патент
№ RU 2716882
МПК H01Q13/10

ЩЕЛЕВАЯ АНТЕННА С ПОГЛОЩАЮЩИМ ПОКРЫТИЕМ, СОДЕРЖАЩИМ НАНОСТРУКТУРИРОВАННЫЕ ПРОВОДЯЩИЕ НИТИ ИЗ ПОЛУМЕТАЛЛОВ

Авторы:
Шиляев Анатолий Алексеевич Зайцев Сергей Александрович Зайцева Татьяна Владимировна
Все (10)
Номер заявки
2019130312
Дата подачи заявки
26.09.2019
Опубликовано
17.03.2020
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к антенной технике и может быть использовано в радиолокации, авиации и радиосвязи для уменьшения радиолокационной заметности летательных аппаратов. Предложено устройство, которое представляет собой щелевую антенну, выполненную из отрезка прямоугольного волновода с расположенными в ряд щелями в широкой стенке волновода, на поверхности которой расположена прямоугольная пластина, выполненная из неселективного поглощающего покрытия, представляющего собой полимерную основу, содержащую наноструктурированные проводящие нити из полуметаллов, причем длина и ширина пластины превосходят соответствующие размеры широкой стенки волновода антенны на величину не менее (1/16)λ, где λ - рабочая длина волны щелевой антенны, а толщина пластины не превышает величину (1/8)λ, при этом пластина содержит отверстия, положение и форма которых соответствуют щелям антенны с соблюдением их общего геометрического подобия, с размерами, превосходящими размеры щелей антенны так, чтобы обеспечить выступ краев отверстий пластины за края щелей на величину не более (1/100)λ, и установлена так, чтобы отверстия в пластине и щели в антенне располагались соосно друг напротив друга. Изобретение обеспечивает снижение эффективной площади рассеяния щелевой антенны при сохранении ее излучательных и приемных свойств. 4 ил., 1 табл.

Формула изобретения

Устройство, представляющее собой щелевую антенну, выполненную из отрезка прямоугольного волновода с щелями в широкой стенке волновода, расположенными в ряд, отличающееся наличием на поверхности широкой стенки волновода прямоугольной пластины, выполненной из неселективного поглощающего покрытия, представляющего собой полимерную основу, содержащую наноструктурированные проводящие нити из полуметаллов, причем длина и ширина пластины превосходят соответствующие размеры широкой стенки волновода антенны на величину не менее (1/16)λ, где λ - рабочая длина волны щелевой антенны, а толщина пластины не превышает величину (1/8)λ, при этом пластина содержит отверстия, положение и форма которых соответствуют щелям антенны с соблюдением их общего геометрического подобия, с размерами, превосходящими размеры щелей антенны так, чтобы обеспечить выступ краев отверстий пластины за края щелей на величину не более (1/100)λ, и установлена так, чтобы отверстия в пластине и щели в антенне располагались соосно друг напротив друга.

Описание

[1]

Область техники, к которой относится изобретение

[2]

Изобретение относится к антенной технике и может быть использовано в радиолокации, авиации и радиосвязи. Щелевые антенны отличаются сравнительной простотой конструкции; в них могут отсутствовать выступающие части, что в ряде случаев является их существенным преимуществом (например, при установке на летательных аппаратах). В диапазоне сантиметровых и миллиметровых длин волн применяются многощелевые волноводные и плоские антенны.

[3]

Уровень техники

[4]

Щелевые антенны являются преимущественно объектами плоской формы и характеризуются высоким значением эффективной площади рассеяния (ЭПР). Поэтому их применение в радиолокаторах летательных аппаратов (ЛА) приводит к существенному увеличению их радиолокационной заметности.

[5]

Одним из способов уменьшения ЭПР является снижение коэффициента отражения электромагнитной энергии. Последнее может быть достигнуто применением радиопоглощающих покрытий (РПП), уменьшающих обратное отражение, не ухудшая при этом излучательных характеристик антенн [Лагарьков М.А. и др. Фундаментальные и прикладные проблемы стелс-технологий / Вестник Российской академии наук, 2003, Т. 73, N.9, с. 779-787].

[6]

Из уровня техники [Марковский В., Перов К. Советские авиационные ракеты «воздух-земля». - М.: Экспринт, 2006. - 50 с., с. 43-46] известны щелевые антенны, в которых уменьшение ЭПР достигается поворотом антенны на определенный угол относительно направления ее главного лепестка диаграммы направленности, что на некоторое время делает ЛА «слепым».

[7]

В настоящее время не существуют щелевые антенны, в которых уменьшение ЭПР достигалось бы за счет применения поглощающих покрытий, так как не известны поглощающие материалы, которые не нарушали бы работу щелевых антенн [Справочник по радиолокации. В 2-х книгах. Т.2 / под ред. Скольник М.И. - М.: Техносфера, 2015. - 1352 с., с. 712].

[8]

Из уровня техники известны РПП [Лагарьков М.А. и др. Фундаментальные и прикладные проблемы стелс-технологий / Вестник Российской академии наук, 2003, Т. 73, N.9, с. 779-787; Иванова В.И. и др. Разработка широкополосного радиопоглощающего покрытия с высокими эксплуатационными свойствами / Журнал радиоэлектроники, 2016, N.7, с. 1684-1719].

[9]

Так, РПП [Иванова В.И. и др. Разработка широкополосного радиопоглощающего покрытия с высокими эксплуатационными свойствами / Журнал радиоэлектроники, 2016, N.7, с. 1684-1719] известно РПП, представляющее собой многослойный композиционный материал на основе полимерного связующего, наполненного мелкодисперсными порошками модифицированного железа (иногда - с добавлением ферритовых порошков).

[10]

Такие РПП не могут быть использованы для покрытия щелевых антенн, так как излучение щелей антенн носит магнито-дипольный характер, что при использовании ферромагнитных наполнителей будет приводить к шунтированию излучающих диполей. По этой причине антенна останется неработоспособной, даже если в РПП прорезать щели. Таким образом, для покрытия щелевых антенн необходимо применять РПП, не содержащее ферромагнитных включений.

[11]

Для уменьшения ЭПР предлагается использовать неселективное поглощающее покрытие (НПП), содержащее наноструктурированные проводящие нити из полуметаллов, как элемент конструкции, согласованный с геометрическими параметрами антенны [Сигов А.С.и др. Поглощение электромагнитного излучения металлическими наноструктурами / Нано- и микросистемная техника, 2008, N.11, с. 2-4; Шиляев А.А. и др. Протяженные металлические наноструктуры в диэлектрической матрице как универсальные поглотители электромагнитного излучения / Фундаментальные проблемы радиоэлектронного приборостроения, 2009, Т.9, N.2, с. 12-16].

[12]

В качестве прототипа выбрана волноводно-щелевая антенна [Марков Г.Т., Сазонов Д.М. Антенны /учебник для студентов радиотехнических специальностей вузов, 2-е издание. - М.: Энергия, 1975. - 528 с., с. 358], представляющая собой решетку из многих излучающих щелей, питаемых общим волноводом.

[13]

Основным недостатком прототипа является повышенная ЭПР.

[14]

Раскрытие сущности изобретения

[15]

Технический результат предлагаемой конструкции состоит в существенном снижении ЭПР щелевой антенны при сохранении ее излучательных и приемных свойств.

[16]

Указанный технический результат достигается тем, что в предлагаемом устройстве, которое представляет собой щелевую антенну, выполненную из отрезка прямоугольного волновода, в широкой стенке которого расположены в ряд отверстия (щели), служащие для излучения или приема электромагнитных волн, в соответствии с настоящим изобретением, поверхность широкой стенки волновода покрыта неселективным поглощающим покрытием (НПП), представляющим собой полимерную основу, содержащую наноструктурированные проводящие нити из полуметаллов [Сигов А.С. и др. Поглощение электромагнитного излучения металлическими наноструктурами / Нано- и микросистемная техника, 2008, N.11, с. 2-4; Шиляев А.А. и др. Протяженные металлические наноструктуры в диэлектрической матрице как универсальные поглотители электромагнитного излучения / Фундаментальные проблемы радиоэлектронного приборостроения, 2009, Т. 9, N.2, с. 12-16].

[17]

Для покрытия щелевой антенны используется прямоугольная пластина из НПП, длина и ширина которой превосходят соответствующие размеры широкой стенки волновода антенны на величину не менее (1/16)λ, где λ - рабочая длина волны щелевой антенны. Выступ пластины за габариты антенны позволяет избежать переотражения, связанного с краевыми эффектами.

[18]

В пластине НПП предварительно вырезаны отверстия, положение и форма которых соответствуют щелям антенны с соблюдением их общего геометрического подобия. Размеры отверстий пластины НПП превосходят размеры щелей антенны так, чтобы обеспечить выступ краев отверстий пластины за края щелей на величину не более (1/100)λ. Толщина пластины НПП не превышает величину (1/8)λ.

[19]

Пластина НПП закрепляется на антенне таким образом, чтобы отверстия пластины располагались соосно напротив щелей антенны. Части антенны, не содержащие излучательных щелей (например, соединительный фланец антенны), также покрываются НПП.

[20]

Экспериментально показано, что в предлагаемом устройстве за счет нанесения НПП на плоскость щелевой антенны при выбранных параметрах покрытия не происходит ухудшения излучательных свойств антенны при одновременном снижении ее ЭПР.

[21]

Так как НПП не содержит ферромагнитных включений, то шунтирования излучающих магнитных диполей не происходит.

[22]

Наличие в НПП проводящих нитей из полуметаллов, которые являются сильными диамагнетиками, препятствует проникновению магнитного поля от излучающих щелей внутрь НПП, что приводит к существенному снижению поглощения излучения от антенны поглотителем.

[23]

Краткое описание чертежей

[24]

Изобретение иллюстрируется следующими графическими материалами.

[25]

На фиг. 1 показана конструкция предлагаемого устройства, где: / - щелевая антенна;

[26]

2 - пластина НПП;

[27]

3 - соединительный фланец;

[28]

4 - пластина НПП дополнительная.

[29]

На фиг. 2 и фиг. 3 представлены сечения диаграмм направленности (ДН) излучения щелевой антенны в ближней и дальней зоне, соответственно, где: пунктирная линия - сечение ДН антенны без покрытия НПП; сплошная линия - сечение ДН антенны с покрытием НПП.

[30]

На фиг. 4 представлено сечение ДН излучения щелевой антенны без покрытия НПП, полученное расчетным способом.

[31]

Осуществление изобретения

[32]

Устройство приведено на фиг. 1 и представляет собой щелевую антенну 7, выполненную из отрезка прямоугольного волновода с щелями в широкой стенке волновода, расположенными в ряд, покрытую пластиной НПП 2 с предварительно вырезанными отверстиями, положение и форма которых соответствуют щелям антенны. Пластина НПП закреплена на антенне таким образом, что отверстия пластины располагаются соосно щелям антенны.

[33]

Габаритные размеры пластины НПП по длине и ширине увеличены на 2 мм по сравнению с размерами антенны, то есть на величину порядка (1/16)λ, при λ=3,2 см.

[34]

Отступ краев отверстий пластины НПП от краев щелей антенны не превышает 0,3 мм, то есть (1/100)λ.

[35]

Антенна содержит соединительный фланец 3 для присоединения к СВЧ генератору, на выступающих частях которого закреплены дополнительные пластины НПП 4.

[36]

Устройство работает следующим образом.

[37]

СВЧ энергия поступает через соединительный фланец в антенну и далее излучается в пространство без искажений, благодаря отсутствию шунтирования излучающих щелей (магнитных диполей) покрытием НПП, содержащим поглощающие элементы в виде протяженных наноструктурированных нитей из полуметаллов, не имея при этом в своем составе ферромагнитных включений.

[38]

Проводящие нити из полуметаллов, являясь сильными диамагнетиками, препятствуют проникновению магнитного поля от излучающих щелей внутрь НПП.

[39]

При проверке работы устройства измерялись ДН излучения в ближней и дальней зонах, по которым определялись параметры, характеризующие излучательные свойства антенны.

[40]

Снятие ДН проводилось методом измерения в ближней и дальней зонах. На фиг. 2 и фиг. 3 приведены сечения ДН антенны для центральной (рабочей) частоты 9,3 ГГц, полученные при измерениях в ближней и дальней зонах, соответственно (пунктирная линия соответствует сечению ДН антенны без покрытия НПП, сплошная - с покрытием НПП).

[41]

На фиг. 4 приведена ДН для антенны без покрытия, полученная расчетным способом в программе CSTMWS.

[42]

Из фиг. 2 и фиг. 3 видно, что форма сечений ДН практически одинакова для обоих случаев и хорошо совпадает с результатами расчетов.

[43]

В таблице 1 приведены значения основных параметров антенны с покрытием НПП и без него.

[44]

[45]

Измерение коэффициента отражения R при нормальном падении потока излучения на поверхность антенны, покрытую НПП, показало высокую эффективность поглощения. Измерения проводились на частотах от 8,5 ГГц до 12,5 ГГц. При этом величина R составила величину от -20 дБ до -23дБ.

Как компенсировать расходы
на инновационную разработку
Похожие патенты