предварительно разбавленный водой до необходимой концентрации, 0,1 – 8,0.

[10]

Таблица 1. Физические характеристики полимерного стабилизатора грунта.

[11]

Физические характеристики полимерного стабилизатора грунта:
внешний видокрашенная жидкость
запахпрактически отсутствует
массовая доля основных веществ,%0,45-0,95
рН при н.у.6,7-7,3
относительная плотность, г/см31±0,02
размер частиц, мкм0,05-1,0
температура кипения,оС99,5
растворимостьсмешивается с водой
вязкость при н.у. мПа с2,0±0,3

[12]

С введением полимерного стабилизатора в глинистый грунт в соотношении, полученном путем подбора состава смесей совместно с неорганическим вяжущим (портландцементом), вступая в реакцию с химически связанной водой в глинообразующих минералах, полимерный модификатор образует химически стойкие и прочные соединения, придающие грунту более упорядоченную структуру, с образованием первично структурного каркаса, обрастающего гидросиликатами кальция, и, в конечном итоге, создавая материал очень высокой прочности и низкой водопоглощающей способности.

[13]

Для изучения влияния полимерного стабилизатора на свойства глинистых грунтов, в лабораторных условиях был проведен подробный анализ механических свойств глинистых грунтов, укрепленных портландцементом и полимерным стабилизатором грунта. В лабораторных условиях формовались цилиндрические образцы (ГОСТ 12801-98), содержащие в своем составе различное количество компонентов, входящих в состав стабилизатора при неизменном количестве вяжущего - портландцемента. После подбора оптимального состава были проведены работы по подбору оптимального количества вяжущего (таблицы 2 и 3).

[14]

Таблица 2. Состав образцов водного раствора полимерного стабилизатора грунта, предварительно разбавленных водой и используемых для дальнейших испытаний:

[15]

№ ОбразцаВодный раствор полимерного стабилизатора грунта, 50 г.
Полимерные молекулы, мас.%Эмульгатор,
мас.%
Краситель,
мас.%
Вода,
мас.%
10,50,250,005остальное до 100%
21,00,25
30,750,25
40,250,1
50,50,5
61,00,5
70,750,5
80,250,25
90,50,0
101,00,0
110,50,25
123,01,0
130,50,25
140,50,25

[16]

Таблица 3. Примеры экспериментальных лабораторных работ по подбору состава полимерцементогрунтовой смеси с применением стабилизатора грунта.

[17]

№ ОбразцаСтабилизатор грунта по таблице 2Портландцемент, г. (мас.%)Грунт
Водный раствор стабилизатора грунта, г. (мас.%)Глина, г. (мас.%)Шлак,
г. (мас.%)
150 (5,025)65 (6,533)800 (80,402)80 (8,04)
250 (5,025)65 (6,533)800 (80,402)80 (8,04)
350 (5,025)65 (6,533)800 (80,402)80 (8,04)
450 (5,025)65 (6,533)800 (80,402)80 (8,04)
550 (5,025)65 (6,533)800 (80,402)80 (8,04)
650 (5,025)65 (6,533)800 (80,402)80 (8,04)
750 (5,025)65 (6,533)800 (80,402)80 (8,04)
850 (5,025)65 (6,533)800 (80,402)80 (8,04)
950 (5,025)65 (6,533)800 (80,402)80 (8,04)
1050 (5,025)65 (6,533)800 (80,402)80 (8,04)
1150 (5,0)70 (7,0)800 (80,0)80 (8,0)
1250 (4,98)75 (7,46)800 (79,6)80 (7,96)
1350 (5,06)60 (6,06)800 (80,8)80 (8,08)
1450 (5,102)50 (5,102)800 (81,633)80 (8,163)

[18]

Испытания на физико-механические свойства полимермодифицированной смеси укрепленного грунта проводились согласно ГОСТ 30491-2012 (таблица 4).

[19]

Таблица 4. Физико-механические испытания полимерцементогрунтовых смесей, укрепленных стабилизатором грунта по истечении 14 суток.

[20]

№ ОбразцаПредел прочности на сжатие, МПа, при 20 °С, МПаПредел прочности на сжатие водонасыщенных образцов при температуре 20 °С, МПаПредел прочности на растяжение при изгибе водонасыщенных образцов при температуре 20 °С, МПаКоэффициент морозостойкостиНабухание, % по объемуМарка прочности
117,56,01,3более 0,85менее 2,0М100
215,45,81,2
315,86,61,2
415,76,81,3
512,83,80,9
611,22,80,8
711,02,80,9
811,72,50,8
917,31,80,6
1016,62,10,6
1117,46,21,3
1217,66,31,4
1317,15,61,3
1416,55,41,2

[21]

На основании проведенных испытаний, был подобран оптимальный состав полимерцементогрунтовой смеси, содержащей 88,5% грунта, 6,5% цемента и 5,0% водного раствора полимерного стабилизатора, предварительно разбавленного водой до необходимой концентрации. Все испытанные образцы в четырнадцатисуточном возрасте соответствуют классу прочности не менее М100 (ГОСТ 23558-94), однако было обнаружено, что добавка эмульгатора в состав стабилизатора улучшает гидрофобизацию укрепленного грунта (сравнение образцов 1 и 9), при этом оптимальное массовое отношение полимера к эмульгатору 2:1, при увеличении количества второго, происходит ухудшение физико-механических свойств укрепленного грунта (сравнение образцов 1 и 5). Увеличение количества вяжущего не приводит к каким-то значительным улучшениям физико-химических свойств укрепленного грунта, поэтому оптимальным является содержание 6,0-7,0% портландцемента от общей массы полимерцементогрунтовой смеси.

[22]

Масштабирование вышеописанной разработки на строительные объекты позволит получать прочные основания с повышенной и равномерной устойчивостью дорожного полотна в процессе эксплуатации.

Как компенсировать расходы
на инновационную разработку
Похожие патенты